$\label{eq:constraint} \begin{array}{l} \mbox{Time-periodic solutions in Einstein AdS} - \mbox{massless} \\ \mbox{scalar field system} \end{array}$

joint work with Andrzej Rostworowski [arXiv:1303.3186]

Maciej Maliborski Institute of Physics, Jagiellonian University, Kraków

53 Cracow School of Theoretical Physics, Zakopane, 5th July, 2013

Outline

Perturbative and **numerical** construction of time-periodic solutions within the system of self-gravitating massless scalar field in d + 1 dimensions at spherical symmetry with $\Lambda < 0$.

$$\begin{split} G_{\alpha\beta} + \Lambda \, g_{\alpha\beta} &= 8\pi G \left(\nabla_{\alpha} \phi \, \nabla_{\beta} \phi - \frac{1}{2} g_{\alpha\beta} \nabla_{\mu} \phi \nabla^{\mu} \phi \right), \, \Lambda = -d(d-1)/(2\ell^2) \,, \\ g^{\alpha\beta} \nabla_{\alpha} \nabla_{\beta} \phi &= 0 \,. \end{split}$$

Actual and potential outcomes:

- More complete picture of AdS instability
- Efficient method for numerical integration of Einstein's equations
- AdS/CFT correspondence interpretation

Outline

Perturbative and **numerical** construction of time-periodic solutions within the system of self-gravitating massless scalar field in d + 1 dimensions at spherical symmetry with $\Lambda < 0$.

$$\begin{split} G_{\alpha\beta} + \Lambda \, g_{\alpha\beta} &= 8\pi G \left(\nabla_{\alpha} \phi \, \nabla_{\beta} \phi - \frac{1}{2} g_{\alpha\beta} \nabla_{\mu} \phi \nabla^{\mu} \phi \right), \, \Lambda = -d(d-1)/(2\ell^2) \,, \\ g^{\alpha\beta} \nabla_{\alpha} \nabla_{\beta} \phi &= 0 \,. \end{split}$$

Actual and potential outcomes:

- More complete picture of AdS instability
- ▶ Efficient method for numerical integration of Einstein's equations
- AdS/CFT correspondence interpretation

Outline

Perturbative and **numerical** construction of time-periodic solutions within the system of self-gravitating massless scalar field in d + 1 dimensions at spherical symmetry with $\Lambda < 0$.

$$\begin{split} G_{\alpha\beta} + \Lambda \, g_{\alpha\beta} &= 8\pi G \left(\nabla_{\alpha} \phi \, \nabla_{\beta} \phi - \frac{1}{2} g_{\alpha\beta} \nabla_{\mu} \phi \nabla^{\mu} \phi \right), \, \Lambda = -d(d-1)/(2\ell^2) \,, \\ g^{\alpha\beta} \nabla_{\alpha} \nabla_{\beta} \phi &= 0 \,. \end{split}$$

Actual and potential outcomes:

- More complete picture of AdS instability
- ► Efficient method for numerical integration of Einstein's equations
- ► AdS/CFT correspondence interpretation

Motivation

Main motivation by the conjectures [Bizoń&Rostworowski, 2011]

- Anti-de Sitter space is unstable against the formation of a black hole under arbitrarily small generic perturbations (also in higher dimensions [Jałmużna,Rostworowski&Bizoń, 2011], [Buchel,Lehner&Liebling, 2012])
- There are non-generic initial data which may stay close to AdS solution; Einstein-scalar-AdS equations may admit time-quasiperiodic solutions

Analogous conjecture for vacuum Einstein's equations – existence of geons [Dias,Horowitz&Santos, 2011], [Dias,Horowitz,Marolf&Santos, 2012].

Motivation

Main motivation by the conjectures [Bizoń&Rostworowski, 2011]

- Anti-de Sitter space is unstable against the formation of a black hole under arbitrarily small generic perturbations (also in higher dimensions [Jałmużna,Rostworowski&Bizoń, 2011], [Buchel,Lehner&Liebling, 2012])
- There are non-generic initial data which may stay close to AdS solution; Einstein-scalar-AdS equations may admit time-quasiperiodic solutions

Analogous conjecture for vacuum Einstein's equations – existence of geons [Dias,Horowitz&Santos, 2011], [Dias,Horowitz,Marolf&Santos, 2012].

Motivation

Main motivation by the conjectures [Bizoń&Rostworowski, 2011]

- Anti-de Sitter space is unstable against the formation of a black hole under arbitrarily small generic perturbations (also in higher dimensions [Jałmużna,Rostworowski&Bizoń, 2011], [Buchel,Lehner&Liebling, 2012])
- There are non-generic initial data which may stay close to AdS solution; Einstein-scalar-AdS equations may admit time-quasiperiodic solutions

Analogous conjecture for vacuum Einstein's equations – existence of geons [Dias,Horowitz&Santos, 2011], [Dias,Horowitz,Marolf&Santos, 2012].

