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Why Quantum Gravity?
• Two pillars of modern theoretical physics:

• General Relativity:

Rµν − 1
2gµνR+ 1

2Λgµν = κTµν

• Quantum Mechanics (& Field Theory):

−i~ ∂
∂t |Ψ〉 = Ĥ|Ψ〉

• Mutually incompatible:

• Mutually excluding principles.

• But: Do their domains of applicability intersect?
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Why Quantum Gravity?
• General Relativity:

• Basic principles:
• Matter described by classical fields.
• Matter content and geometry interact.
• Physics does not depend on the method of descibing the

system (coordinate system).

• Domain of applicability:
• Large scale (astrophysical, cosmological).
• Strong gravitational fields.
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Why Quantum Gravity?
• Quantum Mechanics (& Field Theory):

• Basic principles:
• Matter described via wave functions & states, not classical

fields
• Fixed background spacetime.
• Coordinates play crucial role in qunatization process.

• Domain of applicability:
• Small (microscopic) scale.
• Weak gravitational fields.
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Why Quantum Gravity?
• The problem:

In the (history of the) Universe there exist physical processes

where the domains of applicability(of need)do intersect:

• large energies (quantum effects)

• large gravitational fields (GR effects)

• These are:

• Early Universe evolution (close to Big Bang).

• Black hole interiors.

• Need unification of both GR and QM/QFT !!

• need to include both types of effects.

• Various approaches

– p. 5



Approaches to QG
• String theory:(in context of AdS/CFT: T. Wiseman & seminars)

• Main idea:
• particle approach to gravity (graviton)
• Nambu-Goto/Polyakov action on flat spacetime
• high dimension spacetime,4D spacetime emergent

• Noncommutative Geometry:(A. Sitarz)

• Main idea:
• Ordinary Riemannian (spin-)geometries are described by a

commutativeC∗ algebras
• Spacetime is emergent (spectrum)
• Many geometry objects well defined upon generalization to

noncommutativeC∗ algebra
• Classical approach but expected to include quantum effects
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Approaches to QG
• Conformal cyclic cosmology:(sir R. Penrose)

• Main idea:
• Restoring conformal invariance in some epoch of Universe

evolution allows to extend the evolution through Big Bang

singularity without taking into account quantum gravity

effects.

• “Discrete” approaches:

Based on division of / representation of spacetime by discrete

structures:

• Causal Dynamical triangulation

• Simplicial gravity

• Loop Quantum gravity (canonical & Spin Foams)

• Loop Quantum Cosmology
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Discrete QG
Main principle:

⋆ background independence – no underlying metric,

⋆ geometry structures emergent

• Causal Dynamical triangulation:(R. Loll)

• Main principle:discrete time slices, space decomposed onto

symplexes, evolution governed by axiomatic rules

implementing causality.

• Predictions:spacetime dimensionality (scale varying).

• Simplicial gravity:(J.Jurkiewicz)

• Main principle:Path integral approach with discretization of

spacetime (usually via decomposition onto symplexes).

• Loop Quantum gravity/Cosmology/SF
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LQG/SF/LQC
• Main principle:

• Explicit background independence: geometry represented by

objects (labelled graphs) embedded in manifold without metric

• Explicit (strict) diffeomorphism invarince.

• Non-standard quantum representation.

• Main (independent) branches:

• Loop Quantum gravity: (canonical)(T. Thiemann,

A. Ashtekar)

• Spin Foams(E. Bianchi)

• Loop Quantum Cosmology(A. Ashtekar, T. Pawlowski (cont))
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Canonical LQG
See lecture by T. Thiemann.

• Main properties:

• Canonical: based on3 + 1 canonical splitting of the spacetime

• Basic objects: parallel transports (holonomies) and analogs of

electric fluxes.

• Unique representation of the holonomy-flux algebra (LOST)

• States spanned by labelled graphs: spin-networks
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Canonical LQG
• Main achievements/predictions:

• Precise mathematical framework on the

diffeomporphism-invariant level

• Discrete spectra of geometric (diff-invariant) operators: area,

volume.

