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Motivation

I There are strong indications that the quark-gluon plasma produced
at RHIC is a strongly coupled system

I This poses numerous problems for the theoretical description
I Static properties:

I Thermodynamics — entropy/energy density etc.
I Lattice QCD is an effective tool
I Directly deals with QCD!
I Quantitative results

I Real time propeties:
I Expansion of the plasma in heavy-ion collisions
I Derivation of hydrodynamic expansion in the later stages of the

collision
I Dynamics far from equilibrium – fast thermalization of the plasma
I Lattice QCD methods are inherently Euclidean — very difficult to

extrapolate to Minkowski signature
I Great opportunity for AdS/CFT!
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Motivation

Ways to proceed:

QCD −→ perturbative methods (weak coupling)

↓

N = 4 SYM (strong coupling)

The advantage of switching to N = 4 SYM theory is that one can use
the AdS/CFT correspondence
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Point of reference: heavy-ion collision at RHIC/LHC:
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Key question:

Understand the features of (early)
thermalization for an evolving (boost-
invariant) plasma system
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The AdS/CFT description
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Aim: How to describe a plasma system in a strongly coupled N = 4
SYM theory?

Method: Describe (possibly time dependent) strongly coupled plasma
system through a dual 5D geometry — given e.g. by

ds2 =
gµν(xρ, z)dxµdxν + dz2

z2
≡ g5Dαβdxαdxβ

i) This metric has to satisfy Einstein’s equations

Rαβ −
1
2

g5DαβR − 6 g5Dαβ = 0

ii) read off 〈Tµν(xρ)〉 from the behaviour of the metric gµν(xρ, z) close
to the boundary

gµν(xρ, z) = ηµν + z4g (4)
µν (xρ) + . . . 〈Tµν(xρ)〉 =

N2c
2π2
· g (4)
µν (xρ)
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Example: Static uniform plasma
I Start from a constant diagonal energy momentum tensor (with

E = 3p)

Tµν =


E 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p


I Solve Einstein’s equations with the above boundary condition for

gµν(xρ, z)...
I The result is a black hole geometry

ds2 = − (1− z4/z40 )2

(1 + z4/z40 )z2
dt2 + (1 + z4/z40 )

dx2

z2
+

dz2

z2

with z0 expressed in terms of E
(

E =
3N2c
2π2z40

)
I There is a horizon at z = z0
I Hawking temperature TH =

√
2

πz0
≡ gauge theory temperature

I Bekenstein-Hawking entropy (∝ area of the horizon) ≡ gauge theory
entropy

S =
N2c
2π

(√
2

z0

)3
=
π2

2
N2c T 3
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What is hydrodynamics?
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I Hydrodynamics isolates long wavelength effective degrees of
freedom of a theory

I The energy-momentum tensor Tµν is expressed in terms of a local
temperature T and flow velocity uµ

I Tµν is expressed as an expansion in the gradients of the flow
velocities (shown here for N = 4 SYM)

Tµν
rescaled = (πT )4(ηµν + 4uµuν)︸ ︷︷ ︸

perfect fluid

− 2(πT )3σµν︸ ︷︷ ︸
viscosity

+

+ (πT 2)
(

log 2Tµν
2a + 2Tµν

2b + (2− log 2)

(
1
3

Tµν
2c + Tµν

2d + Tµν
2e

))
︸ ︷︷ ︸

second order hydrodynamics

I The coefficients of the various tensor structures are the transport
coefficients. In a conformal theory these are pure numbers times
powers of T .

I Full nonlinear hydrodynamic equations follow now from ∂µTµν = 0
I The above form of Tµν for N = 4 SYM at strong coupling is not an

assumption but can be proven from AdS/CFT Minwalla et.al.
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Tµν
rescaled = (πT )4(ηµν + 4uµuν)︸ ︷︷ ︸

perfect fluid

− 2(πT )3σµν︸ ︷︷ ︸
viscosity

+

+ (πT 2)
(

log 2Tµν
2a + 2Tµν

2b + (2− log 2)

(
1
3

Tµν
2c + Tµν

2d + Tµν
2e

))
︸ ︷︷ ︸

second order hydrodynamics

I The coefficients of the various tensor structures are the transport
coefficients. In a conformal theory these are pure numbers times
powers of T .

