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Topologically Massive Gravity

Einstein gravity in 2+1 dimensions has no propagating degrees of freedom!

Deform theory: Topologically Massive Gravity

S = SE-H + SC-S ,

with:
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Deser, Jackiw, Templeton (1982)

Massive propagating degree of freedom.

Third-order derivative theory.

GR solutions ⊂ TMG solutions.
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Warped AdS3 black hole

Spacelike stretched black hole:

ds2 = dt2 +
`2dr2

4R2(r)N2(r)
+ 2R2(r)Nθ(r)dtdθ + R2(r)dθ2

R2(r) =
3(ν2 − 1)

4
r(r − r0)

N2(r) =
(ν2 + 3)(r − r+)(r − r−)

4R(r)2

Nθ(r) =
2νr −

√
r+r−(ν2 + 3)

2R(r)2

 

Anninos, Li, Padi, Song, Strominger (2008)

ν > 1 is the warp factor of the spacetime.

ν → 1 recovers the BTZ black hole.



Causal structure of warped AdS3 black holes

r0 < r− < r+

r0 = r− < r+

Not asymptotically AdS3!

Similar to asymptotically flat
black holes!

Arena to obtain valuable
insights for difficult problems
with the Kerr black hole!

r0 < r− = r+

Jugeau, Moutsopoulos, Ritter (2010)
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Scalar field on the background of a warped AdS3 black hole

Scalar field Φ on the background of a spacelike stretched black hole:(
∇2 −m2)Φ(t, r , θ) = 0

Exact mode solutions:

Φωk(t, r , θ) ∼ e−iωt+ikθ zα(1− z)βF (a, b, c; z)

z =
r − r+
r − r−

α, β, a, b, c functions of ω and k

F (a, b, c; z) hypergeometric function
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Quasinormal modes

Boundary conditions:

Ingoing modes at the event horizon;

Outgoing modes at infinity.

=⇒ Discrete set of complex eigenfrequencies {ωn}

Φn ∼ e−iωnt = e−iRe(ωn)t+Im(ωn)t

If Im(ωn) > 0 for some n: mode is unstable!
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Superradiant modes

Superradiant modes: amplitude increases after
reflection by the potential barrier if

0 < Re(ω) < kΩH

The existence of superradiance depends on:

boundary conditions imposed on the field;

definition of positive frequency modes.

Whatever the choice of boundary conditions and positive frequency, there are
always superradiant scalar modes on the warped AdS3 black hole, similarly to
the Kerr black hole (but not to the BTZ and Kerr-AdS).

Ferreira (2013)
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Superradiant and bound state modes

Bound state modes: localised in the potential well (ingoing at event horizon,
exponentially decreasing at infinity).

Im(ωn) > 0 =⇒ superradiant bound state mode =⇒ instability!
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Are there any unstable modes?

NO!

All modes are stable: Im(ωn) < 0.

In particular, no superradiant instabilities, in contrast with Kerr!
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What happens if we add an actual mirror?

Boundary conditions:

Ingoing modes at the event horizon;

Vanishing modes at the mirror (Dirichlet boundary condition).
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Frequency vs position of the mirror

(r+ = 7 , r− = 0.7 , ν = 1.2 , k = −1 , m2 = 0)

Bound state modes are still stable!
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QFT on warped AdS3 black holes

The study of QFT on black hole spacetimes have mostly been restricted to
asymptotically flat and AdS spacetimes.

QFT on rotating black holes is a challenging problem:

Superradiant modes require care.

The Hartle-Hawking vacuum state is not well defined!

Frolov and Thorne (1989)
Kay and Wald (1991)

Ottewill and Winstanley (2000)
Ottewill and Duffy (2008)
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Hartle-Hawking vacuum on a warped AdS3 black hole

Beyond the speed of light surface, the Hartle-Hawking vacuum would have to
rotate with a speed greater than the speed of light.

If a mirror is put between the horizon and the speed of light surface, an
Hartle-Hawking vacuum is well defined.
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Stress-energy tensor for a scalar field in the Hartle-Hawking vacuum

Aim: compute the expectation value of the renormalised stress-energy
tensor 〈Tµν(x)〉ren for a scalar field in the Hartle-Hawking vacuum

Difficulties:

Requires renormalisation;

Involved numerics.

Work in progress...
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Stress-energy tensor in the complex Riemannian section

Consider the complex Riemannian section:

Change to rotating coords: (t, r , θ)→ (t̃ = t, r = r , θ̃ = θ − ΩHt)

Analytically continue: t̃ = −iτ ;

Impose periodicity: τ ∼ τ + 2π
κ+

(Hawking temperature TH = κ+
2π ).

ds2
L Lorentzian metric −→ ds2

C complex Riemannian metric

Green’s functions:

GL(x , x ′) =

∫ ∞
0

d ω̃
∞∑

k=−∞

GL
ω̃k(r , r ′) −→ GC(x , x ′) =

∞∑
n=−∞

∞∑
k=−∞

GC
nk(r , r ′)

Computation is hoped to be easier in the complex Riemannian section.

Frolov (1982)
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Conclusions

Warped AdS3 black holes are interesting solutions of an extension of
Einstein gravity in 2+1 dimensions which has a massive propagating
degree of freedom.

Warped AdS3 black holes are remarkably similar to the (3+1)-dimensional
Kerr spacetime and, contrary to the latter, many analytical computations
can be performed.

Warped AdS3 black holes are classically stable to scalar field perturbations,
even if a mirror is added to the spacetime, in contrast with Kerr.

QFT computations on warped AdS3 black holes may give valuable insights
for the Kerr case.
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What’s next?

Is the warped AdS3 black hole classically stable to other types of
perturbations (namely gravitational perturbations)?

What is the renormalised stress-energy tensor for a field in the
Hartle-Hawking vacuum state? What information does it provide for the
Kerr case?
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