Can Eguchi-Kawai reduction provide a practical method for studying large- N_{c} theories on the lattice?

Steve Sharpe University of Washington

Outline

* Introduction \& Motivation
* Short history of "volume reduction"
* Application to QCD with $1 \& 2$ adjoint fermions: adjoint Eguchi-Kawai [AEK] model
* Twisted adjoint Eguchi-Kawai [TAEK] model
* Outlook

Overview: beyond QCD

Overview: beyond QCD

Why add colors?

* At first sight, this seems foolhardy!
- Increasing the number of degrees of freedom while still studying a strongly coupled theory
* However, there are important theoretical and computational simplifications
- Planarity
- Gauge-gravity duality
- Volume independence

Planarity ['t Hooft, Witten,...]

* Limit is $N \longrightarrow \infty$ with $\lambda=g^{2} N$ \& N_{f} fixed
* Only planar diagrams contribute in perturbation thy
* Mesons \& glueballs are stable (widths ~1/N)
* Expectation values factorize: $\left\langle\mathcal{O}_{1} \mathcal{O}_{2}\right\rangle=\left\langle\mathcal{O}_{1}\right\rangle\left\langle\mathcal{O}_{2}\right\rangle$
\Rightarrow Simplified theory sharing asymptotic freedom, confinement \& Chiral SB with QCD
- Long-standing hope that analytic progress is possible
- Lattice calculations can help guide search for string-theory duals

Volume Independence [Eguchi \& Kawai]

* Under non-trivial conditions, certain properties of gauge theories at large N are independent of volume

\Rightarrow Does this reduction in degrees of freedom provide a practical method to access the theoretical simplicity of large N theories? Are the conditions satisfied?

After a hiatus, much recent interest, e.g.

T. Eguchi \& H. Kawai, PRL 48 (1982) 1063 [EK model]
G. Bhanot, U. Heller \& H. Neuberger, PL 113B (1982) 49 [QEK model]
A. Gonzalez-Arroyo \& M. Okawa, PL 120B (1983) 174 [TEK model]
P. Kovtun, M. Unsal \& L.G. Yaffe, JHEP 0706 (2007) 109 [Adjoint EK]
B. Bringoltz \& S.R. Sharpe, PRD 80 (2009) 065031 [massive $\mathrm{Nf}=1$ AEK works]
A. Heitenen \& R. Narayanan, JHEP 1001 (2010) 79, PLB 698 (2011) 171 [massless Nf=1/2 AEK]
T. Azeyanagi, M. Hanada, M. Unsal \& R. Yacoby, PRD82 (2010) 125013 [why massive AEK works; ATEK; T > o]
M. Unsal \& L.G. Yaffe, JHEP 1008 (2010) 030 [why massive AEK works]
B. Bringoltz, M. Koren \& S.R. Sharpe, PRD85 (2012) 094504 [massive Nf=2 AEK works]
M. Hanada, J.-W. Lee \& N. Yamada, arXiv: [chiral symmetry breaking using 2^{4} AEK]
A. Gonzalez-Arroyo \& M. Okawa, JHEP 1007 (2010) 043 [TEK lives and thrives]
R. Lohmayer \& R. Narayanan, arXiv:1305.1279 [AEK problems in weak coupling]
A. Gonzalez-Arroyo \& M. Okawa, arXiv:1305.6253 [ATEK for N up to 29²=841]

I will not discuss:

* Novel simulations of single-site SUSY lattice theories aimed at testing AdS/CFT correspondence and learning about string theories \& quantum gravity
[J. Nishimura, M. Hanada, T. Wiseman, S. Catterall,]
* Partial reduction of QCD in 't Hooft limit
- If $L>L_{c} \approx 1 \mathrm{fm}$ then results independent of L [Narayanan \& Neuberger]
* Obtaining results for large N by extrapolating from $\mathrm{N}=3,4,5,6$ (useful for pure gauge theory) [Teper,...]
* Reduction of one dimension [cossu \& D^{\prime} Elia]

