Time-periodic solutions in Einstein AdS - massless scalar field system

joint work with Andrzej Rostworowski [arXiv:1303.3186]

Maciej Maliborski
Institute of Physics, Jagiellonian University, Kraków

53 Cracow School of Theoretical Physics, Zakopane, 5th July, 2013

Outline

Perturbative and numerical construction of time-periodic solutions within the system of self-gravitating massless scalar field in $d+1$ dimensions at spherical symmetry with $\Lambda<0$.

$$
\begin{gathered}
G_{\alpha \beta}+\Lambda g_{\alpha \beta}=8 \pi G\left(\nabla_{\alpha} \phi \nabla_{\beta} \phi-\frac{1}{2} g_{\alpha \beta} \nabla_{\mu} \phi \nabla^{\mu} \phi\right), \Lambda=-d(d-1) /\left(2 \ell^{2}\right), \\
g^{\alpha \beta} \nabla_{\alpha} \nabla_{\beta} \phi=0 .
\end{gathered}
$$

Actual and potential outcomes:

- More complete picture of AdS instability
- Efficient method for numerical integration of Einstein's equations
- AdS/CFT correspondence interpretation

Outline

Perturbative and numerical construction of time-periodic solutions within the system of self-gravitating massless scalar field in $d+1$ dimensions at spherical symmetry with $\Lambda<0$.

$$
\begin{gathered}
G_{\alpha \beta}+\Lambda g_{\alpha \beta}=8 \pi G\left(\nabla_{\alpha} \phi \nabla_{\beta} \phi-\frac{1}{2} g_{\alpha \beta} \nabla_{\mu} \phi \nabla^{\mu} \phi\right), \Lambda=-d(d-1) /\left(2 \ell^{2}\right), \\
g^{\alpha \beta} \nabla_{\alpha} \nabla_{\beta} \phi=0 .
\end{gathered}
$$

Actual and potential outcomes:

- More complete picture of AdS instability
- Efficient method for numerical integration of Einstein's equations
- AdS/CFT correspondence interpretation

Outline

Perturbative and numerical construction of time-periodic solutions within the system of self-gravitating massless scalar field in $d+1$ dimensions at spherical symmetry with $\Lambda<0$.

$$
\begin{gathered}
G_{\alpha \beta}+\Lambda g_{\alpha \beta}=8 \pi G\left(\nabla_{\alpha} \phi \nabla_{\beta} \phi-\frac{1}{2} g_{\alpha \beta} \nabla_{\mu} \phi \nabla^{\mu} \phi\right), \Lambda=-d(d-1) /\left(2 \ell^{2}\right), \\
g^{\alpha \beta} \nabla_{\alpha} \nabla_{\beta} \phi=0 .
\end{gathered}
$$

Actual and potential outcomes:

- More complete picture of AdS instability
- Efficient method for numerical integration of Einstein's equations
- AdS/CFT correspondence interpretation

Motivation

Main motivation by the conjectures [Bizoń\&Rostworowski, 2011]

- Anti-de Sitter space is unstable against the formation of a black hole under arbitrarily small generic perturbations (also in higher dimensions [Jałmużna,Rostworowski\&Bizoń, 2011], [Buchel,Lehner\&Liebling, 2012])
- There are non-generic initial data which may stay close to AdS solution; Einstein-scalar-AdS equations may admit time-quasiperiodic solutions

Analogous conjecture for vacuum Einstein's equations - existence of

Motivation

Main motivation by the conjectures [Bizoń\&Rostworowski, 2011]

- Anti-de Sitter space is unstable against the formation of a black hole under arbitrarily small generic perturbations (also in higher dimensions [Jałmużna,Rostworowski\&Bizoń, 2011], [Buchel,Lehner\&Liebling, 2012])
- There are non-generic initial data which may stay close to AdS solution; Einstein-scalar-AdS equations may admit time-quasiperiodic solutions

Analogous conjecture for vacuum Einstein's equations - existence of

Motivation

Main motivation by the conjectures [Bizoń\&Rostworowski, 2011]

- Anti-de Sitter space is unstable against the formation of a black hole under arbitrarily small generic perturbations (also in higher dimensions [Jałmużna,Rostworowski\&Bizoń, 2011], [Buchel,Lehner\&Liebling, 2012])
- There are non-generic initial data which may stay close to AdS solution; Einstein-scalar-AdS equations may admit time-quasiperiodic solutions

Analogous conjecture for vacuum Einstein's equations - existence of geons [Dias,Horowitz\&Santos, 2011], [Dias,Horowitz,Marolf\&Santos, 2012].