Parametrization of asymptotically AdS spacetimes

$$ds^{2} = \frac{\ell^{2}}{\cos^{2} x} \left(-Ae^{-2\delta} dt^{2} + A^{-1} dx^{2} + \sin^{2} x \, d\Omega_{S^{d-1}}^{2} \right) ,$$

 $(t,x) \in \mathbb{R} \times [0,\pi/2).$

Field equations (units $8\pi G = d - 1$)

$$A' = 2(1-A)\frac{d-1-\cos 2x}{\sin 2x} - A\delta', \qquad \delta' = -\frac{\sin 2x}{2} \left(\Phi^2 + \Pi^2\right),$$
$$\dot{\Phi} = \left(Ae^{-\delta}\Pi\right)', \qquad \dot{\Pi} = \frac{1}{\tan^{d-1}x} \left(\tan^{d-1}xAe^{-\delta}\Phi\right)'.$$

• Auxiliary variables (' = ∂_x , $\dot{} = \partial_t$): $\Phi = \phi'$ and $\Pi = A^{-1}e^{\delta}\dot{\phi}$

• AdS space: $\phi \equiv 0$, $A \equiv 1$, $\delta \equiv \text{const.}$

Parametrization of asymptotically AdS spacetimes

$$ds^{2} = \frac{\ell^{2}}{\cos^{2} x} \left(-Ae^{-2\delta} dt^{2} + A^{-1} dx^{2} + \sin^{2} x \, d\Omega_{S^{d-1}}^{2} \right) ,$$
$$(t,x) \in \mathbb{R} \times [0,\pi/2).$$

• Field equations (units $8\pi G = d - 1$)

$$A' = 2(1-A)\frac{d-1-\cos 2x}{\sin 2x} - A\delta', \qquad \delta' = -\frac{\sin 2x}{2} \left(\Phi^2 + \Pi^2\right),$$
$$\dot{\Phi} = \left(Ae^{-\delta}\Pi\right)', \qquad \dot{\Pi} = \frac{1}{\tan^{d-1}x} \left(\tan^{d-1}xAe^{-\delta}\Phi\right)'.$$

• Auxiliary variables (' = ∂_x , $\dot{=} \partial_t$): $\Phi = \phi'$ and $\Pi = A^{-1}e^{\delta}\dot{\phi}$

• AdS space: $\phi \equiv 0$, $A \equiv 1$, $\delta \equiv \text{const.}$

Parametrization of asymptotically AdS spacetimes

$$ds^{2} = \frac{\ell^{2}}{\cos^{2} x} \left(-Ae^{-2\delta} dt^{2} + A^{-1} dx^{2} + \sin^{2} x \, d\Omega_{S^{d-1}}^{2} \right) ,$$
$$(t,x) \in \mathbb{R} \times [0,\pi/2).$$

• Field equations (units $8\pi G = d - 1$)

$$A' = 2(1-A)\frac{d-1-\cos 2x}{\sin 2x} - A\delta', \qquad \delta' = -\frac{\sin 2x}{2} \left(\Phi^2 + \Pi^2\right),$$
$$\dot{\Phi} = \left(Ae^{-\delta}\Pi\right)', \qquad \dot{\Pi} = \frac{1}{\tan^{d-1}x} \left(\tan^{d-1}xAe^{-\delta}\Phi\right)'.$$

• Auxiliary variables (' = ∂_x , $\dot{} = \partial_t$): $\Phi = \phi'$ and $\Pi = A^{-1}e^{\delta}\dot{\phi}$

▶ AdS space: $\phi \equiv 0$, $A \equiv 1$, $\delta \equiv \text{const.}$

Parametrization of asymptotically AdS spacetimes

$$ds^{2} = \frac{\ell^{2}}{\cos^{2} x} \left(-Ae^{-2\delta} dt^{2} + A^{-1} dx^{2} + \sin^{2} x \, d\Omega_{S^{d-1}}^{2} \right) ,$$
$$(t,x) \in \mathbb{R} \times [0,\pi/2).$$

• Field equations (units $8\pi G = d - 1$)

$$A' = 2(1-A)\frac{d-1-\cos 2x}{\sin 2x} - A\delta', \qquad \delta' = -\frac{\sin 2x}{2} \left(\Phi^2 + \Pi^2\right),$$
$$\dot{\Phi} = \left(Ae^{-\delta}\Pi\right)', \qquad \dot{\Pi} = \frac{1}{\tan^{d-1}x} \left(\tan^{d-1}xAe^{-\delta}\Phi\right)'.$$

• Auxiliary variables (' = ∂_x , $\dot{} = \partial_t$): $\Phi = \phi'$ and $\Pi = A^{-1}e^{\delta}\dot{\phi}$

• AdS space: $\phi \equiv 0$, $A \equiv 1$, $\delta \equiv \text{const.}$

- Smoothness at the center implies symmetry of the fields.
- ▶ There is no freedom in prescribing boundary data at $x = \pi/2$ if we require smooth evolution and finiteness of the total mass.

