Can Eguchi-Kawai reduction provide a practical method for studying large-Nc theories on the lattice?

Steve Sharpe University of Washington

S. Sharpe, "Large N reduction" 6/29/13 @ Cracow School of Theoretical Physics, Zakopane, Poland 1 /54

Friday, June 28, 13

Outline

- Introduction & Motivation
- Short history of "volume reduction"
- Application to QCD with 1 & 2 adjoint fermions: adjoint Eguchi-Kawai [AEK] model
- Twisted adjoint Eguchi-Kawai [TAEK] model
- * Outlook

Overview: beyond QCD

Overview: beyond QCD

Why add colors?

- At first sight, this seems foolhardy!
 - Increasing the number of degrees of freedom while still studying a strongly coupled theory
- However, there are important theoretical and computational simplifications
 - Planarity
 - Gauge-gravity duality
 - Volume independence

Planarity ['t Hooft, Witten,...]

- * Limit is $N \longrightarrow \infty$ with $\lambda = g^2 N$ & N_f fixed
- Only planar diagrams contribute in perturbation thy
- Mesons & glueballs are stable (widths ~1/N)
- * Expectation values factorize: $\langle \mathcal{O}_1 \mathcal{O}_2 \rangle = \langle \mathcal{O}_1 \rangle \langle \mathcal{O}_2 \rangle$
- Simplified theory sharing asymptotic freedom, confinement & Chiral SB with QCD
 - Long-standing hope that analytic progress is possible
 - Lattice calculations can help guide search for string-theory duals

Volume Independence [Eguchi & Kawai]

 Under non-trivial conditions, certain properties of gauge theories at large N are independent of volume

Does this reduction in degrees of freedom provide a practical method to access the theoretical simplicity of large N theories? Are the conditions satisfied?

After a hiatus, much recent interest, e.g.

T. Eguchi & H. Kawai, PRL 48 (1982) 1063 [EK model]

G. Bhanot, U. Heller & H. Neuberger, PL 113B (1982) 49 [QEK model]

A. Gonzalez-Arroyo & M. Okawa, PL 120B (1983) 174 [TEK model]

•••••

P. Kovtun, M. Unsal & L.G. Yaffe, JHEP 0706 (2007) 109 [Adjoint EK]

B. Bringoltz & S.R. Sharpe, PRD 80 (2009) 065031 [massive Nf=1 AEK works]

A. Heitenen & R. Narayanan, JHEP 1001 (2010) 79, PLB 698 (2011) 171 [massless Nf=1/2 AEK]

T. Azeyanagi, M. Hanada, M. Unsal & R. Yacoby, PRD82 (2010) 125013 [why massive AEK works; ATEK; T > 0]

M. Unsal & L.G. Yaffe, JHEP 1008 (2010) 030 [why massive AEK works]

B. Bringoltz, M. Koren & S.R. Sharpe, PRD85 (2012) 094504 [massive Nf=2 AEK works]

M. Hanada, J.-W. Lee & N. Yamada, arXiv: [chiral symmetry breaking using 24 AEK]

A. Gonzalez-Arroyo & M. Okawa, JHEP 1007 (2010) 043 [TEK lives and thrives]

R. Lohmayer & R. Narayanan, arXiv:1305.1279 [AEK problems in weak coupling]

A. Gonzalez-Arroyo & M. Okawa, arXiv:1305.6253 [ATEK for N up to 29²=841]

I will not discuss:

 Novel simulations of single-site SUSY lattice theories aimed at testing AdS/CFT correspondence and learning about string theories & quantum gravity

[J. Nishimura, M. Hanada, T. Wiseman, S. Catterall,]

- Partial reduction of QCD in `t Hooft limit
 - If L>L_c≈1 fm then results independent of L [Narayanan & Neuberger]
- Obtaining results for large N by extrapolating from N=3,4,5,6 (useful for pure gauge theory) [Teper,...]
- Reduction of one dimension [Cossu & D'Elia]