Model

- Parametrization of asymptotically AdS spacetimes

$$
\begin{aligned}
d s^{2} & =\frac{\ell^{2}}{\cos ^{2} x}\left(-A e^{-2 \delta} d t^{2}+A^{-1} d x^{2}+\sin ^{2} x d \Omega_{S^{d-1}}^{2}\right) \\
(t, x) & \in \mathbb{R} \times[0, \pi / 2)
\end{aligned}
$$

- Field equations (units $8 \pi G=d-1$)

Model

- Parametrization of asymptotically AdS spacetimes

$$
\begin{aligned}
d s^{2} & =\frac{\ell^{2}}{\cos ^{2} x}\left(-A e^{-2 \delta} d t^{2}+A^{-1} d x^{2}+\sin ^{2} x d \Omega_{S^{d-1}}^{2}\right) \\
(t, x) & \in \mathbb{R} \times[0, \pi / 2)
\end{aligned}
$$

- Field equations (units $8 \pi G=d-1$)

$$
\begin{aligned}
A^{\prime} & =2(1-A) \frac{d-1-\cos 2 x}{\sin 2 x}-A \delta^{\prime}, \quad \delta^{\prime}=-\frac{\sin 2 x}{2}\left(\Phi^{2}+\Pi^{2}\right), \\
\dot{\Phi} & =\left(A e^{-\delta} \Pi\right)^{\prime}, \quad \dot{\Pi}=\frac{1}{\tan ^{d-1} x}\left(\tan ^{d-1} x A e^{-\delta} \Phi\right)^{\prime} .
\end{aligned}
$$

Model

- Parametrization of asymptotically AdS spacetimes

$$
\begin{aligned}
d s^{2} & =\frac{\ell^{2}}{\cos ^{2} x}\left(-A e^{-2 \delta} d t^{2}+A^{-1} d x^{2}+\sin ^{2} x d \Omega_{S^{d-1}}^{2}\right) \\
(t, x) & \in \mathbb{R} \times[0, \pi / 2)
\end{aligned}
$$

- Field equations (units $8 \pi G=d-1$)

$$
\begin{aligned}
A^{\prime} & =2(1-A) \frac{d-1-\cos 2 x}{\sin 2 x}-A \delta^{\prime}, \quad \delta^{\prime}=-\frac{\sin 2 x}{2}\left(\Phi^{2}+\Pi^{2}\right), \\
\dot{\Phi} & =\left(A e^{-\delta} \Pi\right)^{\prime}, \quad \dot{\Pi}=\frac{1}{\tan ^{d-1} x}\left(\tan ^{d-1} x A e^{-\delta} \Phi\right)^{\prime} .
\end{aligned}
$$

- Auxiliary variables (${ }^{\prime}=\partial_{x},{ }^{\prime}=\partial_{t}$): $\Phi=\phi^{\prime}$ and $\Pi=A^{-1} e^{\delta} \dot{\phi}$

Model

- Parametrization of asymptotically AdS spacetimes

$$
\begin{aligned}
& d s^{2} \\
&=\frac{\ell^{2}}{\cos ^{2} x}\left(-A e^{-2 \delta} d t^{2}+A^{-1} d x^{2}+\sin ^{2} x d \Omega_{S^{d-1}}^{2}\right), \\
&(t, x) \in \mathbb{R} \times[0, \pi / 2) .
\end{aligned}
$$

