Aspects of anomalous glue

Steven Bass, SMI Wien

Anomalous glue: Glue associated with the QCD axial anomaly

Chiral symmetry, eta and eta' physics: the masses of these mesons are 300-400 MeV too big for them to be pure Goldstone bosons

Recent developments in eta' physics: the eta' in nuclear matter and odd I-wave exotics from CERN

The proton spin puzzle: just 35% of the proton's spin comes from the spin of its quarks

- aside on baryon number violation in the early Universe (sphalerons)

Open questions ...

Zakopane, June 19 2014

Chiral symmetry

• QCD Lagrangian with massless quarks exhibits chiral symmetry

$$\mathcal{L}_{QCD} = \bar{\psi}_L \Big(i\hat{\partial} + g\hat{A} \Big) \psi_L + \bar{\psi}_R \Big(i\hat{\partial} + g\hat{A} \Big) \psi_R - m_q \Big(\bar{\psi}_L \psi_R + \bar{\psi}_R \psi_L \Big) - \frac{1}{4} G_{\mu\nu} G^{\mu\nu}$$

$$\left(\begin{array}{c} u_L \\ d_L \end{array}\right) \ \mapsto \ e^{i\frac{1}{2}\vec{\alpha}.\vec{\tau}\gamma_5} \left(\begin{array}{c} u_L \\ d_L \end{array}\right) \quad , \quad \left(\begin{array}{c} u_R \\ d_R \end{array}\right) \ \mapsto \ e^{i\frac{1}{2}\vec{\beta}.\vec{\tau}\gamma_5} \left(\begin{array}{c} u_R \\ d_R \end{array}\right)$$

• Noether currents

$$J^{(3)}_{\mu 5} = \left[\bar{u} \gamma_{\mu} \gamma_{5} u - \bar{d} \gamma_{\mu} \gamma_{5} d \right] \qquad \qquad \partial^{\mu} J^{(3)}_{\mu 5} = 2m_{u} \bar{u} i \gamma_{5} u - 2m_{d} \bar{d} i \gamma_{5} d d \bar{d} i \gamma_{5} d \bar{d$$

• No parity doublets in hadron spectrum \rightarrow Spontaneous Chiral symmetry breaking: non zero condensate $\langle vac | \bar{q}q | vac \rangle < 0$ spontaneously breaks the symmetry

 \rightarrow Nonet of near massless Goldstone bosons with J^P = O⁻

• Identify with pion, kaon, eta with meson mass squared proportional to m_q

$$m_{\eta_8}^2 = rac{4}{3}m_{
m K}^2 - rac{1}{3}m_\pi^2$$

... where is the singlet boson ?

Eta and Etaprime masses

Mass matrix

٠

•

$$M_{\eta-\eta'}^2 = \begin{pmatrix} \frac{4}{3}m_{\rm K}^2 - \frac{1}{3}m_{\pi}^2 & -\frac{2}{3}\sqrt{2}(m_{\rm K}^2 - m_{\pi}^2) \\ \\ -\frac{2}{3}\sqrt{2}(m_{\rm K}^2 - m_{\pi}^2) & [\frac{2}{3}m_{\rm K}^2 + \frac{1}{3}m_{\pi}^2 + \tilde{m}_{\eta_0}^2] \end{pmatrix}$$

agonalize
$$ert \eta
angle = \cos heta ert \eta_8
angle - \sin heta ert \eta_0
angle \ ert \eta'
angle = \sin heta ert \eta_8
angle + \cos heta ert \eta_0
angle$$

$$m_{\eta',\eta}^2 = (m_{\rm K}^2 + \tilde{m}_{\eta_0}^2/2) \pm \frac{1}{2} \sqrt{(2m_{\rm K}^2 - 2m_{\pi}^2 - \frac{1}{3}\tilde{m}_{\eta_0}^2)^2 + \frac{8}{9}\tilde{m}_{\eta_0}^4}$$