I Full nonlinear hydrodynamic equations follow now from ∂µTµν = 0
I The above form of Tµν for N = 4 SYM at strong coupling is not an

assumption but can be proven from AdS/CFT Minwalla et.al.
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AdS/CFT, hydrodynamics and nonequilibrium processes

Linearized hydrodynamics
I Look at small disturbances of the uniform static plasma. . .
I If Tµν is described by (1st order viscous) hydrodynamics then one

can derive dispersion relation of long wavelength modes from
hydrodynamic equations:
shear modes:

ωshear = −i
η

E + p
k2

sound modes:

ωsound =
1√
3

k − i
2
3

η

E + p
k2

I If we were to include terms in Tµν with more derivatives (higher
order viscous hydrodynamics), we would get terms with higher
powers of k in the dispersion relations...

I Hypothetical resummed all-order hydrodynamics would predict the
full dispersion relation for these modes ωshear (k), ωsound (k)

What happens in the AdS/CFT description?
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AdS/CFT, hydrodynamics and nonequilibrium processes
I The uniform static plasma system is described as a static planar

black hole
I Small disturbances of the uniform static plasma ≡ small

perturbations of the black hole metric (≡ quasinormal modes
(QNM))

g5Dαβ = g5D,black hole
αβ + δg5Dαβ (z)e−iωt+ikx

I Dispersion relation fixed by linearized Einstein’s equations. Results
for the sound channel

from Kovtun,Starinets hep-th/0506184
I This is equivalent to summing contributions from all-order viscous

hydrodynamics
I But, in addition, there is an infinite set of higher QNM — effective

degrees of freedom not contained in the hydrodynamic description...
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AdS/CFT, hydrodynamics and nonequilibrium processes

Einstein’s equations in AdS/CFT

I contain all-order viscous hydrodynamic modes (with specific values
of all transport coefficients)

I in addition contain the dynamics of genuine nonhydrodynamical
modes

I incorporate their interactions in a fully nonlinear (and unique) way

Consequence:
Einstein’s equations can serve to study nonequilibrium processes in
strongly coupled N = 4 SYM and are an effective tool for exploring
physics beyond hydrodynamics
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How to see nonlinear hydrodynamics within AdS/CFT?
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Fluid/gravity duality versus nonequilibrium physics

The approach of [Bhattacharyya,Hubeny,Minwalla,Rangamani]

I Start from a static black hole with fixed temperature T which
describes a fluid at rest, uµ = (1, 0, 0, 0) with constant energy
density

I Perform a boost to obtain a uniform fluid moving with constant
velocity uµ

I The resulting metric (in Eddington-Finkelstein coordinates) is

ds2 = −2uµdxµdr−r2
(

1− T 4

π4r4

)
uµuνdxµdxν+r2(ηµν+uµuν)dxµdxν

where r =∞ corresponds to the boundary, r = T/π is the horizon
while r = 0 is the position of the singularity.

Promote T and uµ to (slowly-varying) functions of xµ

Caveat: The metric is no longer an exact solution of Einstein’s equations
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Fluid/gravity duality versus nonequilibrium physics

I Perform an expansion of the Einstein equations in gradients of
spacetime fields.

I Find corrections to the metric at first and second order
I Require nonsingularity to fix integration constants
I Read off the resulting energy-momentum tensor Tµν
I Tµν is expressed in terms uµ and T and their derivatives

Tµν
rescaled = (πT )4(ηµν + 4uµuν)︸ ︷︷ ︸

perfect fluid

− 2(πT )3σµν︸ ︷︷ ︸
viscosity

+

+ (πT 2)
(

log 2Tµν
2a + 2Tµν

2b + (2− log 2)

(
1
3

Tµν
2c + Tµν

2d + Tµν
2e

))
︸ ︷︷ ︸

second order hydrodynamics

Question: Is the above approach enough to study general solutions of
Einstein’s equations???

No! The hydrodynamic series has zero radius of convergence
— has to be supplanted by nonhydrodynamic modes
— need true numerical relativity!
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Boost-invariant flow

Bjorken ’83
Assume a flow that is invariant
under longitudinal boosts and does
not depend on the transverse
coordinates.

I In a conformal theory, Tµ
µ = 0 and ∂µTµν = 0 determine, under the

above assumptions, the energy-momentum tensor completely in
terms of a single function ε(τ), the energy density at mid-rapidity.

