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Motivation

v

There are strong indications that the quark-gluon plasma produced
at RHIC is a strongly coupled system

v

This poses numerous problems for the theoretical description

v

Static properties:

Thermodynamics — entropy/energy density etc.
Lattice QCD is an effective tool

Directly deals with QCD!

Quantitative results

vvyYVvVvy

v

Real time propeties:

> Expansion of the plasma in heavy-ion collisions

> Derivation of hydrodynamic expansion in the later stages of the
collision

> Dynamics far from equilibrium — fast thermalization of the plasma

> Lattice QCD methods are inherently Euclidean — very difficult to
extrapolate to Minkowski signature

> Great opportunity for AdS/CFT!
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Motivation

Ways to proceed:

QCD —  perturbative methods (weak coupling)
!
N =4 SYM (strong coupling)

The advantage of switching to A' = 4 SYM theory is that one can use
the AdS/CFT correspondence
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Key question:
Understand the features of (early)

thermalization for an evolving (boost-
invariant) plasma system
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The AdS/CFT description
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Aim: How to describe a plasma system in a strongly coupled N = 4
SYM theory?

Method: Describe (possibly time dependent) strongly coupled plasma
system through a dual 5D geometry — given e.g. by

g (xP, z)dxtdx” + dz?

52 = gggdxo‘ dx”

ds®> =

i) This metric has to satisfy Einstein's equations
1 5D
Raﬁ ﬁ R 6gaﬁ o

ii) read off (T,,(x”)) from the behaviour of the metric g, (x”, z) close
to the boundary

N2
g (%, 2) = 1 + 28D+ (Tw(x) = 25 - gl(x)
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Example: Static uniform plasma

» Start from a constant diagonal energy momentum tensor (with

v

E =3p)
E 0 0 O
0 p 0 O
T = 0 0 p O
0 0 0 »p
Solve Einstein's equations with the above boundary condition for
gu(x’,z)...
The result is a black hole geometry
1—2z%/23)? dx?  dz?
d 2 = —7( 0 dt2 1 4 4 5 5
° (1+2%/z3)22 +(1+7/z) z2 z2
with zy expressed in terms of E (E = 21’;’53)
There is a horizon at z = z

Hawking temperature Ty = T\/z% = gauge theory temperature

Bekenstein-Hawking entropy (o< area of the horizon) = gauge theory

entropy
3
S = Nig @ — 12/\/3 73
2w ) 2
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What is hydrodynamics?
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» Hydrodynamics isolates long wavelength effective degrees of
freedom of a theory

> The energy-momentum tensor T, is expressed in terms of a local
temperature T and flow velocity u*

> T, is expressed as an expansion in the gradients of the flow
velocities (shown here for N' =4 SYM)

Teeated = (1) (" + 4ut'u”) = 2(w T)’0™” +
perfect fluid viscosity
LV 7 1 LV N "
+ (7 T?) (IogQTéé + 2T} + (2 — log2) (37’2’& + Thy + Th. )>

second order hydrodynamics

» The coefficients of the various tensor structures are the transport
coefficients. In a conformal theory these are pure numbers times
powers of T.

» Full nonlinear hydrodynamic equations follow now from 9, T#” =0

» The above form of T, for N’ =4 SYM at strong coupling is not an
assumption but can be proven from AdS/CFT Minwalla et.al.
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AdS/CFT, hydrodynamics and nonequilibrium processes

Linearized hydrodynamics

» Look at small disturbances of the uniform static plasma. ..
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> If we were to include terms in T, with more derivatives (higher
order viscous hydrodynamics), we would get terms with higher
powers of k in the dispersion relations...