• Eigenvalues

$$m_\eta^2 + m_{\eta'}^2 = 2m_K^2 + \tilde{m}_{\eta_0}^2.$$

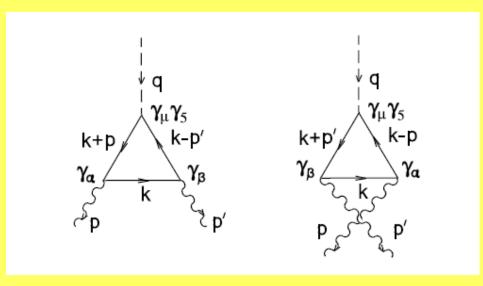
• With no glue: chiral symmetry "predicts" eigenstates with masses 300 MeV "too small" » "eta" $(\frac{1}{\sqrt{2}}|\bar{u}u+\bar{d}d\rangle)$ degenerate with the pion

» "etaprime"
$$|ar{s}s
angle$$
 with mass $\sqrt{2m_K^2-m_\pi^2}$

Axial U(1) symmetry

• Extra gluonic mass term is associated with the QCD axial anomaly

$$J_{\mu5}=\left[ar{u}\gamma_{\mu}\gamma_{5}u+ar{d}\gamma_{\mu}\gamma_{5}d+ar{s}\gamma_{\mu}\gamma_{5}s
ight]$$


$$\partial^{\mu} J_{\mu 5} = \sum_{k=1}^{f} 2i \left[m_k \bar{q}_k \gamma_5 q_k \right] + N_f \left[\frac{\alpha_s}{4\pi} G_{\mu\nu} \tilde{G}^{\mu\nu} \right]$$

- plus gluon topology (note the difference with "perturbative glue")
- *i*t Hooft, Veneziano, Witten, Crewther, ...
 - possible connection to confinement (Kogut and Susskind)

Can we observe physical manifestation of this anomalous glue in low-energy physical processes involving eta and eta' mesons?

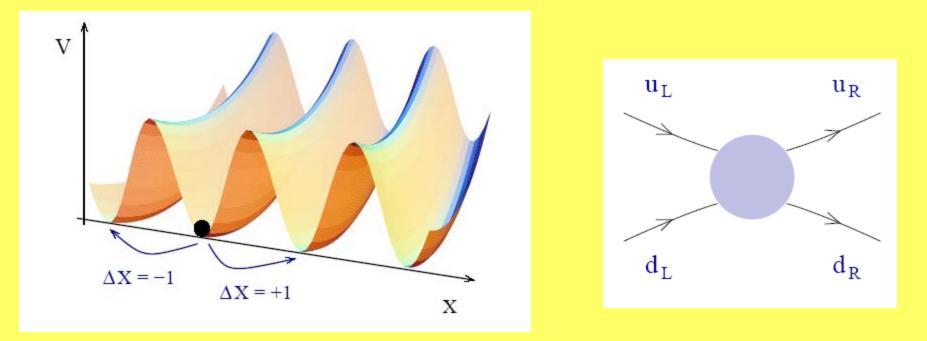
Axial anomaly primer

- Axial anomaly
 - Cannot regularize ultraviolet behaviour of the VVA (vector vector axial-vector) amplitude preserving gauge invariance and chiral symmetry at the same time
 - Must choose current conservation at the vector or at the axial-vector vertices but cannot keep both !
 - Gauge invariance wins !
 - » Gluon anomaly term on RHS of the divergence equation

Gauge invariance and the anomaly

• The axial vector current, connections with chirality, spin and gluon topology

$$\partial^{\mu} J^{GI}_{\mu 5} = 2f \partial^{\mu} K_{\mu} + \sum_{i=1}^{f} 2im_{i} \bar{q}_{i} \gamma_{5} q_{i}$$


$$K_{\mu} = \frac{g^2}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} \left[A_a^{\nu} \left(\partial^{\rho} A_a^{\sigma} - \frac{1}{3} g f_{abc} A_b^{\rho} A_c^{\sigma} \right) \right]$$

$$\begin{split} J^{GI}_{\mu 5} = J^{\rm con}_{\mu 5} + 2fK_{\mu} \\ A_{\mu} \to UA_{\mu}U^{-1} + \frac{i}{g}(\partial_{\mu}U)U^{-1} \\ & + \frac{1}{24\pi^{2}}\epsilon_{\mu\nu\alpha\beta}[(U^{\dagger}\partial^{\nu}U)(U^{\dagger}\partial^{\alpha}U)(U^{\dagger}\partial^{\beta}U)] \end{split}$$

» Last term measures non local gluon topology

Chirality and anomalous glue

- Perturbative QCD conserves chirality for massless quarks
- Confinement and vacuum tunneling processes (instantons, ...) connect left and right handed quarks

Choice of current to define chirality
 (How to include boundary conditions on the lattice ?)