Mass function and asymptotic mass:

$$m(t,x) = \frac{\sin^{d-2} x}{\cos^d x} \left(1 - A(t,x)\right),$$
$$M = \lim_{x \to \pi/2} m(t,x) = \int_{0}^{\pi/2} A\left(\Phi^2 + \Pi^2\right) \tan^{d-1} x \, dx.$$

▶ Local well-posedness [Friedrich, 1995], [Holzegel&Smulevici, 2011]

- Smoothness at the center implies symmetry of the fields.
- There is no freedom in prescribing boundary data at $x = \pi/2$ if we require smooth evolution and finiteness of the total mass.

Mass function and asymptotic mass:

$$m(t,x) = \frac{\sin^{d-2} x}{\cos^d x} \left(1 - A(t,x)\right),$$
$$M = \lim_{x \to \pi/2} m(t,x) = \int_{0}^{\pi/2} A\left(\Phi^2 + \Pi^2\right) \tan^{d-1} x \, dx \,.$$

Local well-posedness [Friedrich, 1995], [Holzegel&Smulevici, 2011]

- Smoothness at the center implies symmetry of the fields.
- There is no freedom in prescribing boundary data at $x = \pi/2$ if we require smooth evolution and finiteness of the total mass.
- Mass function and asymptotic mass:

$$m(t,x) = \frac{\sin^{d-2} x}{\cos^d x} \left(1 - A(t,x)\right),$$
$$M = \lim_{x \to \pi/2} m(t,x) = \int_{0}^{\pi/2} A \left(\Phi^2 + \Pi^2\right) \tan^{d-1} x \, dx.$$

Local well-posedness [Friedrich, 1995], [Holzegel&Smulevici, 2011]

- Smoothness at the center implies symmetry of the fields.
- There is no freedom in prescribing boundary data at $x = \pi/2$ if we require smooth evolution and finiteness of the total mass.
- Mass function and asymptotic mass:

$$m(t,x) = \frac{\sin^{d-2} x}{\cos^d x} (1 - A(t,x)),$$
$$M = \lim_{x \to \pi/2} m(t,x) = \int_{0}^{\pi/2} A (\Phi^2 + \Pi^2) \tan^{d-1} x \, dx.$$

► Local well-posedness [Friedrich, 1995], [Holzegel&Smulevici, 2011]

Linear perturbations of AdS

► Linearized equation [Ishibashi&Wald, 2004]

$$\ddot{\phi} + L\phi = 0$$
, $L = -\frac{1}{\tan^{d-1}x} \partial_x \left(\tan^{d-1}x \partial_x \right)$,

• Eigenvalues and eigenvectors of L are (j = 0, 1, ...)

$$\omega_j^2 = (d+2j)^2, \quad e_j(x) = N_j \, \cos^d x \, P_j^{(d/2-1,d/2)}(\cos 2x) \,,$$

► AdS is linearly stable, linear solution

$$\phi(t, x) = \sum_{j \ge 0} \alpha_j \cos(\omega_j t + \beta_j) e_j(x) \,,$$

with amplitudes α_j and phases β_j determined by the initial data.

Linear perturbations of AdS

► Linearized equation [Ishibashi&Wald, 2004]

$$\ddot{\phi} + L\phi = 0$$
, $L = -\frac{1}{\tan^{d-1}x} \partial_x \left(\tan^{d-1}x \partial_x \right)$,

• Eigenvalues and eigenvectors of L are ($j=0,1,\ldots$)

$$\omega_j^2 = (d+2j)^2, \quad e_j(x) = N_j \, \cos^d x \, P_j^{(d/2-1,d/2)}(\cos 2x) \,,$$

AdS is linearly stable, linear solution

$$\phi(t, x) = \sum_{j \ge 0} \alpha_j \cos(\omega_j t + \beta_j) e_j(x) \,,$$

with amplitudes α_j and phases β_j determined by the initial data.

Linear perturbations of AdS

► Linearized equation [Ishibashi&Wald, 2004]

$$\ddot{\phi} + L\phi = 0$$
, $L = -\frac{1}{\tan^{d-1}x} \partial_x \left(\tan^{d-1}x \partial_x \right)$,

• Eigenvalues and eigenvectors of L are ($j=0,1,\ldots$)

$$\omega_j^2 = (d+2j)^2, \quad e_j(x) = N_j \, \cos^d x \, P_j^{(d/2-1,d/2)}(\cos 2x),$$

AdS is linearly stable, linear solution

$$\phi(t, x) = \sum_{j \ge 0} \alpha_j \cos(\omega_j t + \beta_j) e_j(x) \,,$$

with amplitudes α_j and phases β_j determined by the initial data.