History of large-N volume independence

First example

Reduction of Dynamical Degrees of Freedom in the Large- \boldsymbol{N} Gauge Theory

Tohru Eguchi and Hikaru Kawai
Department of Physics, Faculty of Science, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan (Received 19 January 1982)

Lattice $S U(N)$ on $L^{d} \stackrel{N \equiv \infty}{\equiv}$ Lattice $S U(N)$ on 1^{d}
Now usually called "large- N volume independence"

Lattice $S U(N)$ on $L^{d} \stackrel{N \equiv \infty}{\equiv}$ Lattice $S U(N)$ on 1^{d}

gauge theory	"reduced" or "matrix" model
$U_{n, \mu} \in S U(N)$	$U_{\mu} \in S U(N)$

$S_{\text {gauge }}=N b \sum_{\substack{n \\ \mu<\nu}} 2 \operatorname{Re} \operatorname{Tr}\left(U_{n, \mu} U_{n+\mu, \nu} U_{n+\nu, \mu}^{\dagger} U_{n, \nu}^{\dagger}\right)$

$$
b=\left(g^{2} N\right)^{-1}
$$

$$
\begin{gathered}
S_{E K}=N b \sum_{\mu<\nu} 2 \operatorname{Re} \operatorname{Tr}\left(U_{\mu} U_{\nu} U_{\mu}^{\dagger} U_{\nu}^{\dagger}\right) \\
b=\left(g^{2} N\right)^{-1}
\end{gathered}
$$

Links all different

Lattice $S U(N)$ on $L^{d} \stackrel{N \equiv \infty}{\equiv}$ Lattice $S U(N)$ on 1^{d}

gauge theory	"reduced" or "matrix" model
$U_{n, \mu} \in S U(N)$	$U_{\mu} \in S U(N)$

$S_{\text {gauge }}=N b \sum_{\substack{n \\ \mu<\nu}} 2 \operatorname{Re} \operatorname{Tr}\left(U_{n, \mu} U_{n+\mu, \nu} U_{n+\nu, \mu}^{\dagger} U_{n, \nu}^{\dagger}\right)$

$$
b=\left(g^{2} N\right)^{-1}
$$

$$
\begin{gathered}
S_{E K}=N b \sum_{\mu<\nu} 2 \operatorname{Re} \operatorname{Tr}\left(U_{\mu} U_{\nu} U_{\mu}^{\dagger} U_{\nu}^{\dagger}\right) \\
b=\left(g^{2} N\right)^{-1}
\end{gathered}
$$

Links all different

Lattice $S U(N)$ on $L^{d} \stackrel{N \equiv \infty}{\equiv}$ Lattice $S U(N)$ on 1^{d}
gauge theory

$$
W_{C}=\frac{1}{N} \operatorname{tr} U_{x, \hat{\mu}} U_{x+\hat{\mu}, \hat{\nu}} \cdots U_{x-\hat{\nu}-\hat{p}, \hat{p}} U_{x-\hat{\nu}, \hat{\nu}},
$$

$$
W_{C}^{\mathrm{reduced}}=\frac{1}{N} \operatorname{tr} U_{\mu} U_{\nu} \cdots U_{\rho} U_{\nu}
$$

$\left\langle W_{C}\right\rangle_{\text {gauge theory }}=\left\langle W_{C}^{\text {reduced }}\right\rangle_{\text {reduced }}+O\left(1 / N^{2}\right)$.