» Hypothetical resummed all-order hydrodynamics would predict the
full dispersion relation for these modes wspear(k), Wsound (k)

What happens in the AdS/CFT description?
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» Dispersion relation fixed by linearized Einstein's equations. Results
for the sound channel

5[ Imw

from Kovtun,Starinets hep-th/0506184
» This is equivalent to summing contributions from all-order viscous
hydrodynamics
» But, in addition, there is an infinite set of higher QNM — effective

degrees of freedom not contained in the hydrodynamic description...
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AdS/CFT, hydrodynamics and nonequilibrium processes

Einstein’s equations in AdS/CFT
» contain all-order viscous hydrodynamic modes (with specific values
of all transport coefficients)

» in addition contain the dynamics of genuine nonhydrodynamical
modes

> incorporate their interactions in a fully nonlinear (and unique) way

Consequence:

Einstein’s equations can serve to study nonequilibrium processes in
strongly coupled ' =4 SYM and are an effective tool for exploring
physics beyond hydrodynamics
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How to see nonlinear hydrodynamics within AdS/CFT?
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Fluid/gravity duality versus nonequilibrium physics

The approach of [Bhattacharyya,Hubeny,Minwalla,Rangamani]

» Start from a static black hole with fixed temperature T which
describes a fluid at rest, u* = (1,0,0,0) with constant energy
density
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The approach of [Bhattacharyya,Hubeny,Minwalla,Rangamani]

» Start from a static black hole with fixed temperature T which
describes a fluid at rest, u* = (1,0,0,0) with constant energy
density

» Perform a boost to obtain a uniform fluid moving with constant
velocity u*

> The resulting metric (in Eddington-Finkelstein coordinates) is

4

> Uy, Uy, dx dx” 1% (1, +uy, 0, ) dxH dx”

ds® = —2u,dx"dr—r? <1 ~

where r = oo corresponds to the boundary, r = T /7 is the horizon
while r = 0 is the position of the singularity.

Promote T and u* to (slowly-varying) functions of x*

Caveat: The metric is no longer an exact solution of Einstein’s equations
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Fluid/gravity duality versus nonequilibrium physics

» Perform an expansion of the Einstein equations in gradients of
spacetime fields.
Find corrections to the metric at first and second order
Require nonsingularity to fix integration constants
Read off the resulting energy-momentum tensor T,
T, is expressed in terms u* and T and their derivatives

TH (7 T)* (™ + 4utu”) = 2(r T)3a™ +

rescaled —

perfect fluid viscosity

1
+ (a7 (log27ey + 27 + (2 tog2) (372 4 T 4 72 ) )

second order hydrodynamics

Question: Is the above approach enough to study general solutions of
Einstein’s equations???

No! The hydrodynamic series has zero radius of convergence
— has to be supplanted by nonhydrodynamic modes

— need true numerical relativity!
17 / 33
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Boost-invariant flow

Bjorken '83

Assume a flow that is invariant
under longitudinal boosts and does
not depend on the transverse
coordinates.

» In a conformal theory, T[j =0and 0, T*” = 0 determine, under the
above assumptions, the energy-momentum tensor completely in
terms of a single function &(7), the energy density at mid-rapidity.

» The longitudinal and transverse pressures are then given by

— i d — +1 -
pPL = —¢€ TdTé‘ an pr =¢ 27'd7_€.
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Large 7 behaviour of ¢(7)
» Structure of the analytical result for large 7:
) 1 2 1 +1+2|og2 1 —3+42n2+424log2—24log®2 1
e(r) = —-— — — —1o
T3 28382 12V3 18 324234 s
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Large 7 behaviour of ¢(7)

» Structure of the analytical result for large 7:

) 1 2 1+1+2|og2 1 —3+42n2+424log2—24log®2 1 N
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20 12v3 18 3242334 T

4 1.3 0
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RJ, Peschanski; Nakamura, S-J Sin; RJ; RJ, Heller; Heller

» Leading term — perfect fluid behaviour
second term — 15t order viscous hydrodynamics
third term — 279 order viscous hydrodynamics
fourth term — 37 order viscous hydrodynamics...

Question 1: If we start from various initial conditions at 7 = 0 when
does the above hydrodynamic form of ¢(7) starts being applicable?