Perturbative construction

We search for solutions of the form

$$\phi = \varepsilon \cos(\omega_{\gamma} t) e_{\gamma}(x) + \mathcal{O}(\varepsilon^3) \,,$$

with one *dominant* mode, ε is a small parameter.

• We rescale the time variable

$$\tau = \Omega_{\gamma} t, \quad \Omega_{\gamma} = \omega_{\gamma} + \sum_{\text{even } \lambda > 2} \varepsilon^{\lambda} \, \omega_{\gamma, \lambda}$$

and we make an ansatz for the expansion in arepsilon

$$\begin{split} \phi &= \varepsilon \, \cos(\tau) e_{\gamma}(x) + \sum_{\text{odd } \lambda \geq 3} \varepsilon^{\lambda} \, \phi_{\lambda}(\tau, x), \\ \delta &= \sum_{\text{even } \lambda \geq 2} \varepsilon^{\lambda} \, \delta_{\lambda}(\tau, x), \qquad 1 - A = \sum_{\text{even } \lambda \geq 2} \varepsilon^{\lambda} \, A_{\lambda}(\tau, x), \end{split}$$

Perturbative construction

We search for solutions of the form

$$\phi = \varepsilon \cos(\omega_{\gamma} t) e_{\gamma}(x) + \mathcal{O}(\varepsilon^3) \,,$$

with one *dominant* mode, ε is a small parameter.

► We rescale the time variable

$$\tau = \Omega_{\gamma} t, \quad \Omega_{\gamma} = \omega_{\gamma} + \sum_{\text{even } \lambda > 2} \varepsilon^{\lambda} \, \omega_{\gamma, \lambda}$$

and we make an ansatz for the expansion in $\ensuremath{\varepsilon}$

$$\begin{split} \phi &= \varepsilon \, \cos(\tau) e_{\gamma}(x) + \sum_{\mathsf{odd} \ \lambda \geq 3} \varepsilon^{\lambda} \, \phi_{\lambda}(\tau, x), \\ \delta &= \sum_{\mathsf{even} \ \lambda \geq 2} \varepsilon^{\lambda} \, \delta_{\lambda}(\tau, x), \qquad 1 - A = \sum_{\mathsf{even} \ \lambda \geq 2} \varepsilon^{\lambda} \, A_{\lambda}(\tau, x), \end{split}$$

Perturbative construction – expansion

▶ We expand functions ϕ_{λ} , δ_{λ} , A_{λ} into the eigenbasis

$$\begin{split} \phi_{\lambda} &= \sum_{j} f_{\lambda,j}(\tau) e_{j}(x), \\ \delta_{\lambda} &= d_{\lambda,-1}(\tau) + \sum_{j} d_{\lambda,j}(\tau) e_{j}(x), \quad A_{\lambda} = \sum_{j} a_{\lambda,j}(\tau) e_{j}(x) \,, \end{split}$$

with $f_{\lambda,j}(\tau)$, $a_{\lambda,j}(\tau)$, $d_{\lambda,j}(\tau)$ being **periodic** in τ .

This works well for d even – the sums are finite at each order λ (the boundary conditions).

Notation:

► Inner product

$$(f|g) := \int_0^{\pi/2} f(x)g(x) \tan^{d-1} x dx \,,$$

• Coefficient at ε^{λ} in the power series expansion of $f = \sum_{\lambda} \varepsilon^{\lambda} f_{\lambda}$ $\left[\varepsilon^{\lambda}\right] f = f_{\lambda} ,$

Perturbative construction – expansion

▶ We expand functions ϕ_{λ} , δ_{λ} , A_{λ} into the eigenbasis

$$\begin{split} \phi_{\lambda} &= \sum_{j} f_{\lambda,j}(\tau) e_{j}(x), \\ \delta_{\lambda} &= d_{\lambda,-1}(\tau) + \sum_{j} d_{\lambda,j}(\tau) e_{j}(x), \quad A_{\lambda} = \sum_{j} a_{\lambda,j}(\tau) e_{j}(x), \end{split}$$

with $f_{\lambda,j}(\tau)$, $a_{\lambda,j}(\tau)$, $d_{\lambda,j}(\tau)$ being **periodic** in τ .

This works well for d even – the sums are finite at each order λ (the boundary conditions).