Manifestations of anomalous glue

- Etaprimes in nuclear medium
- Exotic mesons, new data from COMPASS with strong coupling to etaprime final states
- Proton spin puzzle
 - Aside on baryon number violation in early Universe

Glue in etaprime physics

• Glue enters through the anomaly equation ...

$$\partial^{\mu} J^{GI}_{\mu 5} = 2f \partial^{\mu} K_{\mu} + \sum_{i=1}^{f} 2im_{i} \bar{q}_{i} \gamma_{5} q_{i}$$

- Three important places it can contribute
 - » Gluonic potential associated with QCD vacuum gives the etaprime a big mass
 - > The etaprime has a large singlet component
 → coupling to gluonic intermediate states (OZI violation)
 - » Gluonic Fock components in the etaprime wavefunction

U(1) extended chiral Lagrangian

- Low energy effective Lagrangian
 - constructed to reproduce the axial anomaly in the anomalous divergence equation and the gluonic mass term for the singlet boson

$$\mathcal{L} = \frac{F_{\pi}^2}{4} \operatorname{Tr} \left(\partial^{\mu} U \partial_{\mu} U^{\dagger} \right) + \frac{F_{\pi}^2}{4} \operatorname{Tr} M \left(U + U^{\dagger} \right) + \frac{1}{2} i Q \operatorname{Tr} \left[\log U - \log U^{\dagger} \right] + \frac{3}{\tilde{m}_{\eta_0}^2 F_0^2} Q^2$$

$$U = \exp\{i(\phi/F_{\pi} + \sqrt{2/3}\eta_0/F_0)\}\$$

• Q is the topological charge density and the gluonic potential yields the gluonic contribution to the etaprime mass term

$$\frac{1}{2} i Q \operatorname{Tr} \left[\log U - \log U^{\dagger} \right] + \frac{3}{\tilde{m}_{\eta_0}^2 F_0^2} Q^2 \mapsto -\frac{1}{2} \tilde{m}_{\eta_0}^2 \eta_0^2.$$

• Couple to sigma mean field and repeat ...

$$\mathcal{L}_{\sigma Q} = Q^2 g_{\sigma}^Q \sigma$$

$$\tilde{m}_{\eta_0}^2 \mapsto \tilde{m}_{\eta_0}^{*2} = \tilde{m}_{\eta_0}^2 \frac{1+2x}{(1+x)^2} < \tilde{m}_{\eta_0}^2$$

where

$$x = \frac{1}{3} g_{\sigma}^Q \sigma \tilde{m}_{\eta_0}^2 F_0^2.$$

Eta(prime) bound states in nuclei

[SDB + AW Thomas, Phys Lett B634 (2006) 368, Acta Phys Pol B 45 (2014) 627]

- New experiments + big effort ...
- Binding energies and effective masses in nuclei are sensitive to
 - Coupling to scalar sigma field in the nuclei in mean field approx.
 - Nucleon-nucleon and nucleon-hole excitations in the medium
- TH: Solve for the meson self-energy in the medium

$$k^2-m^2={\rm Re}~\Pi(E,\vec{k},\rho)$$

$$\Pi(E,\vec{k},\rho)\bigg|_{\{\vec{k}=0\}} = -4\pi\rho\bigg(\frac{b}{1+b\langle\frac{1}{r}\rangle}\bigg). \qquad b = a(1+\frac{m}{M})$$

- Where a is the "eta(prime)-nucleon scattering length"