• Well defined (diff-invariant) coherent states (preservation by

dynamics unknown)

• Reproduced Bekenstein-Hawking formula + quantum

corrections to black hole entropy.

• In specific frameworks (wrt. matter content not symmetry)

quantization program completed.

• No explicit dynamical calculations as of yet.
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Spin Foams
See lecture by E. Bianchi

• Main properties:

• Covariant approach, constructed to mimic the path integralof

LQG spin networks.

• Basic objects – histries of LQG spin networks, same structure

of quantum labeling.

• Not a path integral folulation of LQG: practical constructions

resemble the simplicial gravity approaches.

• Main achievements/predictions:

• Calculted graviton propagator in low field regime.

• Reproduced Newton gravity law.
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Loop Quantum Cosmology
See lecture by A. Ashtekar

• Main properties:

• Application of methods of LQG to cosmological models:
• Early stage:symmetry reduced models
• Current stage:division onto quasi-global degrees of freedom

including homogeneous “background” ones.

• Not derived as symmetry-reduction of LQG.

• For many scenarios precise and complete quantum frameworks.

• Main achievements/predictions:

• Explicit calculation of the quantum universe dynamics in

simple (homogeneous) scenarios.

• Early Universe paradigm shift: Big Bang→ Big Bounce.

• Predictions of primordial perturbations structure.
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The intersection
Models originally “independent” but precise bridges are being

constructed.

• LQG↔SF:

• Feynman-diagramatic approach to SF(Lewandowski, Puchta,

...). SF can be formulated as Feynman diagrams of evolving

LQG spin networks.

• Path-integral formulation of LQG (specific Hamiltonian)

(Alesci, Thiemann, Zipfel)

• LQG↔LQC:

• Approximate cosmologies from SF symplexes(Rovelli,

Vidotto, Garay, ...).

• Evolution eq. of cosmological DOF resemble LQC one but due

to simplifications known only qualitatively.
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The intersection
• SF↔LQC:

• Systematic extraction of the cosmological degrees of freedom

and their dynamics from specific construction of LQG

Hamiltonian.(Alesci, Gianfrani)

• Evolution eq. of cosmological DOF resemble LQC one but due

to simplifications known only qualitatively.
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LQG - classical framework
• Action: gravity coupled to matter

1
4G

∫

d4x
√−gR + SSM+boundary term

• 3 + 1 splitting

ds2 = −N2dt2 + qab(N
adt+ dxa)(N bdt+ dxb)

• Ashtekar-Barbero canonical variables:densitized triadEa
i and

SU(2) valued connectionAi
a

Ai
a = Γi

a(E) + γKi
a {Ai

a(x), E
b
j (y)} = δi

jδ
a
b δ(x, y)
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LQG - classical framework
• Classical constraints (grav. part):

• Gauss:Gi = ∂aE
a
i + ǫkijA

j
aEa

k

• Diffeomorphism: CG
a = Eb

iF
i
ab −Ai

aGi

• Hamiltonian:

HG = γ2

2
√

detE
Ea

i E
b
j

(

ǫijkF
k
ab + 2(1 − γ2)Ki

[aK
j
b]

)

• Constraints form Dirac algebra→ Dirac quantization program

• Quantize system ignoring constraints

• Express constraints as quantum operators

• Physical states: annihilated by constraints

• Basic variables for quantization: holonomies and fluxes:

Uγ(A) ≡ P exp
∫

γ A
i
aτ

idxa Ki =
∫

S E
aidσa
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LQG - kinematics
GNS quantization of the holonomy-flux algebra + the Dirac program for the

constraints.Many authors, over25 years of development.

• Kinematical Hilbert spaceHkin: spanned by the spin-network states:

• Embedded graph with oriented edges, (topology fixed but not

restricted)

• spin labelsj on its edges, (allow forj = 0)

• intertwinersI on vertices,

• Solution to Gauss constraint (Thiemann 1993)

• Spin labelsrestricted by angular momentum addition rules,

• Intertwiners→ (vertex valence dependent) discrete set encoding

addition order,

• Representation is unique (LOST theorem).
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LQG: Diff-invariant sector
• Till recently no diffeo generator in LQG.