- Field equations (units $8 \pi G=d-1$)

$$
\begin{aligned}
A^{\prime} & =2(1-A) \frac{d-1-\cos 2 x}{\sin 2 x}-A \delta^{\prime}, \quad \delta^{\prime}=-\frac{\sin 2 x}{2}\left(\Phi^{2}+\Pi^{2}\right), \\
\dot{\Phi} & =\left(A e^{-\delta} \Pi\right)^{\prime}, \quad \dot{\Pi}=\frac{1}{\tan ^{d-1} x}\left(\tan ^{d-1} x A e^{-\delta} \Phi\right)^{\prime} .
\end{aligned}
$$

- Auxiliary variables $\left({ }^{\prime}=\partial_{x},{ }^{\prime}=\partial_{t}\right): \Phi=\phi^{\prime}$ and $\Pi=A^{-1} e^{\delta} \dot{\phi}$
- AdS space: $\phi \equiv 0, A \equiv 1, \delta \equiv$ const.

Boundary conditions

- Smoothness at the center implies symmetry of the fields.
- Mass function and asymptotic mass:

Boundary conditions

- Smoothness at the center implies symmetry of the fields.
- There is no freedom in prescribing boundary data at $x=\pi / 2$ if we require smooth evolution and finiteness of the total mass.
- Mass function and asymptotic mass:

Boundary conditions

- Smoothness at the center implies symmetry of the fields.
- There is no freedom in prescribing boundary data at $x=\pi / 2$ if we require smooth evolution and finiteness of the total mass.
- Mass function and asymptotic mass:

$$
\begin{gathered}
m(t, x)=\frac{\sin ^{d-2} x}{\cos ^{d} x}(1-A(t, x)), \\
M=\lim _{x \rightarrow \pi / 2} m(t, x)=\int_{0}^{\pi / 2} A\left(\Phi^{2}+\Pi^{2}\right) \tan ^{d-1} x d x .
\end{gathered}
$$

- Local well-posedness [Friedrich, 1995]

Boundary conditions

- Smoothness at the center implies symmetry of the fields.
- There is no freedom in prescribing boundary data at $x=\pi / 2$ if we require smooth evolution and finiteness of the total mass.
- Mass function and asymptotic mass:

$$
\begin{gathered}
m(t, x)=\frac{\sin ^{d-2} x}{\cos ^{d} x}(1-A(t, x)), \\
M=\lim _{x \rightarrow \pi / 2} m(t, x)=\int_{0}^{\pi / 2} A\left(\Phi^{2}+\Pi^{2}\right) \tan ^{d-1} x d x .
\end{gathered}
$$

- Local well-posedness [Friedrich, 1995], [Holzegel\&Smulevici, 2011]

Linear perturbations of AdS

- Linearized equation [Ishibashi\&Wald, 2004]

$$
\ddot{\phi}+L \phi=0, \quad L=-\frac{1}{\tan ^{d-1} x} \partial_{x}\left(\tan ^{d-1} x \partial_{x}\right)
$$

- AdS is linearly stable, linear solution

Linear perturbations of AdS

- Linearized equation [Ishibashi\&Wald, 2004]

$$
\ddot{\phi}+L \phi=0, \quad L=-\frac{1}{\tan ^{d-1} x} \partial_{x}\left(\tan ^{d-1} x \partial_{x}\right),
$$

- Eigenvalues and eigenvectors of L are $(j=0,1, \ldots)$

$$
\omega_{j}^{2}=(d+2 j)^{2}, \quad e_{j}(x)=N_{j} \cos ^{d} x P_{j}^{(d / 2-1, d / 2)}(\cos 2 x),
$$

with amplitudes α_{j} and phases β_{j} determined by the initial data.

Linear perturbations of AdS

- Linearized equation [Ishibashi\&Wald, 2004]

$$
\ddot{\phi}+L \phi=0, \quad L=-\frac{1}{\tan ^{d-1} x} \partial_{x}\left(\tan ^{d-1} x \partial_{x}\right)
$$

- Eigenvalues and eigenvectors of L are $(j=0,1, \ldots)$

$$
\omega_{j}^{2}=(d+2 j)^{2}, \quad e_{j}(x)=N_{j} \cos ^{d} x P_{j}^{(d / 2-1, d / 2)}(\cos 2 x)
$$

- AdS is linearly stable, linear solution

$$
\phi(t, x)=\sum_{j \geq 0} \alpha_{j} \cos \left(\omega_{j} t+\beta_{j}\right) e_{j}(x)
$$

with amplitudes α_{j} and phases β_{j} determined by the initial data.