Eta bound-states in nuclei

Sigma mean field couples to light quarks and not to strange quarks
 → Flavour-singlet component is important !
 The bigger the eta-eta' mixing angle, the bigger the singlet

component in the eta

- \rightarrow greater the attraction
- \rightarrow more binding
- → bigger eta-N scattering length

Likewise, more mixing gives smaller singlet component in the eta'

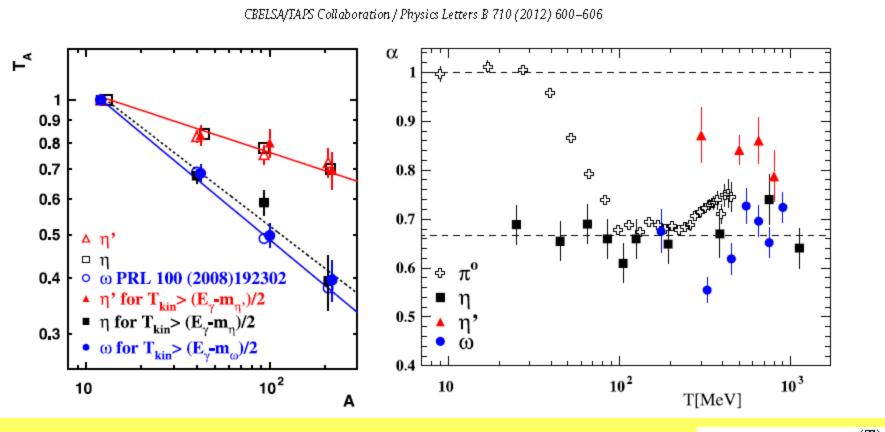
 \rightarrow reduced binding and smaller eta'N scattering length

QCD arguments

- \rightarrow gluonic mass term is suppressed in the medium
 - but theory technology to calculate the size of the effect direct from QCD still some time away
 - \rightarrow look at QCD inspired models

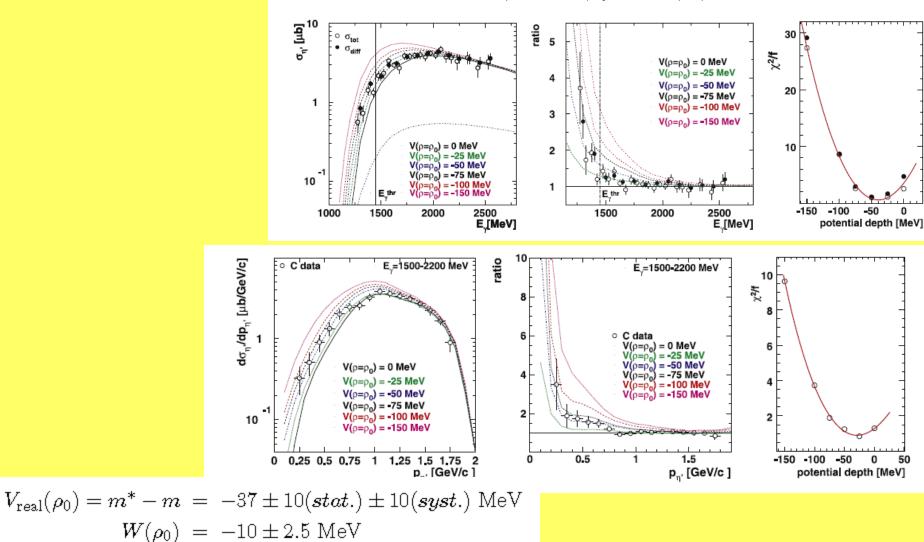
QCD Inspired Models

- Quark Meson Coupling Model:
 - Can vary the mixing angle !
 - Use large eta and eta' masses to treat the eta and eta' as MIT Bags embedded in the medium with coupling between the light-quarks and the sigma mean field
 - Solve for in-medium mass and binding energy
 - \rightarrow Extract an "effective" scattering length for the model
 - \rightarrow Increases with increasing singlet component in the eta !