History of large-N volume independence

S. Sharpe, "Large N reduction" 6/29/13 @ Cracow School of Theoretical Physics, Zakopane, Poland

First example

VOLUME 48, NUMBER 16

PHYSICAL REVIEW LETTERS

19 April 1982

10 /54

Reduction of Dynamical Degrees of Freedom in the Large-N Gauge Theory

Tohru Eguchi and Hikaru Kawai Department of Physics, Faculty of Science, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan (Received 19 January 1982)

Lattice SU(N) on $L^d \stackrel{N=\infty}{\equiv}$ Lattice SU(N) on 1^d

Now usually called "large-N volume independence"

S. Sharpe, "Large N reduction" 6/29/13 @ Cracow School of Theoretical Physics, Zakopane, Poland

Friday, June 28, 13

Lattice SU(N) on $L^d \stackrel{N=\infty}{\equiv}$ Lattice SU(N) on 1^d

gauge theory	"reduced" or "matrix" model
$U_{n,\mu} \in SU(N)$	$U_{\mu} \in SU(N)$
$S_{\text{gauge}} = Nb \sum_{\substack{n \\ \mu < \nu}} 2\text{Re} \operatorname{Tr} \left(U_{n,\mu} U_{n+\mu,\nu} U_{n+\nu,\mu}^{\dagger} U_{n,\nu}^{\dagger} \right)$ $b = (g^2 N)^{-1}$	$S_{EK} = Nb \sum_{\mu < \nu} 2 \operatorname{Re} \operatorname{Tr} \left(U_{\mu} U_{\nu} U_{\mu}^{\dagger} U_{\nu}^{\dagger} \right)$ $b = (g^2 N)^{-1}$

Links all different

Lattice SU(N) on $L^d \stackrel{N=\infty}{\equiv}$ Lattice SU(N) on 1^d

gauge theory	"reduced" or "matrix" model
$U_{n,\mu} \in SU(N)$	$U_{\mu} \in SU(N)$
$S_{\text{gauge}} = Nb \sum_{\substack{n \\ \mu < \nu}} 2\text{Re} \operatorname{Tr} \left(U_{n,\mu} U_{n+\mu,\nu} U_{n+\nu,\mu}^{\dagger} U_{n,\nu}^{\dagger} \right)$ $b = (g^2 N)^{-1}$	$S_{EK} = Nb \sum_{\mu < \nu} 2 \operatorname{Re} \operatorname{Tr} \left(U_{\mu} U_{\nu} U_{\mu}^{\dagger} U_{\nu}^{\dagger} \right)$ $b = (g^2 N)^{-1}$

Links all different

Lattice SU(N) on $L^d \stackrel{N \equiv \infty}{\equiv}$ Lattice SU(N) on 1^d

gauge theory	"reduced" or "matrix" model	
gauge sy	mmetry	
$U_{n\mu} \to \Omega_n U_{n\mu} \Omega_{n+\mu}^{\dagger} ; \Omega_n \in SU(N)$	$U_{\mu} \to \Omega U_{\mu} \Omega^{\dagger} ; \Omega \in SU(N)$	
"center" symmetry		
$U_{[(\vec{n},\tau),\mu]} \to U_{[(\vec{n},\tau),\mu]} z_{\mu} ; z_{\mu} \in Z_N$	$U_{\mu} \to U_{\mu} z_{\mu} ; z_{\mu} \in Z_N$	

S. Sharpe, "Large N reduction" 6/29/13 @ Cracow School of Theoretical Physics, Zakopane, Poland 13 /54

Friday, June 28, 13

EK's demonstration of vol. indep.