Notation:

► Inner product

$$(f | g) := \int_0^{\pi/2} f(x)g(x) \tan^{d-1} x dx \,,$$

• Coefficient at ε^{λ} in the power series expansion of $f = \sum_{\lambda} \varepsilon^{\lambda} f_{\lambda}$ $[\varepsilon^{\lambda}] f = f_{\lambda}$,

Perturbative construction – expansion

▶ We expand functions ϕ_{λ} , δ_{λ} , A_{λ} into the eigenbasis

$$\begin{split} \phi_{\lambda} &= \sum_{j} f_{\lambda,j}(\tau) e_{j}(x), \\ \delta_{\lambda} &= d_{\lambda,-1}(\tau) + \sum_{j} d_{\lambda,j}(\tau) e_{j}(x), \quad A_{\lambda} = \sum_{j} a_{\lambda,j}(\tau) e_{j}(x), \end{split}$$

with $f_{\lambda,j}(\tau)$, $a_{\lambda,j}(\tau)$, $d_{\lambda,j}(\tau)$ being **periodic** in τ .

This works well for d even – the sums are finite at each order λ (the boundary conditions).

Notation:

► Inner product

$$(f | g) := \int_0^{\pi/2} f(x)g(x) \tan^{d-1} x dx \,,$$

► Coefficient at ε^{λ} in the power series expansion of $f = \sum_{\lambda} \varepsilon^{\lambda} f_{\lambda}$ $[\varepsilon^{\lambda}] f = f_{\lambda}$,

Perturbative construction – constraint equations

 \blacktriangleright Metric function δ

$$d_{\lambda,k} = -\frac{1}{2\omega_k^2} \left(e'_k \left| \left[\varepsilon^{\lambda} \right] \sin 2x \left(\Phi^2 + \Pi^2 \right) \right) \right.$$

gauge fixing condition: $\left[\varepsilon^{\lambda}\right]\delta\big|_{x=0} = 0 = d_{\lambda,-1} + \sum_{j} d_{\lambda,j} e_{j}(0)$

• Metric function A

$$\sum_{j} \left[(d-1)\delta_{kj} + \left(e_k \left| \frac{1}{2} \sin 2x \, e'_j - \cos 2x \, e_j \right) \right] a_{\lambda,j} = \frac{1}{4} \left(e_k \left| \left[\varepsilon^{\lambda} \right] (\sin 2x)^2 A \left(\Phi^2 + \Pi^2 \right) \right) \right],$$

boundary condition: $\left[\varepsilon^{\lambda}\right](1-A)\Big|_{x=0} = 0 = \sum_{j} a_{\lambda,j} e_{j}(0)$

Perturbative construction – constraint equations

 \blacktriangleright Metric function δ

$$d_{\lambda,k} = -\frac{1}{2\omega_k^2} \left(e_k' \left| \left[\varepsilon^{\lambda} \right] \sin 2x \left(\Phi^2 + \Pi^2 \right) \right) \right.$$

gauge fixing condition: $\left[\varepsilon^{\lambda}\right]\delta\big|_{x=0} = 0 = d_{\lambda,-1} + \sum_{j} d_{\lambda,j} e_{j}(0)$

 $\blacktriangleright \ {\rm Metric} \ {\rm function} \ A$

$$\sum_{j} \left[(d-1)\delta_{kj} + \left(e_k \left| \frac{1}{2} \sin 2x \, e'_j - \cos 2x \, e_j \right) \right] a_{\lambda,j} = \frac{1}{4} \left(e_k \left| \left[\varepsilon^{\lambda} \right] (\sin 2x)^2 A \left(\Phi^2 + \Pi^2 \right) \right) \right.$$

boundary condition: $\left[\varepsilon^{\lambda}\right](1-A)\Big|_{x=0} = 0 = \sum_{j} a_{\lambda,j} e_{j}(0)$

► Solve inhomogeneous wave equation

$$\left(\omega_{\gamma}^2 \partial_{\tau\tau} + L\right) \phi_{\lambda} = S_{\lambda} \,,$$

plugging
$$\phi_{\lambda} = \sum_{j} f_{\lambda,j}(\tau) e_{j}(x)$$
, gives

$$\left(\omega_{\gamma}^{2} \partial_{\tau\tau} + \omega_{k}^{2}\right) f_{\lambda,k} = \left(e_{k} \mid S_{\lambda}\right) ,$$

▶ How do we get secular terms?

$$\ddot{g}(t) + \omega_0^2 g(t) = a \cos(\omega t), \quad g(0) = c, \quad \dot{g}(0) = \tilde{c},$$

$$(t) = \frac{\tilde{c}}{\omega_0} \sin(\omega_0 t) + c \cos(\omega_0 t) + \begin{cases} \frac{a(\cos(\omega t) - \cos(\omega_0 t))}{\omega_0^2 - \omega^2}, & \omega_0 \neq \omega, \\ \frac{a}{2\omega_0} t \sin(\omega_0 t), & \omega_0 = \omega, \end{cases}$$