Perturbative construction

- We search for solutions of the form

$$
\phi=\varepsilon \cos \left(\omega_{\gamma} t\right) e_{\gamma}(x)+\mathcal{O}\left(\varepsilon^{3}\right),
$$

with one dominant mode, ε is a small parameter.
and we make an ansatz for the expansion in

Perturbative construction

- We search for solutions of the form

$$
\phi=\varepsilon \cos \left(\omega_{\gamma} t\right) e_{\gamma}(x)+\mathcal{O}\left(\varepsilon^{3}\right),
$$

with one dominant mode, ε is a small parameter.

- We rescale the time variable

$$
\tau=\Omega_{\gamma} t, \quad \Omega_{\gamma}=\omega_{\gamma}+\sum_{\text {even } \lambda \geq 2} \varepsilon^{\lambda} \omega_{\gamma, \lambda}
$$

and we make an ansatz for the expansion in ε

$$
\begin{aligned}
& \phi=\varepsilon \cos (\tau) e_{\gamma}(x)+\sum_{\text {odd } \lambda \geq 3} \varepsilon^{\lambda} \phi_{\lambda}(\tau, x) \\
& \delta=\sum_{\text {even } \lambda \geq 2} \varepsilon^{\lambda} \delta_{\lambda}(\tau, x), \quad 1-A=\sum_{\text {even } \lambda \geq 2} \varepsilon^{\lambda} A_{\lambda}(\tau, x)
\end{aligned}
$$

Perturbative construction - expansion

- We expand functions $\phi_{\lambda}, \delta_{\lambda}, A_{\lambda}$ into the eigenbasis

$$
\begin{aligned}
\phi_{\lambda} & =\sum_{j} f_{\lambda, j}(\tau) e_{j}(x) \\
\delta_{\lambda} & =d_{\lambda,-1}(\tau)+\sum_{j} d_{\lambda, j}(\tau) e_{j}(x), \quad A_{\lambda}=\sum_{j} a_{\lambda, j}(\tau) e_{j}(x)
\end{aligned}
$$

with $f_{\lambda, j}(\tau), a_{\lambda, j}(\tau), d_{\lambda, j}(\tau)$ being periodic in τ.
This works well for d even - the sums are finite at each order λ (the boundary conditions).

Notation:

- Coefficient at ε^{λ} in the power series expansion of $f=\sum_{\lambda} \varepsilon^{\lambda} f_{\lambda}$

Perturbative construction - expansion

- We expand functions $\phi_{\lambda}, \delta_{\lambda}, A_{\lambda}$ into the eigenbasis

$$
\begin{aligned}
\phi_{\lambda} & =\sum_{j} f_{\lambda, j}(\tau) e_{j}(x) \\
\delta_{\lambda} & =d_{\lambda,-1}(\tau)+\sum_{j} d_{\lambda, j}(\tau) e_{j}(x), \quad A_{\lambda}=\sum_{j} a_{\lambda, j}(\tau) e_{j}(x)
\end{aligned}
$$

with $f_{\lambda, j}(\tau), a_{\lambda, j}(\tau), d_{\lambda, j}(\tau)$ being periodic in τ.
This works well for d even - the sums are finite at each order λ (the boundary conditions).