I The longitudinal and transverse pressures are then given by

pL = −ε− τ d
dτ
ε and pT = ε+

1
2
τ

d
dτ
ε .
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Large τ behaviour of ε(τ)

I Structure of the analytical result for large τ :

ε(τ) =
1

τ
4
3

− 2

2
1
2 3
3
4

1
τ 2

+
1 + 2 log 2

12
√

3

1

τ
8
3

+
−3 + 2π2 + 24 log 2− 24 log2 2

324 · 2 12 3 14
1

τ
10
3

+. . .

RJ, Peschanski; Nakamura, S-J Sin; RJ; RJ, Heller; Heller

I Leading term — perfect fluid behaviour
second term — 1st order viscous hydrodynamics
third term — 2nd order viscous hydrodynamics
fourth term — 3rd order viscous hydrodynamics...

Question 1: If we start from various initial conditions at τ = 0 when
does the above hydrodynamic form of ε(τ) starts being applicable?

Question 2: Is the energy-momentum tensor approximately isotropic
there? (pL ∼ pT ∼ ε/3?) Are we close to local thermal equilibrium?

Question 3: When are nonhydrodynamic degrees of freedom relevant for
the plasma evolution?
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Use Numerical Relativity!

Start from some initial geometry at τ = 0 and solve 5D vacuum
Einstein’s equations with negative cosmological constant...
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Initial conditions for the evolution of the plasma system

I In a previous work [Beuf, Heller, RJ, Peschanski], we analyzed
possible initial conditions in the Fefferman-Graham coordinates

ds2 =
1
z2

(
−ea(z,τ)dτ 2 + eb(z,τ)τ 2dy2 + ec(z,τ)dx2⊥

)
+

dz2

z2

I The initial conditions are determined in terms of a single function,
say c0(z). a0(z) = b0(z) are determined through a constraint
equation.

I A typical solution of the constraint equations is

a0(z) = b0(z) = 2 log cos z2 c0(z) = 2 log cosh z2

I There is a coordinate singularity at z =
√
π/2 where

ds2 =
−cos2(z2)dτ 2 + . . .

z2

I This can be cured ala Kruskal-Szekeres by modifying the metric
ansatz but keeping the initial hypersurface identical
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The metric ansatz and numerical formalism

I The key problem is what boundary conditions to impose in the
bulk. For a sample initial profile c0(u) = cosh u (u ≡ z2), there is a
curvature singularity at u =∞.

I A-priori we do not know where is the event horizon!
I We use the ADM freedom of foliation to ensure that all

hypersurfaces end on a single spacetime point in the bulk — this
ensures that we will control the boundary conditions even though
they may be in a strongly curved part of the spacetime

I This also ensures that no information flows from outside our region
of integration...

I It is crucial to optimally tune the cut-off u0 in the bulk...
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The metric ansatz and numerical formalism

I Depending on the relation of u0 to the event horizon we can get
quite different behaviours of the numerical simulation

I In order to extend the simulation to large values of τ neccessary for
observing the transition to hydrodynamics we need to tune u0 to be
close to the event horizon.

I Fortunately, this is quite simple in practice...
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The metric ansatz and numerical formalism

black line – dynamical horizon, arrows – null geodesics, colors represent
curvature
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The metric ansatz and numerical formalism

We use an ADM metric ansatz:

ds2 =
−a2(u)α2(t, u)dt2 + t2a2(u)b2(t, u)dy2 + c2(t, u)dx2⊥

u
+

d2(t, u)du2

4u2

I We set the lapse to always vanish at the boundary in the bulk
I Consequently, we set the (nondynamical) function a(u) to

a(u) = cos
(
π

2
u
u0

)
I The remaining part of the lapse, α(t, u) is chosen to be a function

of the metric coefficients

α ∝ dc2

b
or α ∝ bd

1 + u
u0

b2
or α ∝ d

b
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The metric ansatz and numerical formalism

Boundary conditions at the AdS boundary

I We have to require that the gauge theory metric is ordinary flat
Minkowski metric

I In the Fefferman-Graham coordinate system

ds2 =
gµν(xρ, z)dxµdxν + dz2

z2

this amounts to the requirement that limz→0 gµν(xρ, z) = ηµν
I Recall (u → 0 is the AdS boundary)

ds2 =
−a2(u)α2(t, u)dt2 + t2a2(u)b2(t, u)dy2 + c2(t, u)dx2⊥

u
+

d2(t, u)du2

4u2

I Naively we would expect that we have to set b = c = d = 1 at
u = 0...
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The metric ansatz and numerical formalism

I Surprisingly, b(t, 0) and c(t, 0) can be nontrivial at the boundary
— this corresponds to a boundary diffeomorphism!