Question 2: Is the energy-momentum tensor approximately isotropic
there? (pL ~ pr ~ €/37) Are we close to local thermal equilibrium?
Question 3: When are nonhydrodynamic degrees of freedom relevant for
the plasma evolution?
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Use Numerical Relativity!

Start from some initial geometry at 7 = 0 and solve 5D vacuum
Einstein’s equations with negative cosmological constant...
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Initial conditions for the evolution of the plasma system

» In a previous work [Beuf, Heller, RJ, Peschanski], we analyzed
possible initial conditions in the Fefferman-Graham coordinates

dz?

d52 == (763(Z’T)d7'2 + eb(z,T)T2dy2 + ec(z,’r)dxi) + —
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» The initial conditions are determined in terms of a single function,
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» The initial conditions are determined in terms of a single function,
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Initial conditions for the evolution of the plasma system

» In a previous work [Beuf, Heller, RJ, Peschanski], we analyzed
possible initial conditions in the Fefferman-Graham coordinates

dz?

Z2

ds? = = (—e"= T dr? 4 b= Tr2dy? 4 e T)gd )

» The initial conditions are determined in terms of a single function,
say ¢o(z). ao(z) = bo(z) are determined through a constraint
equation.

> A typical solution of the constraint equations is

2

ap(z) = bo(z) = 2log cos z co(z) = 2log cosh z?

» There is a coordinate singularity at z = \/7/2 where

—cos?(z2)dT? + ...
22

ds® =

» This can be cured ala Kruskal-Szekeres by modifying the metric
ansatz but keeping the initial hypersurface identical
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bulk. For a sample initial profile cy(u) = cosh u (u = z?), there is a
curvature singularity at u = oo.
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The metric ansatz and numerical formalism

» The key problem is what boundary conditions to impose in the
bulk. For a sample initial profile cy(u) = cosh u (u = z?), there is a
curvature singularity at u = oo.

» A-priori we do not know where is the event horizon!

» We use the ADM freedom of foliation to ensure that all
hypersurfaces end on a single spacetime point in the bulk — this
ensures that we will control the boundary conditions even though
they may be in a strongly curved part of the spacetime

BOUNDARY

» This also ensures that no information flows from outside our region
of integration...

» It is crucial to optimally tune the cut-off ug in the bulk...
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The metric ansatz and numerical formalism

v

Depending on the relation of ug to the event horizon we can get
quite different behaviours of the numerical simulation

BOUNDARY
BounpARY

BOUNDARY

Yo

v

In order to extend the simulation to large values of 7 neccessary for
observing the transition to hydrodynamics we need to tune ug to be
close to the event horizon.

v

Fortunately, this is quite simple in practice...
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The metric ansatz and numerical formalism

black line — dynamical horizon, arrows — null geodesics, colors represent
curvature



The metric ansatz and numerical formalism

We use an ADM metric ansatz:

ds? — —a%(u) &?(t, u)dt? + t22%(u)b?(t, u)dy? + c2(t, u)dx?  d?(t,u)du?

u 442
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The metric ansatz and numerical formalism

We use an ADM metric ansatz:

de? — —a%(u) &?(t, u)dt? + t22%(u)b?(t, u)dy? + c2(t, u)dx?  d?(t,u)du?

u 442

» We set the lapse to always vanish at the boundary in the bulk
» Consequently, we set the (nondynamical) function a(u) to

- (52)

» The remaining part of the lapse, a(t, u) is chosen to be a function
of the metric coefficients

dc? bd d
b b

a X —/ or aX —> or o X
1+ b2
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» We have to require that the gauge theory metric is ordinary flat
Minkowski metric

» In the Fefferman-Graham coordinate system

2 8u(xP, z)dx"dx” + dz?

ds 5

zZ
this amounts to the requirement that lim,_0 g, (x*,2) = 7

» Recall (u— 0 is the AdS boundary)
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The metric ansatz and numerical formalism