Lattice $S U(N)$ on $L^{d} \stackrel{N \equiv \infty}{\equiv}$ Lattice $S U(N)$ on 1^{d} gauge theory "reduced" or "matrix" model

$$
\begin{aligned}
& \text { gauge symmetry } \\
& U_{n \mu} \rightarrow \Omega_{n} U_{n \mu} \Omega_{n+\mu}^{\dagger} \quad ; \quad \Omega_{n} \in S U(N) \quad U_{\mu} \rightarrow \Omega U_{\mu} \Omega^{\dagger} \quad ; \quad \Omega \in \operatorname{SU}(N) \\
& \text { "center" symmetry } \\
& U_{[(\vec{n}, \tau), \mu]} \rightarrow U_{[(\vec{n}, \tau), \mu]} z_{\mu} \quad ; \quad z_{\mu} \in Z_{N} \quad U_{\mu} \rightarrow U_{\mu} z_{\mu} \quad ; \quad z_{\mu} \in Z_{N}
\end{aligned}
$$

EK's demonstration of vol. indep.

- Show equivalence of Dyson-Schwinger eqs forWilson loops
gauge
$U_{n, \mu} \rightarrow U_{n \mu}\left(1+i \epsilon t^{a}\right)$

$$
U_{\mu} \rightarrow U_{\mu}\left(1+i \epsilon t^{a}\right)
$$

reduced

- Crucial difference
gauge
$\operatorname{tr}\left(\cdots U_{n, \mu} U_{n+\mu, \nu} \cdots U_{m, \mu}^{\dagger} U_{m-\mu, \rho} \cdots\right)$

$$
\operatorname{tr}\left(\cdots U_{\mu} U_{\nu} \cdots U_{\mu}^{\dagger} U_{\rho} \cdots\right)
$$

- Get extra terms on the reduced side: must vanish for reduction to hold

$$
\text { e.g. }\left\langle\operatorname{tr}\left(4_{\succ}\right) \operatorname{tr}(\stackrel{\wedge}{\wedge})\right\rangle=0
$$

- Extra terms correspond to "open loops" in gauge theory

$$
\text { e.g. }\left\langle\operatorname{tr}\left(U_{\mu} U_{\nu}^{\dagger}\right) \operatorname{tr}\left(U_{\mu}^{\dagger} U_{\nu}\right)\right\rangle_{\text {reduced }}=0
$$

EK's demonstration of volume independence

Reduction holds if

$$
\left\langle\operatorname{tr}\left(L_{\hookleftarrow}\right) \operatorname{tr}(\wedge)\right\rangle_{\text {reduced }}=0
$$

- Valid if have large- N factorization

$$
\left\langle W_{C_{1}} W_{C_{2}}\right\rangle_{\text {reduced }}=\left\langle W_{C_{1}}\right\rangle_{\text {reduced }}\left\langle W_{C_{2}}\right\rangle_{\text {reduced }}+O\left(1 / N^{2}\right)
$$

- ... and if center symmetry is unbroken $\left(Z_{N}^{4}: U_{\mu} \rightarrow U_{\mu} z_{\mu}\right)$

$$
\left\langle W_{\text {open }}\right\rangle_{\text {reduced }}=0
$$

CONCLUSION: $\operatorname{tr} U_{\mu}, \operatorname{tr} U_{\mu} U_{\nu}$, etc.
must all vanish in the reduced model

Alternative view of reduction

- Volume independence is an example of a larger class of equivalences: largeN orbifold equivalences [Kovtun, Unsal \& Yaffe]

- Orbifold equivalence holds if "orbifolding symmetries" (translation invariance and center symmetry) are unbroken

Reduction fails! [Bhanot, Heller \& Neuberger '82]

- Qualitatively: Small $\mathrm{L} \Leftrightarrow$ High $\mathrm{T} \Rightarrow$ deconfinement $\Rightarrow \operatorname{tr}\left(U_{\mu}\right) \neq 0$
- Can understand in weak coupling limit as due to clustering of eigenvalues of $U_{\mu} \quad$ [BHN '82, Kazakov \& Migdal '82]

$$
\begin{array}{ll}
U_{\mu}=V_{\mu}^{\dagger} \Lambda_{\mu} V_{\mu} & \Lambda_{\mu}=\operatorname{diag}\left[e^{i \theta_{\mu}^{1}}, \ldots, e^{i \theta_{\mu}^{N}}\right] \\
Z_{N} \text { symmetry: } & \theta_{\mu}^{a} \longrightarrow \theta_{\mu}^{a}+\frac{2 \pi}{N} \\
F_{E K} \xrightarrow{b \rightarrow \infty}(d-2) \sum_{a<b} \log \left[\sum_{\mu} \sin ^{2}\left(\frac{\theta_{\mu}^{a}-\theta_{\mu}^{b}}{2}\right)\right]
\end{array}
$$