I The condition of Minkowski boundary metric becomes a relation
between extrinsic curvature elements:

L(t, 0) = b(t, 0) + t
b2(t, 0)

c2(t, 0)
M(t, 0)

I We implement this in a differential form:

∂tL = ∂t

(
b + t

b2

c2
M
)

I The physical gauge theory time τ is related to the ADM coordinate
time by

τ =
b(t, 0)

c(t, 0)
t
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The metric ansatz and numerical formalism

I We use Chebyshev spectral methods for the spatial derivatives
(hence very strong sensitivity to boundary conditions)

I We need very accurate spatial derivatives at the boundary in order
to reliably extract the physical energy density from the numerical
geometry

I For the time evolution we use an adaptive 8th/9th-order
Runge-Kutta method (gnu scientific library)

Numerical checks:

1. We monitor ADM constraints during evolution

2. The energy density ε(τ) extracted from simulations made with
different lapses/cut-offs for the same initial condition should coincide

3. We compare the numerical ε(τ) with the power series solution in its
region of convergence
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Initial conditions

I We have used 29 initial geometries at τ = 0 which encode the initial
conditions for the boost-invariant plasma system

I Technically each geometry is determined by a choice of the metric
coefficient c(τ = 0, u).

I We have chosen quite different looking profiles e.g.

c1(u) = cosh u

c3(u) = 1 +
1
2

u2

c7(u) = 1 +
1
2u
2

1 + 3
2u
2

c10(u) = 1 +
1
2

u2e−
u
2

c15(u) = 1 +
1
2

u2eu

c19(u) = 1 +
1
2

tanh2
(

u +
1

25
u2
)
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Gauge theory observables

Asymptotics of gµν(xρ, z) at
z ∼ 0 gives the energy-momentum
tensor Tµν(xρ) of the plasma
system (equivalently ε(τ))

The area of the apparent horizon
defines for us the entropy density
(in particular initial entropy)
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Thermalization of boost-invariant plasma - lessons from AdS/CFT

1. Using AdS/CFT, we observe a transition to a viscous hydrodynamic
description for all initial conditions considered (≡ effective
thermalization)

2. For all initial conditions considered, viscous hydrodynamics works
very well for w ≡ Teff · τ > 0.7

(natural values for RHIC: (τ0 = 0.25 fm, T0 = 500 MeV ) assumed in
[Broniowski, Chojnacki, Florkowski, Kisiel] correspond to w = 0.63)

3. The plasma system is described by viscous hydrodynamics even
though it is not in true thermal equilibrium — there is still a
sizable pressure anisotropy

∆pL ≡ 1− pL

ε/3
∼ 0.7
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Thermalization of boost-invariant plasma - lessons from AdS/CFT

Initial entropy turns out to be a key characterization of the initial
state

1. There is a clear correlation of produced entropy with the initial
entropy...

2. Similar conclusion holds for e.g. (effective) thermalization time (un-
derstood here as the transition to a viscous hydrodynamic description)
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Conclusions

I AdS/CFT provides a very general framework for studying
time-dependent dynamical processes

I The AdS/CFT methods do not presuppose hydrodynamics so are
applicable even to very out-of-equilibrium configurations

I We implemented ADM evolution using spectral methods, freezing
the evolution at some interior point by forcing the lapse to vanish
there

I Even though genuine nonequilibrium dynamics is very complicated,
we observed surprising regularities

I Initial entropy seems to be a key physical characterization of the
initial state determining the total entropy production and
thermalization time and temperature

I For w = Tth · τth > 0.7 we observe hydrodynamic behaviour but
with sizeable pressure anisotropy (described wholly by viscous
hydrodynamics)

33 / 33



Conclusions

I AdS/CFT provides a very general framework for studying
time-dependent dynamical processes

I The AdS/CFT methods do not presuppose hydrodynamics so are
applicable even to very out-of-equilibrium configurations