• Group averagingoverfinite (exponentiated) diffeomorphisms

(Marolf at al 1995).

• The result:For fixed graph topology, on sufficiently large class of

graphs (lattices, etc.)the embedded graph lifted to abstract one.

• Statement not true for general graphs.
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The Hamiltonian constraint
• Regularizationas proposed by Thiemann: reexpression in terms of

holonomies and volume operator

• Fundamental representationfor holonomies:U1/2
γ

(following results by Perez)

• The result: quite complicated combinatorial operators coupling

j-labels of the adjacent edges.

• Depending on the formulation Hamiltonian constraint may add

new edges to the graph.
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The difficulty
• Hamiltonian constraint too complicated to find explicitly its kernel.

• The solutions:

• The Master program(Dittrich, Thiemann). Form one constraint

using Feynmann trick

“ M̂ =
∫

d3x[ηijG†
i Gi + ogabC†

aCb + H†H] ”

• Difficulty: kernel elements again impossible to find.

Existence of approximate solutions proven(Dittrich,

Thiemann).

• An alternative:the deparametrization.
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Deparametrization
• Idea:Couple gravity to matter fields. Use them as the frame.

• Separation of the Hamiltonian constraint

H = 0 ⇔ pn
T = H̃ , n = 1, 2

(T, pT ) - canonical “time” field pair.

• Several frames used:

• Dust: (J Brown, K Kuchar, 1995, Phys.Rev.D51 5600-5629)

• Tetrad ofmassless scalarfields.

• Quantization:applying LQG formalism, two programs:

• Gravity + dust in Algebraic LQG framework:K Giesel, T

Thiemann, 2010, Class.Quant.Grav.27 175009

• Massless scalar fields in LQG:M Domagala, K Giesel, W

Kaminski, L Lewandowski, 2010, Phys.Rev.D82 104038
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Simple example of depar.
(Husain, TP)

• Synthesis of several components:

• Specific matter choice:Coupling to the irrotational dust only.
• Providesjust timeinstead of full frame.
• Classically considered by Kuchar, Torre 1991

• Natural time gauge:Proper time of the dust “particles”
• Slight step away from principles of LQG.

• Diffeo-invariant formalism of the conservative LQG.
• Construction of the space of diffeo-invariant statesHdiff

• Graph preserving form of the original Hamiltonian

regularized a la Thiemann defined onHdiff (action of

components may differ)
• Known diffeo-invariant geometric observables.
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Gravity + irr. dust
• Gravity coupled to irrotational dust:

S = 1
4G

∫

d4x
√−gR −

∫

d4x
√−g Lm+

− 1
2

∫

d4x
√−gM(gab∂aT∂bT + 1)

T - dust potential,M - Lagrange multiplier

• The stress energy tensor:Ua := ∂aT

T ab = MUaU b + (M/2)gab(gcdU
cUd + 1) (∗)

• Standard canonical formalism:

ds2 = −N2dt2 + qab(N
adt+ dxa)(N bdt+ dxb)

• Dust component of canonical action

SD =
∫

dtd3x[pT Ṫ −NHD −NaCD
a ]

HD = 1
2

[

p2

T

M
√

q +
M

√
q

p2

T

(p2
T + qabCD

a C
D
b )

]

CD
a = −pT∂aT
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Classical deparametrization
• Relation fromequation of motion forM :

M2 = [q]−1P 4
T (p2

T + qabCD
a C

D
b )−1

• Hamiltonian constraint(density)

sgn(M)
√

p2
T + qabCD

a C
D
b + HG + Hm = 0

• Gauge fixingby proper time of dust particles:T = t

CD
a = 0 ⇒ Ca = 0 ⇔ CG

a + Cm
a = 0

(diffeo constraint like without the dust)

• The deparametrization:physical Hamiltonian density:

H̃ = −pT = HG + Hm

No | · | due toM role in (∗) and (indep.) def. ofpT =
√
qM

N Ṫ .

• Suitable for ANY quantization framework! – p. 25



Summary of properties
• System withtruephysical Hamiltonian.

