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Introduction

There is strong evidence that AdS is unstable for D ≥ 4

The endstate of the evolution: AdS-Schwarzschild black hole:

g = −Adt2 + A−1dr2 + r2 dϕ2 , A = 1− M

rD−3
+

r2

`2

Spectral properties and nonlinear perturbation analysis are
qualitatively the same in all dimensions D ≥ 3
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Introduction

What is different in D = 3?

Dimensionless measure of gravity’s strength is GM/LD−3

so in D = 3 the total mass matters (not its concentration)

AdS-Schwarzschild family in D = 3

g = −Adt2 + A−1dr2 + r2 dϕ2 , A = 1−M +
r2

`2

There is a mass gap between AdS3 and the lightest black hole:

M = 0 AdS
0 < M < 1 naked (conical) singularities
M > 1 BTZ black holes

Small perturbations of AdS3 cannot evolve into black holes. What is
the endstate of the evolution?
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Convenient parametrization of 3D asymptotically AdS spacetimes

ds2 =
`2

A cos2x

(
−e2βdt2 + dx2 + A sin2x dϕ2

)
where A and β are functions of (t, x) ∈ (−∞,∞)× [0, π/2)

Define mass function m(t, x) by A = 1−m cos2x

Field equations (using ′ = ∂x , ˙ = ∂t and 8πG = 1)(
e−βφ̇

)·
=

1

tan x
(tan x eβφ′)′

m′ = tan x A (e−2βφ̇2 + φ′2)

β′ = 2 sin x cos x
m

A

We want to solve the initial-boundary value problem for this system
for small perturbations of the AdS3 space φ = 0,m = 0, β = 0.
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Initial and boundary conditions

We assume that initial data (φ, φ̇)|t=0 are smooth

Smoothness implies that near x = 0

φ(t, x) = f0(t) +O(x2), β(t, x) = O(x4), m(t, x) = O(x2)

Smoothness at spatial infinity and finiteness of the total mass M
imply that near x = π/2 (using ρ = π/2− x)

φ(t, x) = f∞(t) ρ2 +O
(
ρ4
)
, β(t, x) = β∞(t) +O

(
ρ4
)
,

m(t, x) = M +O
(
ρ2
)

Remark: There is no freedom in prescribing the boundary conditions.

Local well-posedness follows from (Holzegel-Smulevici 2011)
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Spectral properties

Linearized equation (Breitenlohner-Freedman 1982, Ishibashi-Wald
2004)

φ̈+ Lφ = 0, L = − 1

tan x
∂x (tan x ∂x)

L is essentially self-adjoint on L2([0, π/2], tan x dx).
Eigenvalues and eigenvectors of L are (k = 0, 1, . . . )

ω2
k = (2 + 2k)2, ek(x) = 2

√
k + 1 cos2x P0,1

k (cos 2x)

Inner product: (f , g) =
π/2∫
0

f (x)g(x) tan xdx

Spectral representation: we introduce momentum Π = e−βφ̇ and
define:

Φk := (
√
Aφ′, e′k), Πk := (

√
AΠ, ek)

Then

M =

π/2∫
0

A
(
e−2βφ̇2 + φ′2

)
tan x dx =

∞∑
k=0

Ek(t)

where Ek = Π2
k + ω−2

k Φ2
k is the energy of the k-th mode.
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Energy spectrum
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Initial data φ(0, x) = ε exp(− tan2x/σ2) , φ̇(0, x) = 0
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Convergence tests
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Convergence factor for the solution φn computed on the 2n-grid is

defined by Qn = ||φn−φn+1||
||φn+1−φn+2|| , where || · || is the spatial `2-norm.
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Analyticity strip method (Sulem-Sulem-Frisch 1983)

Let u(t, x) be a solution of an evolution equation starting from
real-analytic initial data and let u(t, z) be its analytic extension to
the complex z-plane.

Typically u(t, z) will have complex singularities. Let z = x + iρ be
the location of the singularity closest to the real axis (hence ρ
measures the width of the analyticity strip around the real axis).

If ρ(t) vanishes at some t = T <∞, then the solution ”blows up”;
otherwise it is globally regular in time.

Fourier coefficients of u(t, x) behave for large k as

ûk(t) ∼ k−α exp(−ρk)

Method: compute ρ(t) by fitting an exponential decay to the tail of
the numerically computed Fourier spectrum
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Example

Consider an equation:

ut = xux , u(0, x) =
ε

1 + x2

u(t, x) =
ε

1 + e2tx2

û(t, k) = επe−t H(k) exp(−k e−t︸︷︷︸
ρ(t)

) + (k ↔ −k)

The solution is globally regular but

||u||2
Ḣs :=

∫ ∞
−∞

(∂sxu)2dx = cs e
(2s−1)t

L2-asymptotic stability (s = 0) and instability for s > 1/2.
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Computation of ρ(t) from the energy spectrum
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Evidence for global regularity
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Solutions develop progressively finer spatial scales as t →∞ without ever
losing smoothness (weak turbulence). Characteristic decay time T ∼ ε−2.

12 / 14



Ḣ s-instability for s > 1
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Time evolution of the L2-norm of the second spatial derivative
Ḣ2 = ||φ′′(t, x)||2 (only the upper envelope of oscillations is plotted)
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Final remarks

Gradual loss of regularity due to weak turbulence has been well
known in fluid dynamics (example: Euler equation in two spatial
dimensions, Yudovich 1974). Weak turbulence is expected to be
common for nonlinear wave equations in bounded domains.

In the case of Einstein’s equations, the weakly turbulent dynamics
can proceed forever only in 3D, whereas in higher dimensions it is
unavoidably cut off in finite time by the black hole formation.

Here we considered only small mass solutions but we conjecture that
all solutions with M < 1 are globally regular in time.

Threshold at M = 1 is not well understood (numerical studies by
Pretorius-Choptuik 2000). Does every solution with M > 1 evolve
into a black hole?
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