I We implemented ADM evolution using spectral methods, freezing
the evolution at some interior point by forcing the lapse to vanish
there

I Even though genuine nonequilibrium dynamics is very complicated,
we observed surprising regularities

I Initial entropy seems to be a key physical characterization of the
initial state determining the total entropy production and
thermalization time and temperature

I For w = Tth · τth > 0.7 we observe hydrodynamic behaviour but
with sizeable pressure anisotropy (described wholly by viscous
hydrodynamics)

33 / 33



Conclusions

I AdS/CFT provides a very general framework for studying
time-dependent dynamical processes

I The AdS/CFT methods do not presuppose hydrodynamics so are
applicable even to very out-of-equilibrium configurations

I We implemented ADM evolution using spectral methods, freezing
the evolution at some interior point by forcing the lapse to vanish
there

I Even though genuine nonequilibrium dynamics is very complicated,
we observed surprising regularities

I Initial entropy seems to be a key physical characterization of the
initial state determining the total entropy production and
thermalization time and temperature

I For w = Tth · τth > 0.7 we observe hydrodynamic behaviour but
with sizeable pressure anisotropy (described wholly by viscous
hydrodynamics)

33 / 33



Conclusions

I AdS/CFT provides a very general framework for studying
time-dependent dynamical processes

I The AdS/CFT methods do not presuppose hydrodynamics so are
applicable even to very out-of-equilibrium configurations

I We implemented ADM evolution using spectral methods, freezing
the evolution at some interior point by forcing the lapse to vanish
there

I Even though genuine nonequilibrium dynamics is very complicated,
we observed surprising regularities

I Initial entropy seems to be a key physical characterization of the
initial state determining the total entropy production and
thermalization time and temperature

I For w = Tth · τth > 0.7 we observe hydrodynamic behaviour but
with sizeable pressure anisotropy (described wholly by viscous
hydrodynamics)

33 / 33



Conclusions

I AdS/CFT provides a very general framework for studying
time-dependent dynamical processes

I The AdS/CFT methods do not presuppose hydrodynamics so are
applicable even to very out-of-equilibrium configurations

I We implemented ADM evolution using spectral methods, freezing
the evolution at some interior point by forcing the lapse to vanish
there

I Even though genuine nonequilibrium dynamics is very complicated,
we observed surprising regularities

I Initial entropy seems to be a key physical characterization of the
initial state determining the total entropy production and
thermalization time and temperature

I For w = Tth · τth > 0.7 we observe hydrodynamic behaviour but
with sizeable pressure anisotropy (described wholly by viscous
hydrodynamics)

33 / 33



Conclusions

I AdS/CFT provides a very general framework for studying
time-dependent dynamical processes

I The AdS/CFT methods do not presuppose hydrodynamics so are
applicable even to very out-of-equilibrium configurations

I We implemented ADM evolution using spectral methods, freezing
the evolution at some interior point by forcing the lapse to vanish
there

I Even though genuine nonequilibrium dynamics is very complicated,
we observed surprising regularities

I Initial entropy seems to be a key physical characterization of the
initial state determining the total entropy production and
thermalization time and temperature

I For w = Tth · τth > 0.7 we observe hydrodynamic behaviour but
with sizeable pressure anisotropy (described wholly by viscous
hydrodynamics)

33 / 33



Conclusions

I AdS/CFT provides a very general framework for studying
time-dependent dynamical processes

I The AdS/CFT methods do not presuppose hydrodynamics so are
applicable even to very out-of-equilibrium configurations

I We implemented ADM evolution using spectral methods, freezing
the evolution at some interior point by forcing the lapse to vanish
there

I Even though genuine nonequilibrium dynamics is very complicated,
we observed surprising regularities

I Initial entropy seems to be a key physical characterization of the
initial state determining the total entropy production and
thermalization time and temperature

I For w = Tth · τth > 0.7 we observe hydrodynamic behaviour but
with sizeable pressure anisotropy (described wholly by viscous
hydrodynamics)

33 / 33


	Motivation — physics
	The AdS/CFT description of a plasma system
	Example: Static uniform plasma

	Hydrodynamics versus AdS/CFT
	Boost-invariant flow
	The metric ansatz and numerical formalism
	A short summary of main results
	Conclusions