• Hamiltoniannot of thesquare rootform.

• Defineddirectly onHdiff .

• Its action isexplicitly known.

• Physical Hilbert space known explicitly:Hphy = Hdiff

• All known kinematical diffeo-invariant observables nowbecome

physical.

• Evolution is governed bytime independent Schrödinger equation

which action onHphy is explicitly known.

i∂Ψ
∂t = [ĤG + Ĥm]Ψ

• States can be evolved numerically.
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Open issues
Applying practically even the simplest framework requirestaking care

of some issues:

• Specific constructions of the Hamiltonian:

• Many ambiguities of the construction:factor ordering,

alternative regularizations, choice of component operators.

• Open question:which construction gives consistent dynamical

picture

• Lesson from LQC:answer to this nontrivial and important.

• Preservation of the coherent states by the dynamics:

• Serious applications require semiclassical treatment. For that

sufficiently well behaved semiclassical states are necessary.

• Existing prescriptions never dynamically tested.
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Loop Quantum Cosmology
LQC: Application of LQG methods to models with quasi-global

degrees of freedom (symmetric spacetimes, perturbative

frameworks,...)

• Basic formalism on FRW example

• How LQG methods work in simplest scenarios

• Singularity resolution

• Inclusion of inhomogeneities

– p. 28



FRW universe
Isotropic RW cosmological model

• Spacetime:manifoldM × R whereM = R
3

M × {t} (wheret ∈ R) – homogeneous slices.

• Metric: gµν = −(∇µt)(∇νt) + a(t)(π⋆oq)µν

oqab - flat fiducial metric(dx2 + dy2 + dz2).

• System is gauge-fixed! Also some background structure present!

• Triad formalism:oeµ
i , oωi

µ – constant orthonormal triad/cotriad associated

with oqab.

• Ashtekar-Barbero canonical variables:also subject to symmetries

• Unique class with el. of the form:

Ai
a = c̃ oωi

a Ea
i = p̃

√
oq oea

i

• Constraint algebra:Since Gauss and Diffeomorphism constraint are

automatically satisfied the Hamiltonian one is the only constraint.
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Infrared regulator
• Global degrees of freedom:canonical pair̃c, p̃

• Infinity problem: S =
∫

M
d4xL = ∞ due to homogeneity.

• Solution:Restrict to a box (fiducil cell)V of volumeVo.

• Role of the infrared regulator:Final theory has to be well defined in

the regulator removal limit.

• Cell dependence in the symplectic structure

{Ai
a, E

a
i } = 8πGγ ⇒ {c̃, p̃} = 8πGγ/3Vo

• Rescaling to remove the dependence:

c := V
1

3

o c̃ p := V
2

3

o p̃ ⇒ {c̃, p̃} = 8πGγ/3

• Final variables:

Ai
a = V

−
1

3

o c oωi
a Ea

i = V
−

2

3

o p
√

oq oea
i
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Classical Hamiltonian constr.
• Euclidean and Lorentzian component:

Hg =
∫

M
d3xe−1[ǫijkE

a
i E

b
jF

k
ab − 2(1 + γ2)Ea

i E
b
jK

i
[aK

j
b]]

wheree =
√

| detE| andKi
a = Ka

boωi
b.

• Using Ai
a = Γi

a + γKi
a we express the Lorentzian term in terms of field

strengthF k
ab and curvature of spin connectionΓi

a

F k
ab := 2∂aA

k
b + ǫkijA

i
aA

j
b Ωk

ab := 2∂aΓk
b + ǫkijΓ

i
aΓj

b

Ea
i E

b
jK

i
[aK

j
b] = 1

2γ2
ǫijkE

a
i E

b
j (F

k
ab − Ωk

ab)

where for flat modelΩk
ab = 0.

• Final formof the (gravitational part of the) constraint:

Hg = − 1

γ2

∫

M
d3xǫijke

−1Ea
i E

b
jF

k
ab
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LQC quantization: kinematics
Direct application of the LQG quantization algorithm:

• Holonomies along integral curvesoea
i suffice to separatehomogeneous,

isotropic connections.