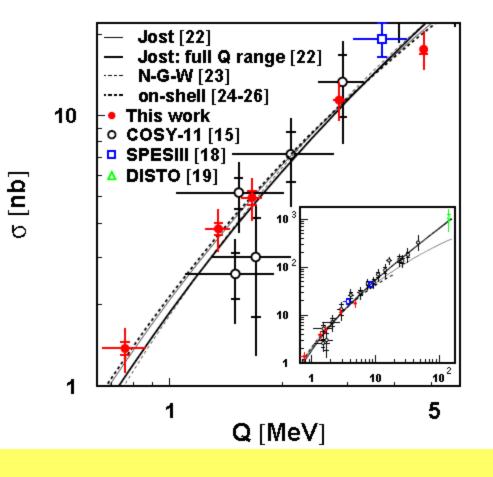

	$m \; [{ m MeV}]$	$m^*~[{\rm MeV}]$	$\operatorname{Re} a$ [fm]
η_8	547.75	500.0	0.43
$\eta~(-10^\circ)$	547.75	474.7	0.64
$\eta (-20^{\circ})$	547.75	449.3	0.85
η_0	958	878.6	0.99
$\eta' \; (-10^{\circ})$	958	899.2	0.74
$\eta'~(-20^\circ)$	958	921.3	0.47

• Hints from CBELSA/TAPS for etaprime [Nanova et al, 2013]

» Mass shift -37 pm 10 pm 10 MeV, width 20 pm 5 MeV


CBELSA/TAPS: Transparency Ratios

Medium is reasonably transparent to eta' propagation


 $\sigma(A) = \sigma_0 A^{\alpha(T)}$

CBELSA/TAPS: Excitation Functions and Momentum distributions

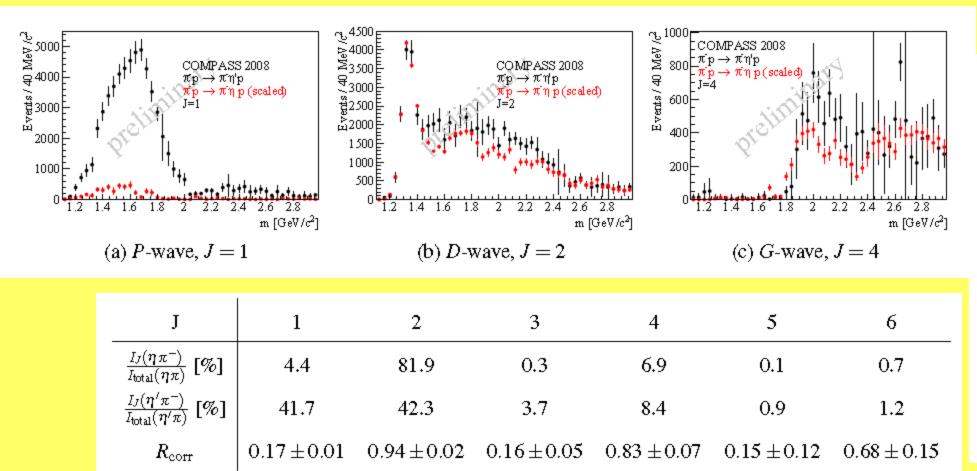
CBELSA/TAPS Collaboration / Physics Letters B 727 (2013) 417-423

COSY 11

$$\left|M_{pp
ightarrow pp\eta'}
ight|^2 pprox \left|M_0
ight|^2 \cdot \left|M_{FSI}
ight|^2$$

$$M_{FSI} = M_{pp}(k_1) imes M_{p_1\eta'}(k_2) imes M_{p_2\eta'}(k_3)$$

$$\begin{aligned} &\text{Re}(a_{p\eta'}) \ = \ 0 \ \pm \ 0.43_{stat} \ \text{fm} \\ &\text{Im}(a_{p\eta'}) \ = \ 0.37 \ ^{+0.02_{stat}}_{-0.11_{stat}} \ ^{+0.38_{sys}}_{-0.05_{sys}} \ \text{fm} \end{aligned}$$


• E. Czerwinski et al (2014), COSY 11 Collaboration, arXiv:1404.5436

New Compass results

Iterate $\mathcal{L}_{m2Q} = \lambda Q^2 \operatorname{Tr} \partial_{\mu} U \partial^{\mu} U^{\dagger}$ in Bethe Salpeter equation