► Solve inhomogeneous wave equation

$$\left(\omega_{\gamma}^2 \partial_{\tau\tau} + L\right) \phi_{\lambda} = S_{\lambda} \,,$$

,

plugging
$$\phi_{\lambda} = \sum_{j} f_{\lambda,j}(\tau) e_{j}(x)$$
, gives

$$\left(\omega_{\gamma}^{2} \partial_{\tau\tau} + \omega_{k}^{2}\right) f_{\lambda,k} = \left(e_{k} \mid S_{\lambda}\right)$$

How do we get secular terms?

$$\begin{split} \ddot{g}(t) + \omega_0^2 g(t) &= a \cos(\omega t), \quad g(0) = c, \quad \dot{g}(0) = \tilde{c}, \\ g(t) &= \frac{\tilde{c}}{\omega_0} \sin(\omega_0 t) + c \cos(\omega_0 t) + \begin{cases} \frac{a(\cos(\omega t) - \cos(\omega_0 t))}{\omega_0^2 - \omega^2}, & \omega_0 \neq \omega, \\ \\ \frac{a}{2\omega_0} t \sin(\omega_0 t), & \omega_0 = \omega, \end{cases} \end{split}$$

► Use the integration constants $\{c_{\lambda,k}, \tilde{c}_{\lambda,k}\}$ to remove resonant terms $\cos(\omega_k/\omega_\gamma)\tau$ or $\sin(\omega_k/\omega_\gamma)\tau$.

• Dominant mode condition fixes two constants in $f_{\lambda,\gamma}$

 $\left(f_{\lambda,\gamma}, \partial_{\tau} f_{\lambda,\gamma} \right) \Big|_{\tau=0} = (0, 0) \iff \left(\left(e_{\gamma} \left| \phi \right), \left(e_{\gamma} \left| \partial_{\tau} \phi \right) \right) \right|_{\tau=0} = (\varepsilon, 0)$ $(\Rightarrow \tilde{c}_{\lambda,k} = 0).$

 $\blacktriangleright \ \, {\rm At \ any \ odd} \ \, \lambda \geq 3$

$$(e_k | S_\lambda) \equiv 0 \text{ for } k > \gamma + (d+1+2\gamma) \frac{\lambda-1}{2},$$

we are left with $(\lambda - 1)/2 + \lfloor (\lambda - 1)/(2(d + 2\gamma)) \rfloor$ undetermined integration constants $\{c_{\lambda,k}\}$ and frequency shift $\omega_{\gamma,\lambda-1}$.

▶ Use $\{c_{\lambda,k}\}$ together with $\omega_{\gamma,\lambda+1}$ to remove $(\lambda+1)/2 + \lfloor (\lambda-1)/(2(d+2\gamma)) \rfloor$ secular terms in $\phi_{\lambda+2}$.

► Use the integration constants {c_{λ,k}, c̃_{λ,k}} to remove resonant terms cos(ω_k/ω_γ)τ or sin(ω_k/ω_γ)τ.

• Dominant mode condition fixes two constants in $f_{\lambda,\gamma}$

 $(f_{\lambda,\gamma}, \partial_{\tau} f_{\lambda,\gamma}) \Big|_{\tau=0} = (0, 0) \iff ((e_{\gamma} | \phi), (e_{\gamma} | \partial_{\tau} \phi)) \Big|_{\tau=0} = (\varepsilon, 0)$ $(\Rightarrow \tilde{c}_{\lambda,k} = 0).$

 $\blacktriangleright \ \, {\rm At \ any \ odd} \ \, \lambda \geq 3$

$$(e_k | S_\lambda) \equiv 0 \text{ for } k > \gamma + (d+1+2\gamma) \frac{\lambda-1}{2},$$

we are left with $(\lambda - 1)/2 + \lfloor (\lambda - 1)/(2(d + 2\gamma)) \rfloor$ undetermined integration constants $\{c_{\lambda,k}\}$ and frequency shift $\omega_{\gamma,\lambda-1}$.

▶ Use $\{c_{\lambda,k}\}$ together with $\omega_{\gamma,\lambda+1}$ to remove $(\lambda+1)/2 + \lfloor (\lambda-1)/(2(d+2\gamma)) \rfloor$ secular terms in $\phi_{\lambda+2}$.

► Use the integration constants {c_{λ,k}, c̃_{λ,k}} to remove resonant terms cos(ω_k/ω_γ)τ or sin(ω_k/ω_γ)τ.