Show equivalence of Dyson-Schwinger eqs for Wilson loops

gauge reduced $U_{n,\mu} \to U_{n\mu} \left(1 + i\epsilon t^a \right)$ $U_{\mu} \to U_{\mu} \left(1 + i\epsilon t^a \right)$

Crucial difference

gauge reduced $\operatorname{tr}\left(\cdots U_{n,\mu}U_{n+\mu,\nu}\cdots U_{m,\mu}^{\dagger}U_{m-\mu,\rho}\cdots\right) \qquad \operatorname{tr}\left(\cdots U_{\mu}U_{\nu}\cdots U_{\mu}^{\dagger}U_{\rho}\cdots\right)$

• Get extra terms on the reduced side: must vanish for reduction to hold

• Extra terms correspond to "open loops" in gauge theory

e.g.
$$\left\langle \operatorname{tr} \left(U_{\mu} U_{\nu}^{\dagger} \right) \operatorname{tr} \left(U_{\mu}^{\dagger} U_{\nu} \right) \right\rangle_{\operatorname{reduced}} = 0$$

EK's demonstration of volume independence

Reduction holds if

$$\left\langle tr() tr() tr() \right\rangle = 0$$

• Valid if have large-N factorization

 $\langle W_{C_1} W_{C_2} \rangle_{\text{reduced}} = \langle W_{C_1} \rangle_{\text{reduced}} \langle W_{C_2} \rangle_{\text{reduced}} + O(1/N^2),$

• ... and if center symmetry is unbroken

$$Z_N^4: U_\mu \to U_\mu z_\mu)$$

$$\langle W_{\text{open}} \rangle_{\text{reduced}} = 0.$$

CONCLUSION: ${
m tr} U_{\mu}, \ {
m tr} U_{\mu} U_{\nu}, \ {
m etc.}$ must all vanish in the reduced model

Alternative view of reduction

• Volume independence is an example of a larger class of equivalences: large-N orbifold equivalences [Kovtun, Unsal & Yaffe]

Orbifold equivalence holds if "orbifolding symmetries" (translation invariance and center symmetry) are unbroken

S. Sharpe, "Large N reduction" 6/29/13 @ Cracow School of Theoretical Physics, Zakopane, Poland

Reduction fails! [Bhanot, Heller & Neuberger `82]

- $\operatorname{tr}(U_{\mu}) \neq 0$ Qualitatively: Small L \Leftrightarrow High T \Rightarrow deconfinement \Rightarrow
- Can understand in weak coupling limit as due to clustering of eigenvalues of U_{μ} [BHN '82, Kazakov & Migdal '82]

 $U_{\mu} = V_{\mu}^{\dagger} \Lambda_{\mu} V_{\mu} \qquad \qquad \Lambda_{\mu} = \text{diag} \left[e^{i\theta_{\mu}^{1}}, \dots, e^{i\theta_{\mu}^{N}} \right]$ Z_N symmetry: $\theta^a_\mu \longrightarrow \theta^a_\mu + \frac{2\pi}{N}$ $F_{EK} \xrightarrow{b \to \infty} (d-2) \sum_{a < b} \log \left[\sum_{\mu} \sin^2 \left(\frac{\theta^a_\mu - \theta^b_\mu}{2} \right) \right]$

 \blacksquare Eigenvalues attract for d>2 $\Rightarrow \theta^a_\mu = \theta^b_\mu$ and so $(tr U_\mu \neq 0)$

- For reduction to hold need uniform distribution of eigenvalues, uncorrelated in different directions
- Role of momenta played by $\theta^a_{\mu} \theta^b_{\mu}$

Gonzales-Arroyo, Okawa

S. Sharpe, "Large N reduction" 6/29/13 @ Cracow School of Theoretical Physics, Zakopane, Poland

S. Sharpe, "Large N reduction" 6/29/13 @ Cracow School of Theoretical Physics, Zakopane, Poland

QCD (N=3) 2Nf Dirac fermions in AS irrep (q^{ab}) infinite volume

S. Sharpe, "Large N reduction" 6/29/13 @ Cracow School of Theoretical Physics, Zakopane, Poland

S. Sharpe, "Large N reduction" 6/29/13 @ Cracow School of Theoretical Physics, Zakopane, Poland

S. Sharpe, "Large N reduction" 6/29/13 @ Cracow School of Theoretical Physics, Zakopane, Poland

Why do adjoint fermions help?