• Holonomy along the edgein direction ofoea
i of lengthλV

1

3

o

hi
(λ) = cos(λc/2)I + 2 sin(λc/2)τ i 2iτk = σk

• In consequencean equivalent of holonomy algebra in LQG is generated

by almost periodic functions: N(λ)(c) := exp(iλc/2)

• The Gel‘fand spectrum of this algebra(support of the elements ofHgrav
kin )

analog ofis the Bohr compactification of real linēRBohr.

• Basic operators:̂p, N̂(λ).

• Analog of LQG unique state(“vacuum”) is+ve linear functionalf

f(N̂(λ)) = δλ,0 and f(p̂) = 0 .
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LQC quantization: kinematics
• Final results:The GNS construction leads to Gravitational kinematical

Hilbert spaceHgrav
kin = L2(R̄Bohr, dµHaar) .

• Bohr compactification:Space of almost periodic functionsλ 7→ N(λ)(c).

The scalar product

〈f1|f2〉 = limL→∞(1/2L)
∫ L

−L
f̄1(c)f2(c)

• Representation of statesin which operator̂p is diagonal. Eigenstates ofp̂

labeled byµ satisfy

〈µ1|µ2〉 = δµ1,µ2

• Action of fundamental operators:

p̂ |µ〉 = 4

3
πγℓ2Plµ |µ〉 exp(iλc/2) |µ〉 = |µ+ λ〉
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Hamilt. constr. regularization
Expression in terms of holonomies and fluxes.(Thiemann)

• The terme−1EE

ǫijke
−1EajEbk =

∑

k
sgn(p)

2πγGλV
1/3

o

oǫabcoωk
c Tr(h

(λ)
k {h(λ)−1

k , V }τi)

• The field strength operator

• Given a square ini− j plane of the side lengthλV
1

3

o wrt. oqab

F i
ab = −i limAr�→0

1

λ2V
2/3
o

Tr
(

hλ
�ij

− 1
)

σk oωi
a

oωj
b

where hλ
�ij

:= h
(λ)
i h

(λ)
j (h

(λ)
i )−1(h

(λ)
j )−1 .

• Problem:the limit Ar� → 0 of above operatordoesn’t exist!

• Solution:We takeAr� = ∆, where∆ – smallest non-zero eigenvalue

of area operator in full LQG.λ2|p| = ∆ = 4
√

3πγℓ2Pl .

• Consequence:λ is function ofµ:
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Holonomy component operator
• Relevant holonomy:

hi = 1
2 [N +N−1]I − i[N −N−1]τ i N = eiλ(µ)µc/2

• ĥi can be expressed in termns ofN̂ (new basic operator).

• Action of the component operator:

• Exponentiatedd/dµ is well defined

N̂Ψ(µ) = exp[iλ(µ)(d/dµ)]Ψ(µ)

• The affine parameter alongλ(µ)(d/dµ) is given by

v = K sgn(µ)|µ|3/2, whereK – const.

• Convenient reparametrization:(c, p) → (b, v)

v = K sgn(µ)|µ|3/2 {v, b} = 2

• Action of basic operators:

N̂ |v〉 = |v + 1〉 p̂|v〉 = (2πγ
√

∆)2/3 v |v〉
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LQC Hamiltonian constraint
• The final form:(symmetric ordering)

Ĥg = 3πG
8α

√

|v̂|(N̂2 − N̂−2)
√

|v̂|

whereα = 2πγ
√

∆ℓ2Pl ≈ 1.35ℓ3Pl

• Basic properties:

• Is essentially self-adjoint.

• Non-positive definite.
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Matter coupling
• To build nontrivial system we have to introduce some matter content.

• Several possibilities:

• Massless scalar fieldoriginally considered in LQC (see talk by

A. Ashtekar).

• Other matterwith quadratic kinetic term.

• Application of the irrotational dust frame from LQGconvenient for

demonstration.

• Dust time frame:for gravity + dust

• ĤG becomesphysical Hamiltonian.

• Hg = L2(RBohr, dµHaar) becomesphysical Hilbert space.