Notation:

- Inner product

$$
(f \mid g):=\int_{0}^{\pi / 2} f(x) g(x) \tan ^{d-1} x d x
$$

Perturbative construction - expansion

- We expand functions $\phi_{\lambda}, \delta_{\lambda}, A_{\lambda}$ into the eigenbasis

$$
\begin{aligned}
& \phi_{\lambda}=\sum_{j} f_{\lambda, j}(\tau) e_{j}(x), \\
& \delta_{\lambda}=d_{\lambda,-1}(\tau)+\sum_{j} d_{\lambda, j}(\tau) e_{j}(x), \quad A_{\lambda}=\sum_{j} a_{\lambda, j}(\tau) e_{j}(x),
\end{aligned}
$$

with $f_{\lambda, j}(\tau), a_{\lambda, j}(\tau), d_{\lambda, j}(\tau)$ being periodic in τ.
This works well for d even - the sums are finite at each order λ (the boundary conditions).

Notation:

- Inner product

$$
(f \mid g):=\int_{0}^{\pi / 2} f(x) g(x) \tan ^{d-1} x d x
$$

- Coefficient at ε^{λ} in the power series expansion of $f=\sum_{\lambda} \varepsilon^{\lambda} f_{\lambda}$

$$
\left[\varepsilon^{\lambda}\right] f=f_{\lambda}
$$

Perturbative construction - constraint equations

- Metric function δ

$$
d_{\lambda, k}=-\frac{1}{2 \omega_{k}^{2}}\left(e_{k}^{\prime} \mid\left[\varepsilon^{\lambda}\right] \sin 2 x\left(\Phi^{2}+\Pi^{2}\right)\right),
$$

gauge fixing condition: $\left.\left[\varepsilon^{\lambda}\right] \delta\right|_{x=0}=0=d_{\lambda,-1}+\sum_{j} d_{\lambda, j} e_{j}(0)$

Perturbative construction - constraint equations

- Metric function δ

$$
d_{\lambda, k}=-\frac{1}{2 \omega_{k}^{2}}\left(e_{k}^{\prime} \mid\left[\varepsilon^{\lambda}\right] \sin 2 x\left(\Phi^{2}+\Pi^{2}\right)\right),
$$

gauge fixing condition: $\left.\left[\varepsilon^{\lambda}\right] \delta\right|_{x=0}=0=d_{\lambda,-1}+\sum_{j} d_{\lambda, j} e_{j}(0)$

- Metric function A

$$
\begin{aligned}
\sum_{j}\left[(d-1) \delta_{k j}+\left(e_{k} \left\lvert\, \frac{1}{2} \sin 2 x e_{j}^{\prime}-\cos 2 x e_{j}\right.\right)\right] a_{\lambda, j}= \\
\frac{1}{4}\left(e_{k} \mid\left[\varepsilon^{\lambda}\right](\sin 2 x)^{2} A\left(\Phi^{2}+\Pi^{2}\right)\right)
\end{aligned}
$$

boundary condition: $\left.\left[\varepsilon^{\lambda}\right](1-A)\right|_{x=0}=0=\sum_{j} a_{\lambda, j} e_{j}(0)$

Perturbative construction - wave equation I

- Solve inhomogeneous wave equation

$$
\left(\omega_{\gamma}^{2} \partial_{\tau \tau}+L\right) \phi_{\lambda}=S_{\lambda},
$$

plugging $\phi_{\lambda}=\sum_{j} f_{\lambda, j}(\tau) e_{j}(x)$, gives

$$
\left(\omega_{\gamma}^{2} \partial_{\tau \tau}+\omega_{k}^{2}\right) f_{\lambda, k}=\left(e_{k} \mid S_{\lambda}\right),
$$

Perturbative construction - wave equation I

- Solve inhomogeneous wave equation

$$
\left(\omega_{\gamma}^{2} \partial_{\tau \tau}+L\right) \phi_{\lambda}=S_{\lambda}
$$

plugging $\phi_{\lambda}=\sum_{j} f_{\lambda, j}(\tau) e_{j}(x)$, gives

$$
\left(\omega_{\gamma}^{2} \partial_{\tau \tau}+\omega_{k}^{2}\right) f_{\lambda, k}=\left(e_{k} \mid S_{\lambda}\right)
$$

- How do we get secular terms?