• Dominant mode condition fixes two constants in $f_{\lambda,\gamma}$

 $(f_{\lambda,\gamma}, \partial_{\tau} f_{\lambda,\gamma}) \big|_{\tau=0} = (0, 0) \iff ((e_{\gamma} | \phi), (e_{\gamma} | \partial_{\tau} \phi)) \big|_{\tau=0} = (\varepsilon, 0)$ $(\Rightarrow \tilde{c}_{\lambda,k} = 0).$

 \blacktriangleright At any odd $\lambda \geq 3$

$$(e_k | S_\lambda) \equiv 0 \text{ for } k > \gamma + (d+1+2\gamma) \frac{\lambda-1}{2},$$

we are left with $(\lambda - 1)/2 + \lfloor (\lambda - 1)/(2(d + 2\gamma)) \rfloor$ undetermined integration constants $\{c_{\lambda,k}\}$ and frequency shift $\omega_{\gamma,\lambda-1}$.

▶ Use $\{c_{\lambda,k}\}$ together with $\omega_{\gamma,\lambda+1}$ to remove $(\lambda+1)/2 + \lfloor (\lambda-1)/(2(d+2\gamma)) \rfloor$ secular terms in $\phi_{\lambda+2}$.

► Use the integration constants {c_{λ,k}, c̃_{λ,k}} to remove resonant terms cos(ω_k/ω_γ)τ or sin(ω_k/ω_γ)τ.

• Dominant mode condition fixes two constants in $f_{\lambda,\gamma}$

 $(f_{\lambda,\gamma}, \partial_{\tau} f_{\lambda,\gamma}) \big|_{\tau=0} = (0, 0) \iff ((e_{\gamma} | \phi), (e_{\gamma} | \partial_{\tau} \phi)) \big|_{\tau=0} = (\varepsilon, 0)$ $(\Rightarrow \tilde{c}_{\lambda,k} = 0).$

 \blacktriangleright At any odd $\lambda \geq 3$

$$(e_k | S_\lambda) \equiv 0 \text{ for } k > \gamma + (d+1+2\gamma) \frac{\lambda-1}{2},$$

we are left with $(\lambda - 1)/2 + \lfloor (\lambda - 1)/(2(d + 2\gamma)) \rfloor$ undetermined integration constants $\{c_{\lambda,k}\}$ and frequency shift $\omega_{\gamma,\lambda-1}$.

► Use $\{c_{\lambda,k}\}$ together with $\omega_{\gamma,\lambda+1}$ to remove $(\lambda+1)/2 + \lfloor (\lambda-1)/(2(d+2\gamma)) \rfloor$ secular terms in $\phi_{\lambda+2}$.

We make an ansatz $(\tau = \Omega t)$

$$\begin{split} \phi &= \sum_{0 \leq i < N} \sum_{0 \leq j < K} f_{i,j} \cos((2i+1)\tau) e_j(x) \,, \\ \Pi &= \sum_{0 \leq i < N} \sum_{0 \leq j < K} p_{i,j} \sin((2i+1)\tau) e_j(x) \,. \end{split}$$

- Find the solution by determining $2 \times K \times N + 1$ numbers
- ▶ Set the equations on a numerical grid of K × N collocation points
- Add one equation for *dominant* mode condition

$$\sum_{0 \le i < N} f_{i,\gamma} = \varepsilon$$

Highly nonlinear system solved with the Newton-Raphson algorithm

We make an ansatz $(\tau = \Omega t)$

$$\begin{split} \phi &= \sum_{0 \leq i < N} \sum_{0 \leq j < K} f_{i,j} \cos((2i+1)\tau) e_j(x) \,, \\ \Pi &= \sum_{0 \leq i < N} \sum_{0 \leq j < K} p_{i,j} \sin((2i+1)\tau) e_j(x) \,. \end{split}$$

- Find the solution by determining $2 \times K \times N + 1$ numbers
- ► Set the equations on a numerical grid of *K* × *N* collocation points
- Add one equation for *dominant* mode condition

$$\sum_{0 \le i < N} f_{i,\gamma} = \varepsilon$$

Highly nonlinear system solved with the Newton-Raphson algorithm

We make an ansatz $(\tau = \Omega t)$

$$\begin{split} \phi &= \sum_{0 \leq i < N} \sum_{0 \leq j < K} f_{i,j} \cos((2i+1)\tau) e_j(x) \,, \\ \Pi &= \sum_{0 \leq i < N} \sum_{0 \leq j < K} p_{i,j} \sin((2i+1)\tau) e_j(x) \,. \end{split}$$

- Find the solution by determining $2 \times K \times N + 1$ numbers
- ► Set the equations on a numerical grid of *K* × *N* collocation points
- Add one equation for *dominant* mode condition

$$\sum_{0 \le i \le N} f_{i,\gamma} = \varepsilon$$

Highly nonlinear system solved with the Newton-Raphson algorithm

We make an ansatz $(\tau = \Omega t)$

$$\begin{split} \phi &= \sum_{0 \leq i < N} \sum_{0 \leq j < K} f_{i,j} \cos((2i+1)\tau) e_j(x) \,, \\ \Pi &= \sum_{0 \leq i < N} \sum_{0 \leq j < K} p_{i,j} \sin((2i+1)\tau) e_j(x) \,. \end{split}$$

- Find the solution by determining $2 \times K \times N + 1$ numbers
- ► Set the equations on a numerical grid of *K* × *N* collocation points
- Add one equation for *dominant* mode condition

$$\sum_{0 \le i \le N} f_{i,\gamma} = \varepsilon$$

Highly nonlinear system solved with the Newton-Raphson algorithm.