٠

dynamicaly generates 1⁻⁺ exotic resonance with mass ~ 1400 MeV [SDB and E Marco, PRD 65 (2002) 057503]

Pos Hadron N)13) 08 UП 17

The spin structure of the nucleon

Christine A. Aidala*

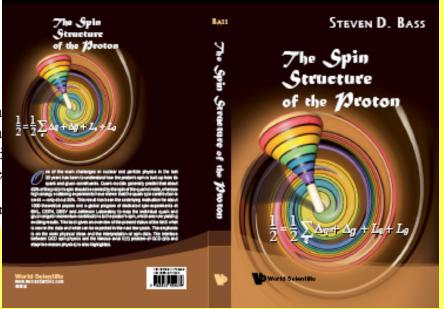
Physics Department, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, USA

Steven D. Bass[†]

Institute for Theoretical Physics, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria

Delia Hasch[‡]

INFN-Frascati, via E. Fermi 40, 00044 Frascati (Rm), Italy


Gerhard K. Mallot[§] CERN, CH-1211 Genève 23, Switzerland

(published 12 April 2013)

This article reviews our present understanding of QCD spin physics: th developments aimed at understanding the transverse structure of the n investigations of the nucleon's internal spin structure, the theoretical i measurements, and the open questions and challenges for future inve

DOI: 10.1103/RevModPhys.85.655

PACS number

The proton spin puzzle

Historically, Relativistic quark models

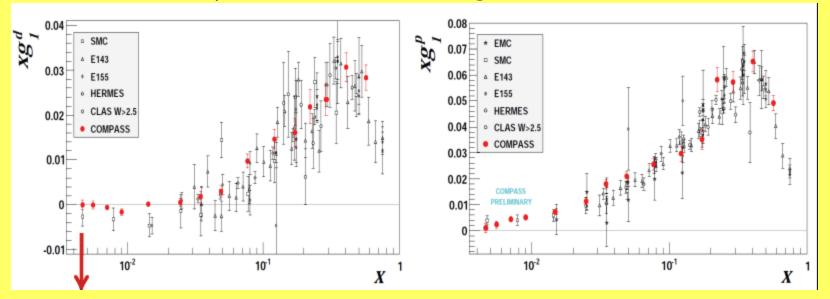
 \rightarrow ~ 60% of proton's spin carried by intrinsic spin of quark constituents

- Polarized Deep Inelastic Scattering → quark "spin content" ~ 35%
- \rightarrow Where is the missing "spin" ?
- (measured by singlet axial-current, polarized gluons, L_z, ... ?)
- Vigorous TH and EP programme ... Experiments at COMPASS, HERMES, RHIC
- Today: Good convergence for helicity structure within good errors

Deep inelastic spin sum rules

$$\begin{split} \int_{0}^{1} dx g_{1}^{p}(x, Q^{2}) &= \left(\frac{1}{12}g_{A}^{(3)} + \frac{1}{36}g_{A}^{(8)}\right) \left\{1 + \sum_{\ell \ge 1} c_{\mathrm{NS}\ell} \alpha_{s}^{\ell}(Q)\right\} \\ &+ \frac{1}{9}g_{A}^{(0)}|_{\mathrm{inv}} \left\{1 + \sum_{\ell \ge 1} c_{\mathrm{S}\ell} \alpha_{s}^{\ell}(Q)\right\} \\ &+ \mathcal{O}\left(\frac{1}{Q^{2}}\right) + \beta_{\infty}. \end{split}$$

• Measures axial-current matrix elements


$$2Ms_{\mu}\Delta q = \langle p, s | \bar{q}\gamma_{\mu}\gamma_{5}q | p, s \rangle$$

$$g_A^{(3)} = \Delta u - \Delta d,$$
$$g_A^{(8)} = \Delta u + \Delta d - 2\Delta s,$$
$$g_A^{(0)}|_{inv} / E(\alpha_s) \equiv g_A^{(0)} = \Delta u + \Delta d + \Delta s.$$

$$E(\alpha_s) = \exp \int_0^{\alpha_s} d\tilde{\alpha}_s \gamma(\tilde{\alpha}_s) / \beta(\tilde{\alpha}_s)$$

The Spin Structure of the Proton

Polarized Deep Inelastic Scattering

Measure g_1 spin structure function First moment \rightarrow

$$g_A^{(0)}|_{\text{pDIS},Q^2 \to \infty} = 0.33 \pm 0.03 \text{(stat)} \pm 0.05 \text{(syst)}.$$

WHERE IS THE "MISSING SPIN"?