- Adjoint fermions survive in large N limit (unlike fundamentals)
- At one-loop order, fermions lead to repulsion between link eigenvalues, as long as use periodic (non-thermal) BC [K,U & Y]
- Repulsion wins for $N_f \! > \! 1/2 \ \underline{\text{massless}}$ Dirac fermions
 - Usually leads to uniform distribution of θ_{μ} , but depends on details of fermion action [Lohmayer & Narayan, 2013]
- Any non-zero mass $[|m_{phys}| > 1/(aN)]$ leads to attraction at small $\theta^a_\mu \theta^b_\mu$ and thus to center-symmetry breaking

Need massless fermions?

• However, perturbation theory not reliable for small $|\theta_{\mu}^{a} - \theta_{\mu}^{b}|$, nor in stronger coupling region of interest

- Use single-site QCD(Adj) for N large to learn about 3 theories of great interest
 - N_f=1: learn about QCD with 2 flavors in Corrigan-Ramond large-N limit
 - N_f=2: alternative window on "minimal" walking technicolor theory
 - [N_f=1/2: equivalent to SYM, for which exact results are known]
- Even though "matrix model" lives on a single site, one can calculate many physical quantities (string tension, pion mass, ...)

S. Sharpe, "Large N reduction" 6/29/13 @ Cracow School of Theoretical Physics, Zakopane, Poland 21 /54

Conditions for equivalences to hold

- 1. Large-N factorization holds
- 2. Orientifold: C not broken in QCD(AS,Adj)
- 3. Orbifold: Translation invariance unbroken in QCD(Adj.) in infinite volume
- Orbifold: (Z_N)⁴ center symmetry unbroken in QCD(Adj.) on a single site

S. Sharpe, "Large N reduction" 6/29/13 @ Cracow School of Theoretical Physics, Zakopane, Poland 22 /54

Conditions for equivalences to hold

- 1. Large-N factorization holds
- 2. Orientifold: C not broken in QCD(AS,Adj)
- Orbifold: Translation invariance unbroken in QCD(Adj.) in infinite volume

 4. Orbifold: (Z_N)⁴ center symmetry unbroken in QCD(Adj.) on a single site

IN THIS TALK:

We assume the first three hold and study the last

Results for Nf=1&2 adjoint Eguchi-Kawai (AEK) model

B. Bringoltz & S.R. Sharpe, PRD 80 (2009) 065031 [arXiv:0906.3538]

- B. Bringoltz, M. Koren & S.R. Sharpe, PRD 85 (2012) 094504 [arXiv:1106.5538]
- A. Gonzalez-Arroyo & M. Okawa, arXiv: 1305.6253

S. Sharpe, "Large N reduction" 6/29/13 @ Cracow School of Theoretical Physics, Zakopane, Poland

Action of AEK model

Wilson gauge and fermion action

$$S_{\text{gauge}} = 2Nb \sum_{\mu < \nu} \operatorname{ReTr} U_{\mu} U_{\nu} U_{\mu}^{\dagger} U_{\nu}^{\dagger}, \quad b = 1/(g^2 N)$$
Parameters
$$S_F = \sum_{j=1, N_f} \bar{\psi}_j D_W \psi_j \quad \text{K} \sim 1/\text{m}$$

$$D_W = \mathbf{1} - \kappa \sum_{\mu=1}^{4} \left[(1 - \gamma_{\mu}) U_{\mu}^{\text{adj}} + (1 + \gamma_{\mu}) U_{\mu}^{\dagger} \right]$$

Symmetries:

gauge:
$$U_{\mu} \longrightarrow \Omega U_{\mu} \Omega^{\dagger}$$
 (all μ) $\Omega \in SU(N)$
center (Z_N)4: $U_{\mu} \longrightarrow U_{\mu} e^{2\pi i n_{\mu}/N}$ $n_{\mu} \in Z_N$