Mathematica notebook

Series summation

_

Improve convergence with the Padé resummation of Ω_{γ} for d=4, $\gamma=0$

ε	direct sum	Padé	numerics
0.005	4.0016596666501	4.0016596666501	4.0016596666501
0.015	4.0151220741462	4.0151220741462	4.0151220741462
0.025	4.0430867838460	4.0430867838521	4.0430867838521
0.035	4.0879197007	4.0879197035435	4.0879197035448
0.045	4.15407139	4.15407167953	4.1540716797440
0.055	4.249920	4.249932516	4.2499325336279
0.065	4.39267	4.3929928	4.3929938556099
0.075	4.6230	4.629225	4.6292962269712
0.085	5.05	5.184	5.2017714694183

Estimate for the radius of convergence – threshold for the black-hole formation

$$\left([n/n]_{\Omega_{\gamma}}(\varepsilon^*)\right)^{-1} = 0,$$

- ► High order expansion for time-periodic solution lenghty formulas in ε (solution for d = 4, γ = 0 up to 17th order consists of: 1257 terms in φ, 1137 in A and 1180 in δ expansion)
- Numerical solutions for descrete values of ε extended floating-point arithmetic for highly accurate solution
- Consistency of the results verification by two independent methods
- Indication on the stability of the obtained solutions

- ► High order expansion for time-periodic solution lenghty formulas in ε (solution for d = 4, γ = 0 up to 17th order consists of: 1257 terms in φ, 1137 in A and 1180 in δ expansion)
- Numerical solutions for descrete values of ε extended floating-point arithmetic for highly accurate solution
- Consistency of the results verification by two independent methods
- Indication on the stability of the obtained solutions

- ► High order expansion for time-periodic solution lenghty formulas in ε (solution for d = 4, γ = 0 up to 17th order consists of: 1257 terms in φ, 1137 in A and 1180 in δ expansion)
- Numerical solutions for descrete values of ε extended floating-point arithmetic for highly accurate solution
- Consistency of the results verification by two independent methods
- Indication on the stability of the obtained solutions

- ► High order expansion for time-periodic solution lenghty formulas in ε (solution for d = 4, γ = 0 up to 17th order consists of: 1257 terms in φ, 1137 in A and 1180 in δ expansion)
- Numerical solutions for descrete values of ε extended floating-point arithmetic for highly accurate solution
- Consistency of the results verification by two independent methods
- ► Indication on the **stability** of the obtained solutions

Summary

There are (non-linearly) stable periodic solutions in Einstein-AdS-massless scalar field system. They form stability islands in the ocean of instability.

- Cosmological constant confines the evolution in an effectively bounded domain – the possibility of the existence of time-periodic solutions (in contrast to asymptotically flat case)
- This result explains the behavior of one(two)-mode initial data studied by [Bizoń&Rostworowski, 2011]
- Time-periodic solutions in pure vacuum case (the cohomogeneity--two Bianchi IX ansatz [Bizoń,Chmaj&Schmidt, 2005])

Summary

There are (non-linearly) stable periodic solutions in Einstein-AdS-massless scalar field system. They form stability islands in the ocean of instability.

- Cosmological constant confines the evolution in an effectively bounded domain – the possibility of the existence of time-periodic solutions (in contrast to asymptotically flat case)
- This result explains the behavior of one(two)-mode initial data studied by [Bizoń&Rostworowski, 2011]
- Time-periodic solutions in pure vacuum case (the cohomogeneity--two Bianchi IX ansatz [Bizoń,Chmaj&Schmidt, 2005])

Summary

There are (non-linearly) stable periodic solutions in Einstein-AdS-massless scalar field system. They form stability islands in the ocean of instability.

- Cosmological constant confines the evolution in an effectively bounded domain – the possibility of the existence of time-periodic solutions (in contrast to asymptotically flat case)
- This result explains the behavior of one(two)-mode initial data studied by [Bizoń&Rostworowski, 2011]
- Time-periodic solutions in pure vacuum case (the cohomogeneity--two Bianchi IX ansatz [Bizoń,Chmaj&Schmidt, 2005])