$$
\begin{aligned}
& \ddot{g}(t)+\omega_{0}^{2} g(t)=a \cos (\omega t), \quad g(0)=c, \quad \dot{g}(0)=\tilde{c} \\
& g(t)=\frac{\tilde{c}}{\omega_{0}} \sin \left(\omega_{0} t\right)+c \cos \left(\omega_{0} t\right)+ \begin{cases}\frac{a\left(\cos (\omega t)-\cos \left(\omega_{0} t\right)\right)}{\omega_{0}^{2}-\omega^{2}}, & \omega_{0} \neq \omega \\
\frac{a}{2 \omega_{0}} t \sin \left(\omega_{0} t\right), & \omega_{0}=\omega\end{cases}
\end{aligned}
$$

Perturbative construction - wave equation II

- Use the integration constants $\left\{c_{\lambda, k}, \tilde{c}_{\lambda, k}\right\}$ to remove resonant terms $\cos \left(\omega_{k} / \omega_{\gamma}\right) \tau$ or $\sin \left(\omega_{k} / \omega_{\gamma}\right) \tau$. we are left with $(\lambda-1) / 2+\lfloor(\lambda-1) /(2(d+2 \gamma))\rfloor$ undetermined integration constants $\left\{c_{\lambda, k}\right\}$ and frequency shift $\omega_{\gamma, \lambda-1}$

Perturbative construction - wave equation II

- Use the integration constants $\left\{c_{\lambda, k}, \tilde{c}_{\lambda, k}\right\}$ to remove resonant terms $\cos \left(\omega_{k} / \omega_{\gamma}\right) \tau$ or $\sin \left(\omega_{k} / \omega_{\gamma}\right) \tau$.
- Dominant mode condition fixes two constants in $f_{\lambda, \gamma}$

$$
\begin{aligned}
& \left.\left(f_{\lambda, \gamma}, \partial_{\tau} f_{\lambda, \gamma}\right)\right|_{\tau=0}=\left.(0,0) \Longleftrightarrow\left(\left(e_{\gamma} \mid \phi\right),\left(e_{\gamma} \mid \partial_{\tau} \phi\right)\right)\right|_{\tau=0}=(\varepsilon, 0) \\
& \left(\Rightarrow \tilde{c}_{\lambda, k}=0\right)
\end{aligned}
$$

Perturbative construction - wave equation II

- Use the integration constants $\left\{c_{\lambda, k}, \tilde{c}_{\lambda, k}\right\}$ to remove resonant terms $\cos \left(\omega_{k} / \omega_{\gamma}\right) \tau$ or $\sin \left(\omega_{k} / \omega_{\gamma}\right) \tau$.
- Dominant mode condition fixes two constants in $f_{\lambda, \gamma}$
$\left.\left(f_{\lambda, \gamma}, \partial_{\tau} f_{\lambda, \gamma}\right)\right|_{\tau=0}=\left.(0,0) \Longleftrightarrow\left(\left(e_{\gamma} \mid \phi\right),\left(e_{\gamma} \mid \partial_{\tau} \phi\right)\right)\right|_{\tau=0}=(\varepsilon, 0)$ ($\Rightarrow \tilde{c}_{\lambda, k}=0$).
- At any odd $\lambda \geq 3$

$$
\left(e_{k} \mid S_{\lambda}\right) \equiv 0 \text { for } k>\gamma+(d+1+2 \gamma) \frac{\lambda-1}{2},
$$

we are left with $(\lambda-1) / 2+\lfloor(\lambda-1) /(2(d+2 \gamma))\rfloor$ undetermined integration constants $\left\{c_{\lambda, k}\right\}$ and frequency shift $\omega_{\gamma, \lambda-1}$.