Scaling of CPU with N

- * Original studies used Metropolis algorithm $P(U) = e^{S_{\rm EK}(U)} \left(\det D_W\right)^{N_f}$
 - Determinant real & positive; evaluate explicitly
 - Scaling is $\sim (N^2)^3 x N^2 \sim N^8 \Rightarrow$ can reach N ≈ 15 on PC
- * Present studies use rHMC (HMC) for $N_f=1(2)$
 - Using $U^{\mathrm{adj}} \sim U \cdot U^{\dagger}$, scaling is ~(N³)xN^{1-1.5}~N^{4-4.5}
 - Can reach N=53 on PC, N=289 on supercomputer

Order params for symm breaking

traces of "open" loops

tr (U_{μ}) , tr $(U_{\mu}U_{\nu})$, tr $(U_{\mu}U_{\nu}^{\dagger})$, tr $(U_{1}^{n_{1}}U_{2}^{n_{2}}U_{3}^{n_{3}}U_{4}^{n_{4}})$,...

- * histograms of eigenvalues of links: θ^a_{μ}
- also calculate plaquette and larger Wilson loops

Conclusion for N_f=1 AEK model [B&S]

Based on N≤53; shows weak N dependence

Conclusion for N_f=1 AEK model [B&S]

Based on N≤53; shows weak N dependence

Very surprising feature:

- Inconsistent with pert. thy (requires m_{phys}=0 in general)
- Violates naive decoupling of heavy quarks

S. Sharpe, "Large N reduction" 6/29/13 @ Cracow School of Theoretical Physics, Zakopane, Poland

Very surprising feature:

- Checked using rHMC [Azeyanagi, Hanada, Unsal & Yacoby; Koren & SS]
- Supported by analytic arguments going beyond PT [AHUY, Unsal & Yaffe]

🏓 Pre

Predicts that funnel closes as $|am_{\rm phys}| < \frac{1}{h^{1/4}}$

Infinite volume expectation for $N_f=2$?

N=2 gauge theory ("minimal walking technicolor") subject of many recent studies

Dependence on N not known

Hysteresis scans at
$$b=1$$
 (N=10,16,23,30)

Friday, June 28, 13

S. Sharpe, "Large N reduction" 6/29/13 @ Cracow School of Theoretical Physics, Zakopane, Poland

S. Sharpe, "Large N reduction" 6/29/13 @ Cracow School of Theoretical Physics, Zakopane, Poland

Funnel width finite as $N \rightarrow \infty$

S. Sharpe, "Large N reduction" 6/29/13 @ Cracow School of Theoretical Physics, Zakopane, Poland

35/54

Friday, June 28, 13

Outside the "funnel"

Qualitatively consistent with analytic arguments

Distribution of link eigenvalues

$$U_{\mu} = V_{\mu}^{\dagger} \Lambda_{\mu} V_{\mu} \qquad \qquad \Lambda_{\mu} = \text{diag} \left[e^{i\theta_{\mu}^{1}}, \dots, e^{i\theta_{\mu}^{N}} \right]$$

S. Sharpe, "Large N reduction" 6/29/13 @ Cracow School of Theoretical Physics, Zakopane, Poland

Extreme weak coupling

Funnel narrows in accord with [AHUY] prediction

- In fact, funnel closes before b=∞ due to non-universal UV effect: tr(U₁U₂U₃U₄)≠o [Lohmayer & Narayanan]
- * Can fix by small change to fermion action.

Conclusions for N_f=2 AEK model

- In range of interesting values of b (and beyond)
 volume independence works for |m| < O(1/a)
 - Crucial first test of reduction has been passed
 - Also seen on 24 lattice by [Catterall, Galvez & Unsal, JHEP 1008 (2010) 010]
 - By tuning quark mass can use reduction to study both pure gauge theory and (nearly) conformal theory
 - Semi-analytic understanding of phase diagram
- Phase diagram similar to that for N_f=1
 - No sign of 2nd-order transition seen for N=2

Problems at very large N?

- Extrapolate average plaquette to $N=\infty$ using $N\leq 53$
- Extrapolation requires I/N term
- Result should lie close to pure gauge value

[Bringoltz, Koren & SS]

S. Sharpe, "Large N reduction" 6/29/13 @ Cracow School of Theoretical Physics, Zakopane, Poland

Problems at very large N?