\Rightarrow Eigenvalues attract for $\mathrm{d}>2 \Rightarrow \theta_{\mu}^{a}=\theta_{\mu}^{b}$ and so $\operatorname{tr} \mathrm{U}_{\mu} \neq 0$

- For reduction to hold need uniform distribution of eigenvalues, uncorrelated in different directions
- Role of momenta played by $\theta_{\mu}^{a}-\theta_{\mu}^{b}$

Can reduction be rescued?

Can reduction be rescued?

Can reduction be rescued?

't Hooft

An alternative approach: AEK

QCD $(N=3)$
$2 \mathrm{~N}_{f}$ Dirac fermions
in AS irrep $\left(q^{a b}\right)$
infinite volume

An alternative approach: AEK

[Corrigan-Ramond Armoni-Shifman-Veneziano]

QCD (N=3)
$2 N_{f}$ Dirac fermions
in AS irrep ($\left.q^{a b}\right)$
infinite volume

$\xrightarrow{N \longrightarrow \infty}$| QCD (N infinity)
 $2 N_{f}$ Dirac fermions
 in AS irrep (qab)
 infinite volume |
| :---: |

An alternative approach: AEK

[Corrigan-Ramond Armoni-Shifman-Veneziano]

QCD ($\mathrm{N}=3$)
2Nf Dirac fermions in AS irrep ($q^{a b}$) infinite volume

An alternative approach: AEK

[Corrigan-Ramond Armoni-Shifman-Veneziano]

An alternative approach: AEK

[Corrigan-Ramond Armoni-Shifman-Veneziano]

Why do adjoint fermions help?

- Adjoint fermions survive in large N limit (unlike fundamentals)
- At one-loop order, fermions lead to repulsion between link eigenvalues, as long as use periodic (non-thermal) $B C[K, U \& Y]$
- Repulsion wins for $\mathrm{N}_{\mathrm{f}}>1 / 2$ massless Dirac fermions
\Rightarrow Usually leads to uniform distribution of θ_{μ}, but depends on details of fermion action [Lohmayer \& Narayan, 2013]
- Any non-zero mass $\left[\left|m_{\text {phys }}\right|>1 /(\mathrm{aN})\right]$ leads to attraction at small $\theta_{\mu}^{a}-\theta_{\mu}^{b}$ and thus to center-symmetry breaking
\Rightarrow Need massless fermions?
- However, perturbation theory not reliable for small $\left|\theta_{\mu}^{a}-\theta_{\mu}^{b}\right|$, nor in stronger coupling region of interest
\Rightarrow Need non-perturbative simulation

What would we learn?

* Use single-site QCD(Adj) for N large to learn about 3 theories of great interest
- $\quad N_{f}=1$: learn about QCD with 2 flavors in Corrigan-Ramond large-N limit
- $\quad N_{f}=2$: alternative window on "minimal" walking technicolor theory
- [$N_{f}=1 / 2$: equivalent to $S Y M$, for which exact results are known]
* Even though "matrix model" lives on a single site, one can calculate many physical quantities (string tension, pion mass, ...)