- Use $\left\{c_{\lambda, k}\right\}$ together with $\omega_{\gamma, \lambda+1}$ to remove

Perturbative construction - wave equation II

- Use the integration constants $\left\{c_{\lambda, k}, \tilde{c}_{\lambda, k}\right\}$ to remove resonant terms $\cos \left(\omega_{k} / \omega_{\gamma}\right) \tau$ or $\sin \left(\omega_{k} / \omega_{\gamma}\right) \tau$.
- Dominant mode condition fixes two constants in $f_{\lambda, \gamma}$
$\left.\left(f_{\lambda, \gamma}, \partial_{\tau} f_{\lambda, \gamma}\right)\right|_{\tau=0}=\left.(0,0) \Longleftrightarrow\left(\left(e_{\gamma} \mid \phi\right),\left(e_{\gamma} \mid \partial_{\tau} \phi\right)\right)\right|_{\tau=0}=(\varepsilon, 0)$ ($\Rightarrow \tilde{c}_{\lambda, k}=0$).
- At any odd $\lambda \geq 3$

$$
\left(e_{k} \mid S_{\lambda}\right) \equiv 0 \text { for } k>\gamma+(d+1+2 \gamma) \frac{\lambda-1}{2},
$$

we are left with $(\lambda-1) / 2+\lfloor(\lambda-1) /(2(d+2 \gamma))\rfloor$ undetermined integration constants $\left\{c_{\lambda, k}\right\}$ and frequency shift $\omega_{\gamma, \lambda-1}$.

- Use $\left\{c_{\lambda, k}\right\}$ together with $\omega_{\gamma, \lambda+1}$ to remove $(\lambda+1) / 2+\lfloor(\lambda-1) /(2(d+2 \gamma))\rfloor$ secular terms in $\phi_{\lambda+2}$.

Numerical construction

We make an ansatz ($\tau=\Omega t$)

$$
\begin{aligned}
& \phi=\sum_{0 \leq i<N} \sum_{0 \leq j<K} f_{i, j} \cos ((2 i+1) \tau) e_{j}(x), \\
& \Pi=\sum_{0 \leq i<N} \sum_{0 \leq j<K} p_{i, j} \sin ((2 i+1) \tau) e_{j}(x)
\end{aligned}
$$

- Find the solution by determining $2 \times K \times N+1$ numbers
mumeat grid of
- Add one enuation for dominiat
mode ondition

Numerical construction

We make an ansatz $(\tau=\Omega t)$

$$
\begin{aligned}
& \phi=\sum_{0 \leq i<N} \sum_{0 \leq j<K} f_{i, j} \cos ((2 i+1) \tau) e_{j}(x), \\
& \Pi=\sum_{0 \leq i<N} \sum_{0 \leq j<K} p_{i, j} \sin ((2 i+1) \tau) e_{j}(x)
\end{aligned}
$$

- Find the solution by determining $2 \times K \times N+1$ numbers
- Set the equations on a numerical grid of $K \times N$ collocation points

Numerical construction

We make an ansatz $(\tau=\Omega t)$

$$
\begin{aligned}
\phi & =\sum_{0 \leq i<N} \sum_{0 \leq j<K} f_{i, j} \cos ((2 i+1) \tau) e_{j}(x), \\
\Pi & =\sum_{0 \leq i<N} \sum_{0 \leq j<K} p_{i, j} \sin ((2 i+1) \tau) e_{j}(x)
\end{aligned}
$$

- Find the solution by determining $2 \times K \times N+1$ numbers
- Set the equations on a numerical grid of $K \times N$ collocation points
- Add one equation for dominant mode condition

$$
\sum_{0 \leq i<N} f_{i, \gamma}=\varepsilon
$$

Numerical construction

We make an ansatz $(\tau=\Omega t)$

$$
\begin{aligned}
& \phi=\sum_{0 \leq i<N} \sum_{0 \leq j<K} f_{i, j} \cos ((2 i+1) \tau) e_{j}(x) \\
& \Pi=\sum_{0 \leq i<N} \sum_{0 \leq j<K} p_{i, j} \sin ((2 i+1) \tau) e_{j}(x)
\end{aligned}
$$

- Find the solution by determining $2 \times K \times N+1$ numbers
- Set the equations on a numerical grid of $K \times N$ collocation points
- Add one equation for dominant mode condition

$$
\sum_{0 \leq i<N} f_{i, \gamma}=\varepsilon
$$

Highly nonlinear system solved with the Newton-Raphson algorithm.