- New results with N up to 289 [Gonzalez-Arroyo & Okawa]
- Non uniform behavior in N !? (k=0 points in plot)

• k=1,3,5 points are with Twisted AEK model---have better behavior

Problems at very large N?

- New results with N up to 289 [Gonzalez-Arroyo & Okawa]
- Form of N dependence varies with parameters

• k=1,3,5 points are with Twisted AEK model---have better behavior

Twisted Adjoint Eguchi-Kawai (TAEK) model: recent results

A. Gonzalez-Arroyo & M. Okawa, arXiv: 1304.0306, 1305.6253

S. Sharpe, "Large N reduction" 6/29/13 @ Cracow School of Theoretical Physics, Zakopane, Poland

Action of single-site TAEK model Only change from AEK is twist in gauge action:

- Weak coupling: Z_N^4 broken to Z_L^4 ; perturbation theory as $L \rightarrow \infty$ reproduces that on L⁴ lattice
- Spectrum of D_W in weak coupling identical to that on an L⁴ lattice
- Pure gauge: k=1 theory fails at large N; revived by using k/L > 0.1
- Adjoints not necessary for reduction---used because of physics interest

S. Sharpe, "Large N reduction" 6/29/13 @ Cracow School of Theoretical Physics, Zakopane, Poland

Reduction works for TEK model

[Gonzalez-Arroyo & Okawa]

45/54

• Pure gauge: 16⁴ with N<16 vs 1⁴ with N=289, 529, 841 (L=17, 23, 29) k=5,7,9

S. Sharpe, "Large N reduction" 6/29/13 @ Cracow School of Theoretical Physics, Zakopane, Poland

Friday, June 28, 13

Wilson loops and string tension

- Can reach loops of size L/2 x L/2 (since "volume" is L⁴)
- Use smearing to get good signal for large loops (standard method)

S. Sharpe, "Large N reduction" 6/29/13 @ Cracow School of Theoretical Physics, Zakopane, Poland

Friday, June 28, 13

Reduction works for TEK model

[Gonzalez-Arroyo & Okawa]

• Pure gauge: 32⁴ with 3, 5, 6, 8 vs 1⁴ with N=841, k=9 (L=29)

Improved N dependence for TAEK model

[Gonzalez-Arroyo & Okawa]

48/54

(Same plot as shown above)

S. Sharpe, "Large N reduction" 6/29/13 @ Cracow School of Theoretical Physics, Zakopane, Poland

Friday, June 28, 13

Search for conformality

[Gonzalez-Arroyo & Okawa, arXiv:1304.0306]

Cross-check

[Gonzalez-Arroyo & Okawa, arXiv:1304.0306]

50/54

S. Sharpe, "Large N reduction" 6/29/13 @ Cracow School of Theoretical Physics, Zakopane, Poland

Friday, June 28, 13

Conclusions & Outlook

S. Sharpe, "Large N reduction" 6/29/13 @ Cracow School of Theoretical Physics, Zakopane, Poland

EK reduction appears practical

- Need large values of N (e.g. 289=17², 841=29²)
 - Not surprising once accept that $L=\sqrt{N}$ (no free lunch!)
- Twisted model appears to be the "model of choice"
 - Only downside is that it is difficult to include fundamental fermions
 - Without twisting, can use heavy adjoints to stabilize center symmetry
- Successful calculation of string tension
 - First application: indications of conformal fixed-point for 2 adjoints

Future directions & issues

Calculation of hadron properties in N_f=1 TAEK

- In principle, can calculate hadron masses, glueball-qq-bar mixing, ... on a single site, although it may be easier to extend in one direction
- Window into hadron resonances where decays widths are small
- Efficient implementation on supercomputers?
 - Use 2⁴ (or larger) to allow parallelism
- Scaling vs standard large N extrapolation?
 - We find CPU~ $N^{4.5}$ ~ $L^5 N^2 vs.$ standard CPU~ $L^5 N^3$
- Extend calculation to N_f=1/2 using overlap fermions
 - [Heitanen & Narayanan] have taken first steps

Thank you! Any questions?