 \rightarrow "Strangeness polarization"

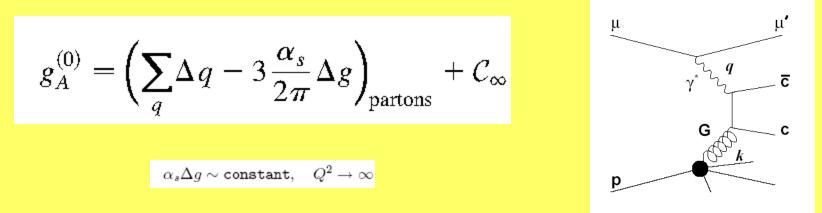
$$\Delta s_{Q^2 \to \infty} = \frac{1}{3} (g_A^{(0)}|_{\text{pDIS}, Q^2 \to \infty} - g_A^{(8)})$$

= -0.08 ± 0.01(stat) ± 0.02(syst),

Sum rules

• Sum rules for

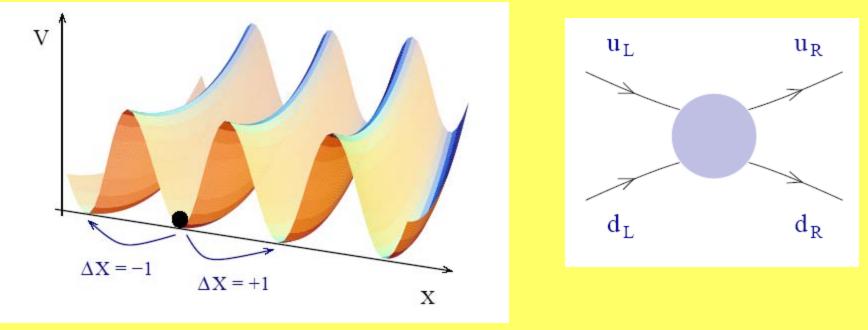
 $g_A^{(0)}$ singlet axial charge (... e.g. Ellis-Jaffe #2)


what dynamics separates its value from $g_A^{(8)}$?

and

 $\frac{1}{2}$ = Quark spin + Glue spin + Orbital

Polarized glue


- Attempts to understand the polarized DIS values of $g_A^{(0)}$ and Delta s
 - Gluon polarization
 - Sea and valence quark polarization
 - → measure through hard processes in (semi-inclusive) DIS, jets, polarized pp collisions at RHIC ...

- Measurements at COMPASS, RHIC, HERMES: Delta g < 0.5, Q² ~ 3 GeV²
- SIDIS: No evidence of negative strangeness polarization
 Delta s = -0.02 +/- 0.02 (stat) +/- 0.02 (syst) @ 0.003 < x < 0.3

Example of x=0 polarization

• Vacuum tunneling processes (instantons, and interaction with QCD theta vacuum)

- Chirality of moving quarks gets flipped but the total is conserved
 - \rightarrow Is absorbed into the vacuum and
 - → Spin asymmetry of moving partons gets washed out with spin shifted to x=0
 - \rightarrow "x=0" carries some of the spin !

(corresponds to subtraction constant in dispersion relation for g_1)

[SDB, Rev Mod Phys 77 (2005) 1257]

Understanding the proton spin

- Non-perturbative physics is important !
 - SU(3) breaking through pion cloud

 $g_A^{(8)} = 0.46 \pm 0.05$

[SDB and AW Thomas, PLB 684 (2010) 216]

- Role of gluon topology in dynamical symmetry breaking and the transition from current to constituent quarks
- Spin transferred from (valence) quarks to the QCD "theta-vacuum"
- SIDIS data + RHIC Spin \rightarrow Glue and sea polarization appears small
- Proton spin puzzle is "valence like"
 - → connected with chiral dynamics and complex vacuum structure of QCD in (iso-)singlet channel

Baryon number violation in the early Universe: What is baryon number ?