Boundary conditions at the AdS boundary

» We have to require that the gauge theory metric is ordinary flat
Minkowski metric

» In the Fefferman-Graham coordinate system

2 8u(xP, z)dx"dx” + dz?

ds 5

V4

this amounts to the requirement that lim,_0 g, (x*,2) = 7
» Recall (u— 0 is the AdS boundary)

—a%(u) &®(t, u)dt? + t22°(u)b?(t, u)dy? + c3(t, u)dx?  d?(t, u)du?

ds® =
u 442

» Naively we would expect that we have toset b=c=d =1 at
u=0...

26 /33
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The metric ansatz and numerical formalism

» Surprisingly, b(t,0) and c(t,0) can be nontrivial at the boundary
— this corresponds to a boundary diffeomorphism!

» The condition of Minkowski boundary metric becomes a relation
between extrinsic curvature elements:

b?(t,0)
c?(t,0)

» We implement this in a differential form:

L(t,0) = b(t,0) + ¢ M(t,0)
b2

atL - (9,5 (b+ tZM)
C

» The physical gauge theory time 7 is related to the ADM coordinate
time by

27 /33
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The metric ansatz and numerical formalism

» We use Chebyshev spectral methods for the spatial derivatives
(hence very strong sensitivity to boundary conditions)

» We need very accurate spatial derivatives at the boundary in order
to reliably extract the physical energy density from the numerical
geometry

» For the time evolution we use an adaptive 8" /9*-order
Runge-Kutta method (gnu scientific library)

Numerical checks:
1. We monitor ADM constraints during evolution

2. The energy density e(7) extracted from simulations made with
different lapses/cut-offs for the same initial condition should coincide

3. We compare the numerical £(7) with the power series solution in its
region of convergence

28 /33
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» We have used 29 initial geometries at 7 = 0 which encode the initial
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Initial conditions

» We have used 29 initial geometries at 7 = 0 which encode the initial
conditions for the boost-invariant plasma system

» Technically each geometry is determined by a choice of the metric

coefficient ¢(7 = 0, u).

» We have chosen quite different looking profiles e.g.

Cl(u)

cs(u)
cr(u)
cro(v)
as(v)

Clg(u)

cosh u
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2. For all initial conditions considered, viscous hydrodynamics works
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(natural values for RHIC: (19 = 0.25 fm, Ty = 500 MeV') assumed in
[Broniowski, Chojnacki, Florkowski, Kisiel] correspond to w = 0.63)
3. The plasma system is described by viscous hydrodynamics even
though it is not in true thermal equilibrium — there is still a
sizable pressure anisotropy
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2. Similar conclusion holds for e.g. (effective) thermalization time (un-
derstood here as the transition to a viscous hydrodynamic description)

32 /33



Thermalization of boost-invariant plasma - lessons from AdS/CFT

Initial entropy turns out to be a key characterization of the initial
state

1. There is a clear correlation of produced entropy with the initial

entropy... o o
Sni-eq™ Sn-eq
0.5

0.4 -
0.3] yd
0.2) P

0.1 "

e

50
0 01 02 03 04 05"«

2. Similar conclusion holds for e.g. (effective) thermalization time (un-
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Conclusions

» AdS/CFT provides a very general framework for studying
time-dependent dynamical processes

» The AdS/CFT methods do not presuppose hydrodynamics so are
applicable even to very out-of-equilibrium configurations

» We implemented ADM evolution using spectral methods, freezing
the evolution at some interior point by forcing the lapse to vanish
there

» Even though genuine nonequilibrium dynamics is very complicated,
we observed surprising regularities

» Initial entropy seems to be a key physical characterization of the
initial state determining the total entropy production and
thermalization time and temperature

» For w = Ty, - 7en > 0.7 we observe hydrodynamic behaviour but
with sizeable pressure anisotropy (described wholly by viscous
hydrodynamics)
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