Conditions for equivalences to hold

1. Large-N factorization holds
2. Orientifold: C not broken in QCD(AS,Adj)
3. Orbifold: Translation invariance unbroken in QCD (Adj.) in infinite volume
4. Orbifold: $\left(Z_{N}\right)^{4}$ center symmetry unbroken in QCD(Adj.) on a single site

Conditions for equivalences to hold

1. Large- N factorization holds
2. Orientifold: C not broken in QCD(AS,Adj)
3. Orbifold: Translation invariance unbroken in QCD(Adj.) in infinite volume
4. Orbifold: $\left(Z_{N}\right)^{4}$ center symmetry unbroken in QCD (Adj.) on a single site

IN THIS TALK:

We assume the first three hold and study the last

Results for $\mathrm{N}_{\mathrm{f}}=1 \& 2$ adjoint Eguchi-Kawai (AEK) model

B. Bringoltz \& S.R. Sharpe, PRD 80 (2009) 065031 [arXiv:0906.3538]
B. Bringoltz, M. Koren \& S.R. Sharpe, PRD 85 (2012) 094504 [arXiv:1106.5538]
A. Gonzalez-Arroyo \& M. Okawa, arXiv: 1305.6253

Action of AEK model

Wilson gauge and fermion action

$$
\begin{aligned}
S_{\text {gauge }} & =2 N b \sum_{\mu<\nu} \operatorname{ReTr} U_{\mu} U_{\nu} U_{\mu}^{\dagger} U_{\nu}^{\dagger}, \quad b=1 /\left(g^{2} N\right) \\
S_{F} & =\sum_{j=1, N_{f}} \bar{\psi}_{j} D_{W} \psi_{j} \quad \text { Parameters } \\
D_{W} & =1-\kappa \sum_{\mu=1}^{4}\left[\left(1-\gamma_{\mu}\right) U_{\mu}^{\text {adj }}+\left(1+\gamma_{\mu}\right) U_{\mu}^{\dagger \text { adj }}\right]
\end{aligned}
$$

Symmetries:
gauge: $\quad U_{\mu} \longrightarrow \Omega U_{\mu} \Omega^{\dagger} \quad($ all $\mu) \quad \Omega \in S U(N)$
center $\left(Z_{N}\right)^{4}: \quad U_{\mu} \longrightarrow U_{\mu} e^{2 \pi i n_{\mu} / N} \quad n_{\mu} \in Z_{N}$

Scaling of CPU with N

* Original studies used Metropolis algorithm

$$
P(U)=e^{S_{\mathrm{EK}}(U)}\left(\operatorname{det} D_{W}\right)^{N_{f}}
$$

- Determinant real \& positive; evaluate explicitly
- Scaling is $\sim\left(N^{2}\right)^{3} \times N^{2} \sim N^{8} \Rightarrow$ can reach $N \approx 15$ on $P C$
* Present studies use rHMC (HMC) for $\mathrm{N}_{\mathrm{f}}=1$ (2)
- Using $U^{\text {adj }} \sim U \cdot U^{\dagger}$, scaling is $\sim\left(N^{3}\right) \times N^{1-1.5} \sim N^{4-4.5}$
- Can reach $\mathrm{N}=53$ on $\mathrm{PC}, \mathrm{N}=289$ on supercomputer

Order params for symm breaking

* traces of "open" loops
$\operatorname{tr}\left(U_{\mu}\right), \operatorname{tr}\left(U_{\mu} U_{\nu}\right), \operatorname{tr}\left(U_{\mu} U_{\nu}^{\dagger}\right), \operatorname{tr}\left(U_{1}^{n_{1}} U_{2}^{n_{2}} U_{3}^{n_{3}} U_{4}^{n_{4}}\right), \ldots$
* histograms of eigenvalues of links: θ_{μ}^{a}
* also calculate plaquette and larger Wilson loops

Expected phase diagram (infinite volume)

$$
N_{f}=1, N=\text { infinity }
$$

Continuum physics

Conclusion for $\mathrm{N}_{\mathrm{f}}=1$ AEK model $[\mathrm{B} \& S]$

Based on $N \leq 53$; shows weak N dependence

Conclusion for $\mathrm{N}_{\mathrm{f}}=1$ AEK model [B\&S]

Based on $N \leq 53$; shows weak N dependence

Very surprising feature:

* Inconsistent with pert. thy (requires $m_{\text {phys }}=0$ in general)
* Violates naive decoupling of heavy quarks

Very surprising feature:

* Checked using rHMC [Azeyanagi, Hanada, Unsal \& Yacoby; Koren \& SS]
* Supported by analytic arguments going beyond PT [AHUY, Unsal \& Yaffe]
\Rightarrow Predicts that funnel closes as $\left|a m_{\text {phys }}\right|<\frac{1}{b^{1 / 4}}$

Infinite volume expectation for $N_{f}=2$?