Mathematica notebook

Series summation

Improve convergence with the Padé resummation of Ω_{γ} for $d=4, \gamma=0$

ε	direct sum	Padé	numerics
0.005	4.0016596666501	4.0016596666501	4.0016596666501
0.015	4.0151220741462	4.0151220741462	4.0151220741462
0.025	4.0430867838460	4.0430867838521	4.0430867838521
0.035	4.0879197007	4.0879197035435	4.0879197035448
0.045	4.15407139	4.15407167953	4.1540716797440
0.055	4.249920	4.249932516	4.2499325336279
0.065	4.39267	4.3929928	4.3929938556099
0.075	4.6230	4.629225	4.6292962269712
0.085	5.05	5.184	5.2017714694183

Estimate for the radius of convergence - threshold for the black-hole formation

$$
\left([n / n]_{\Omega_{\gamma}}\left(\varepsilon^{*}\right)\right)^{-1}=0
$$

n	2	4	6	8	\ldots
ε^{*}	0.128	0.102	0.095	0.092	\ldots

Results

- High order expansion for time-periodic solution - lenghty formulas in ε (solution for $d=4, \gamma=0$ up to 17 th order consists of: 1257 terms in $\phi, 1137$ in A and 1180 in δ expansion)
- Numerical solutions for descrete values of ε - extended floating-point arithmetic for highlv accurate solution
- Consistency of the results - verification by two independent

Results

- High order expansion for time-periodic solution - lenghty formulas in ε (solution for $d=4, \gamma=0$ up to 17th order consists of: 1257 terms in $\phi, 1137$ in A and 1180 in δ expansion)
- Numerical solutions for descrete values of ε - extended floating-point arithmetic for highly accurate solution
- Consistency of the results - verification by two independent methods
- Indication on the stability of the obtained solutions

Results

- High order expansion for time-periodic solution - lenghty formulas in ε (solution for $d=4, \gamma=0$ up to 17th order consists of: 1257 terms in $\phi, 1137$ in A and 1180 in δ expansion)
- Numerical solutions for descrete values of ε - extended floating-point arithmetic for highly accurate solution
- Consistency of the results - verification by two independent methods
- Indication on the stability of the obtained solutions

Results

- High order expansion for time-periodic solution - lenghty formulas in ε (solution for $d=4, \gamma=0$ up to 17 th order consists of: 1257 terms in $\phi, 1137$ in A and 1180 in δ expansion)
- Numerical solutions for descrete values of ε - extended floating-point arithmetic for highly accurate solution
- Consistency of the results - verification by two independent methods
- Indication on the stability of the obtained solutions

Summary

There are (non-linearly) stable periodic solutions in Einstein-AdS-massless scalar field system. They form stability islands in the ocean of instability.

- Cosmological constant confines the evolution in an effectively bounded domain - the possibility of the existence of time-periodic solutions (in contrast to asymptotically flat case)
- This result explains the behavior of one(two)-mode initial data

Summary

There are (non-linearly) stable periodic solutions in Einstein-AdS-massless scalar field system. They form stability islands in the ocean of instability.

- Cosmological constant confines the evolution in an effectively bounded domain - the possibility of the existence of time-periodic solutions (in contrast to asymptotically flat case)
- This result explains the behavior of one(two)-mode initial data studied by [Bizoń\&Rostworowski, 2011]
- Time-periodic solutions in pure vacuum case (the cohomogeneity--two Bianchi IX ansatz [Bizoń,Chmaj\&Schmidt, 2005])

Summary

There are (non-linearly) stable periodic solutions in Einstein-AdS-massless scalar field system. They form stability islands in the ocean of instability.

- Cosmological constant confines the evolution in an effectively bounded domain - the possibility of the existence of time-periodic solutions (in contrast to asymptotically flat case)
- This result explains the behavior of one(two)-mode initial data studied by [Bizoń\&Rostworowski, 2011]
- Time-periodic solutions in pure vacuum case (the cohomogeneity--two Bianchi IX ansatz [Bizoń,Chmaj\&Schmidt, 2005])