• Definition of baryon number in e-weak theory is subtle because of the axial anomaly

$$J_{\mu} = \bar{\Psi} \gamma_{\mu} \Psi$$

= $\bar{\Psi} \gamma_{\mu} \frac{1}{2} (1 - \gamma_5) \Psi + \bar{\Psi} \gamma_{\mu} \frac{1}{2} (1 + \gamma_5) \Psi.$

SU(2) gauge bosons couple only to left handed quarks → axial anomaly is important!

$$\partial^{\mu} J_{\mu} = n_f \left(-\partial^{\mu} K_{\mu} + \partial^{\mu} k_{\mu} \right),$$

$$\partial^{\mu}K_{\mu} = \frac{g^2}{32\pi^2} W_{\mu\nu} \tilde{W}^{\mu\nu}$$

Suggests choice of currents to define baryon number:
 (1) the gauge invariant renormalized current
 OR

(2) (gauge invariant observables associated with) the conserved (but gauge dependent) current

$$J_{\mu}^{\rm con} = J_{\mu} - n_f (-K_{\mu} + k_{\mu})$$

$$\partial^{\,\mu}J_{\mu}^{\,\rm con}=0$$

Anomalous commutators

• Consider the charges

$$Y(t) = \int d^3 z J_0(z), \qquad B = \int d^3 z J_0^{\text{con}}(z).$$

• Gauge invariant baryon number B is defined through the commutators

$$[B, \mathcal{O}]_{-} = \mathcal{B}\mathcal{O}$$

despite gauge dependence of the operator

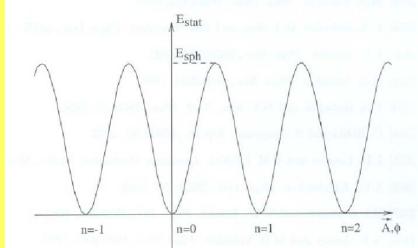
- B charge is renormalization scale invariant (as baryon number should be!) whereas Y is not.
- Also, the time derivative of the spatial components of the W boson field has zero B charge and non-zero Y charge $[B, \partial_0 A_i]_{-} = 0$

$$[B, \partial_0 A_i]_{-} = 0$$

and
$$\lim_{t' \to t} [Y(t'), \partial_0 A_i(\vec{x}, t)]_{-}$$
$$= \frac{in_f g^2}{4\pi^2} \tilde{W}_{0i} + O(g^4 \ln|t' - t|)$$

Sphaleron processes in the early Universe

E-weak instanton tunneling processes strongly suppressed


$$e^{-4\pi\sin^2\theta_W/\alpha}\sim 10^{-170}$$

 BUT at high temperatures of order the potential barrier (multi TeV) in the early Universe thermal fluctuations can induce vacuum transitions "Sphalerons" and the suppression factor goes away

• Key equations
$$J_{\mu}^{con} = J_{\mu} - n_f (-K_{\mu})$$

$$\Delta Y = \Delta B - n_f m,$$

• B-L is conserved while B+L is violated

Tunneling and vacuum transitions can yield baryon number non-conservation

 $+k_{\mu}$

$$q + q \rightarrow 7\bar{q} + 3\bar{l},$$

 Baryon number violation associated with formation of "topological condensate", with phenomenology = ??
 [SDB, PLB 590 (2004) 115]

Outlook and Conclusions

- Eta and etaprime physics probes the role of long range gluonic dynamics
- Etas and etaprimes in nuclei:
 - Aspects of Confinement, chiral symmetry and their interplay, range of masses for pseudoscalars to be treated as Goldstone states in the models
 - Binding energies and scattering lengths sensitive to the flavoursinglet component in the eta(-prime)
- Anomalous glue in the proton spin puzzle
 - Phenomenology of "topological condensates", also in early Universe

... QCD theory meets experiment !