• Evolution: Schrödinger equation−i~t∂Ψ(v, t) = ĤgΨ(v, t)

• Since lapseN = 1 presence of singularities related to extendability of

evolution for allt ∈ R (see talk by H. Ringstrom).
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Digression: Geometrodynamics
Wheeler-DeWitt quantization program for flat FRW with dust.

• Flat FRW metric: g = −dt2 + a2(t)(dx2 + dy2 + dz2)

• Geometry variables:analogous to LQC:

v = α−1a3 , α ≈ 1.35ℓ3Pl {v, b} = 2

• Hamiltonian: HG = −3πG
2α b2|v|

• Schrödinger quantization:

• Hilbert space:HG = L2
s(R,dv)

• Hamiltonian: ĤG = −3πG
2α

√

|v̂|b̂2
√

|v|
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WDW Hamiltonian properties
• Negative definite

• Self-adjointness:

• ĤG defined on domain

D = {ψ ∈ S, ψ(0) = ∂vψ(0) = 0}
whereS is Schwartz space.

• Deficiency subspacesK±: spaces of normalizable solutionsϕ± to

〈ϕ±| Ĥ⋆
G ∓ iI |ψ〉 = 0, ψ ∈ D

• If dim(K+) = dim(K−) 6= 0 domain ofĤG has many extensions.

All of them are defined by unitary transformationsUβ : K+ → K−:

Dβ = {ψ + a(ϕ+ + Uβ(ϕ+));ψ ∈ D, a ∈ C}
• Deficiency eq solvable:dim(K+) = dim(K−) = 1.

• 1-parameter family of self-adjoint extensionsDβ .

– p. 39



Auxiliary space
In original repsresentation difficult ot solve

• Auxiliary Hamiltonian: H̃G = 3iπα−1ℓ2Plb̂
2∂b

• There existinvertible mapsPβ : Hβ → H̃ such that

−P−1
β [H̃G]+Pβ = Ĥβ .

• Configuration variable:x = 1/b ∝ 1/H

• Physical state:

H̃ ∋ PβΨ(x) =
∫ ∞

0
dkΨ̃(k)[θ(x)eikx + θ(−x)eiδβeikx]

• The evolution: Ψ(x, t) = eiω(k)(t−to)Ψ(x, to), ω(k) = 3πℓ2Plα
−1k

• Free propagating wave packet with extenson dependent phasechange

at the singularity.
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WDW dynamics
• In auxiliary space the observablêV = |â|3 has simple form.

• the quantum trajectory:

〈V̂ 〉(t) = V (t) = 6πℓ2Pl〈−ĤG〉(t− to)
2 + 2ασ2

x

whereto - point where 〈Ψ : i∂xx̂ : Ψ〉 = 0

• The consequances:

• Additional boundary data needed at the singularityx = 0.

• At t = to V = 0 up to variance.

• Singularity not resolved in any sense (deterministic or

dynamical).
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LQC dynamics
• Auxiliary Hamiltonianper analogy to WDW:

H̃G = PĤGP
−1 = −[3iπℓ2Plα

−1 sin2(b)∂b]
+

whereP - invertible mapping like for WDW.

• The time evolution:x = − cot(b)

H̃ ∋ PΨ(x) =
∫ ∞

0
dkΨ̃(k)ei(kx+ω(k)t)

• Freely propagating wave packet.

• the trajectory:(to - point where 〈Ψ : i∂xx̂ : Ψ〉 = 0 )

〈V̂ 〉(t) = V (t) = 6πℓ2Pl〈−ĤG〉(t− to)
2 + α2

3πℓ2
Pl

〈−ĤG〉 + 2ασ2
x

• Consequences:

• Evolution unique (self-adjointness).

• Minimal V well separated from0 - Big Bounce.

• Singularity resolved deterministically and dynamically.
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The comparizon
True for all values of cosmological constant

• Geometrodynamics (WDW)

• Lackof singularity resolution:
• additional boundary data at the singularity
• minimal volume comparable to dispersions

• Loop Quantum Cosmology

• Dynamicalsingularity resolution
• unique unitary evolution
• minimal volume well isolated fromV = 0
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