* $\mathrm{N}=2$ gauge theory ("minimal walking technicolor") subject of many recent studies

* Dependence on N not known

Phase diagram of $N_{f}=2$ AEK model $[B, K \& S]$
$16 \leq N \leq 53$ (

Phase diagram of $N_{f}=2$ AEK model $[B, K \& S]$

Phase diagram of $N_{f}=2$ AEK model $[B, K \& S]$

Hysteresis scans at $b=1(N=10,16,23,30)$

Hysteresis scans at $b=1(N=10,16,23,30)$

Hysteresis scans at $b=1(N=10,16,23,30)$

Funnel width finite as $N \rightarrow \infty$

Outside the "funnel"

* Qualitatively consistent with analytic arguments

Distribution of link eigenvalues

$$
U_{\mu}=V_{\mu}^{\dagger} \Lambda_{\mu} V_{\mu} \quad \Lambda_{\mu}=\operatorname{diag}\left[e^{i \theta_{\mu}^{1}}, \ldots, e^{i \theta_{\mu}^{N}}\right]
$$

$\mathrm{N}=24, \mathrm{~b}=0.35, \mathrm{~K}=0.19$

$\left(\mathrm{Z}_{24}\right)^{4}$ invariant inside funnel

$$
N=16, b=0.35, k=0.22
$$

5 clumps (e.g. 4,3,3,3 \& 3)
all 4 links have "locked" clumping

Extreme weak coupling

* Funnel narrows in accord with [AHUY] prediction

* In fact, funnel closes before $b=\infty$ due to non-universal UV effect:
$\operatorname{tr}\left(\mathrm{U}_{1} \mathrm{U}_{2} \mathrm{U}_{3} \mathrm{U}_{4}\right) \neq 0$ [Lohmayer \& Narayanan]
* Can fix by small change to fermion action.

Conclusions for $\mathrm{N}_{\mathrm{f}}=2$ AEK model

* In range of interesting values of b (and beyond) volume independence works for $|\mathrm{m}|<\mathrm{O}(1 / \mathrm{a})$
\Rightarrow Crucial first test of reduction has been passed
\Rightarrow Also seen on 24 lattice by [Catterall, Galvez \& Unsal, JHEP 1008 (2010) 010]
\Rightarrow By tuning quark mass can use reduction to study both pure gauge theory and (nearly) conformal theory
\Rightarrow Semi-analytic understanding of phase diagram
* Phase diagram similar to that for $\mathrm{N}_{\mathrm{f}}=1$
\Rightarrow No sign of 2nd-order transition seen for $N=2$

Problems at very large N?

- Extrapolate average plaquette to $\mathrm{N}=\infty$ using $\mathrm{N} \leq 53$
- Extrapolation requires I / N term
- Result should lie close to pure gauge value

[Bringoltz, Koren \& SS]

Problems at very large N?

- New results with N up to 289 [Gonzalez-Arroyo \& Okawa]
- Non uniform behavior in N !? ($\mathrm{k}=0$ points in plot)

- $\mathrm{k}=\mathrm{I}, 3,5$ points are with Twisted AEK model---have better behavior

Problems at very large N?

- New results with N up to 289 [Gonzalez-Arroyo \& Okawa]
- Form of N dependence varies with parameters

- $\mathrm{k}=\mathrm{I}, 3,5$ points are with Twisted AEK model---have better behavior

Twisted Adjoint Eguchi-Kawai (TAEK) model: recent results

A. Gonzalez-Arroyo \& M. Okawa, arXiv: 1304.0306, 1305.6253

Action of single-site TAEK model

Only change from AEK is twist in gauge action:

$$
\begin{aligned}
& S_{\text {gauge }}=2 N b \sum_{\mu<\nu} \operatorname{Re} \operatorname{Tr} U_{\mu} U_{\nu} U_{\mu}^{\dagger} U_{\nu}^{\dagger} z_{\mu v} \\
& S_{F}=\sum_{j=1, N_{f}} \bar{\psi}_{j} D_{W} \psi_{j} \\
& D_{W}=\mathbf{1}-\kappa \sum_{\mu=1}^{4}\left[\left(1-\gamma_{\mu}\right) U_{\mu}^{\mathrm{adj}}+\left(1+\gamma_{\mu}\right) U_{\mu}^{\dagger \text { adj }}\right] \\
& L_{\mu \nu}^{2}=e^{2 \pi i k / L} \text { Gonzalez-Arroyo \& Okawa] }
\end{aligned}
$$

- Weak coupling: $\mathrm{Z}_{\mathrm{N}}{ }^{4}$ broken to $\mathrm{Z}_{\mathrm{L}}{ }^{4}$; perturbation theory as $\mathrm{L} \rightarrow \infty$ reproduces that on L^{4} lattice
- Spectrum of D_{w} in weak coupling identical to that on an L^{4} lattice
- Pure gauge: $\mathrm{k}=\mathrm{I}$ theory fails at large N ; revived by using $\mathrm{k} / \mathrm{L}>0 . \mathrm{I}$
- Adjoints not necessary for reduction---used because of physics interest

Reduction works for TEK model

[Gonzalez-Arroyo \& Okawa]

- Pure gauge: I^{4} with $\mathrm{N}<16$ vs I^{4} with $\mathrm{N}=289,529,84$ I ($\mathrm{L}=17,23,29$) $\mathrm{k}=5,7,9$

Wilson loops and string tension

- Can reach loops of size $L / 2 \times L / 2$ (since "volume" is L^{4})
- Use smearing to get good signal for large loops (standard method)

Reduction works for TEK model

[Gonzalez-Arroyo \& Okawa]

- Pure gauge: 32^{4} with $3,5,6,8$ vs I^{4} with $\mathrm{N}=84 \mathrm{I}, \mathrm{k}=9$ (L=29)

Improved N dependence for TAEK model

[Gonzalez-Arroyo \& Okawa]

(Same plot as shown above)

Search for conformality

[Gonzalez-Arroyo \& Okawa, arXiv:I304.0306]

TAEK model
$N_{\mathrm{f}}=2$
$\mathrm{~N}=289, \mathrm{k}=5$

Preliminary

Cross-check

Quark mass vanishes but string tension does not!

Conclusions \& Outlook

EK reduction appears practical

* Need large values of $\mathrm{N}\left(\mathrm{e} . \mathrm{g} .289=17^{2}, 841=29^{2}\right)$
- Not surprising once accept that $\mathrm{L}=\sqrt{ } \mathrm{N}$ (no free lunch!)
* Twisted model appears to be the "model of choice"
- Only downside is that it is difficult to include fundamental fermions
- Without twisting, can use heavy adjoints to stabilize center symmetry
* Successful calculation of string tension
- First application: indications of conformal fixed-point for 2 adjoints

Future directions \& issues

* Calculation of hadron properties in $N_{f}=1$ TAEK
- In principle, can calculate hadron masses, glueball-qq-bar mixing, ... on a single site, although it may be easier to extend in one direction
- Window into hadron resonances where decays widths are small
* Efficient implementation on supercomputers?
- Use 24 (or larger) to allow parallelism
* Scaling vs standard large N extrapolation?
- We find CPU~N4.5~L5 N^{2} vs. standard CPU~L5 N3
* Extend calculation to $\mathrm{N}_{\mathrm{f}}=1 / 2$ using overlap fermions
- [Heitanen \& Narayanan] have taken first steps

