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Introduction & motivation

Why (non)commutative geometry?

Dual description of geometry - forget about points!
New noncommutative horizons

Drawbacks of the standard spectral approach

Relativistic physics is Lorentzian not Riemannian
Applications - need for a Wick rotation (t→ it)
We loose the causal structure

Lorentzian spectral triples - a remedy?

Wick rotation implemented in a controllable way
Can encompass the causal structure
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The axioms of noncommutative geometry

(A,H,D) - spectral triple

A - pre-C∗-algebra (unital)

H - Hilbert space

(need for indefinite products)

∃ a faithful representation π(A) ⊂ B(H)

D - the Dirac operator - selfadjoint, unbounded

(D − λ)−1 for any λ /∈ R- compact resolvent
[D, π(a)] ∈ B(H) for all a ∈ A

. . .

The spectrum of Lorentzian D is way more complicated
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Lorentzian spectral triples

(A, Ã,H,D, J) - Lorentzian spectral triple

A Hilbert space H.

A non-unital pre-C∗-algebra A with a faithful representation as B(H).

A preferred unitization Ã of A which is a pre-C∗-algebra with a faithful
representation as bounded operators on H and such that A is an ideal of Ã.

An unbounded operator D densely defined on H such that, ∀a ∈ Ã:

[D, a] extends to a bounded operator on H,

a∆−1J is compact, with ∆J :=
(
1
2 (DD∗ +D∗D) + 1

)1/2
.

A bounded operator J on H - fundamental symmetry - such that:

J2 = 1,
J∗ = J,
[J, a] = 0 ∀a ∈ Ã,
D∗ = −JDJ,
J captures the Lorentzian signature of the metric.
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[D, a] extends to a bounded operator on H,

a∆−1J is compact, with ∆J :=
(
1
2 (DD∗ +D∗D) + 1

)1/2
.

A bounded operator J on H - fundamental symmetry - such that:

J2 = 1,
J∗ = J,
[J, a] = 0 ∀a ∈ Ã,
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(A, Ã,H,D, J) - Lorentzian spectral triple

A Hilbert space H.

A non-unital pre-C∗-algebra A with a faithful representation as B(H).
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D∗ = −JDJ,
J captures the Lorentzian signature of the metric.

Micha l Eckstein (Kraków) Causal Structure for NCG Zakopane, July 6, 2013 5 / 14



Globally hyperbolic manifold

A commutative Lorentzian spectral triple on a Lorentzian manifold M

A ⊂ C∞0 (M) - smooth functions vanishing at ∞

Ã ⊂ C∞b (M) - smooth bounded functions with bounded derivatives

H = L2(M,S) - Hilbert space of square integrable spinor sections over M .

D = −i(c ◦ ∇S) = −iγµ∇Sµ is the Dirac operator.

spacelike reflection r ∈ Aut(TM), r2 = 1, g(r·, r·) = g(·, ·)
gr(·, ·) := g(·, r·) - positive definite metric on TM = F− ⊕ F+

Jr - fundamental symmetry associated with r

Jrc(e0)Jr = −c(re0), Jr = ic(e0) = iγ0
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Causality - a reminder

Two points p, q are causally related p � q iff
p = q or ∃ a future directed causal curve linking p and q.

� induces a partial order relation on the set of points of M .

Causal futures and pasts

J+(p) = {q ∈M : p � q} - causal future of p.
J−(p) = {q ∈M : q � p} - causal past of p.

global hyperbolicity =⇒ no closed causal curves

Theorem [Geroch (1967)]

Compact Lorentzian manifold always contain closed causal curves.
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Algebraisation - step 1

Gelfand - Naimark theorem [1943]

commutative C∗-algbras
1:1←→ (locally) compact Hausdorff topological spaces

States S(A) = {ϕ} on A:

positive linear functionals with ‖ϕ‖ = 1
S(A) is a closed convex set
P (A) - extremal points - pure states

Points of X
1:1←→ P (C(X)) ∀x∈X χx : A → C, χx(f) := f(x)

Causal functions

C(M) = {f ∈ C∞(M,R) : f − non-decreasing along future dir. causal curves}
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Algebraisation - step 2

A causal cone C is a subset of elements in Ã such that:

(a) ∀a∈C a∗ = a;

(b) ∀a,b∈C a+ b ∈ C;

(c) ∀a∈C ∀λ≥0 λa ∈ C;

(d) ∀x∈R x1 ∈ C;

(e) spanC(C) = Ã (the closure denotes the C∗-algebra completion);

(f) ∀a∈C ∀φ∈H 〈φ, J[D, a]φ〉 ≤ 0.

Proposition [N. Franco, M.E. (2013)]

Let C be a causal cone, then for every two states χ, ξ ∈ S(Ã) define

χ � ξ iff ∀a∈C χ(a) ≤ ξ(a).

The relation � defines a partial order relation on S(Ã).

Micha l Eckstein (Kraków) Causal Structure for NCG Zakopane, July 6, 2013 10 / 14



Algebraisation - step 2

A causal cone C is a subset of elements in Ã such that:
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Causality recovered

Theorem (N. Franco, M.E. [2013])

Let (A, Ã,H,D, J) be a commutative Lorentzian spectral triple constructed from
a globally hyperbolic Lorentzian manifold M . Then,

P (A) ∼= Spec(A) ∼= M,

and the partial order relation � on S(Ã) restricted to P (A) corresponds to the
usual causal relation on M .

Causal future and past of states

Let X = S(Ã), P (Ã), P (A), for every χ ∈ X define

J+
X(χ) = {ξ ∈ X : χ � ξ} and J−X(χ) = {ξ ∈ X : ξ � χ}.
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Almost commutative causality

Noncommutative “extra” dimensions

Consider A = M2(C), then dimg(A) = 0, but P (A) ∼= S2.

Take A = C∞0 (M)⊗M2(C)

D = DM ⊗ 1 + γ5 ⊗DF , with DF = diag{d1, d2}

Causal elements M2(C∞0 (M)) 3 A =
(
a c
c∗ b

)

No classical causality violation

Finite “speed of light” in the internal space!
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Take-home messages

Forget about events - use states.

Is there a hidden causal structure in gauge theories?

Is the Universe commutative? - Check it twice!

Thank you for your attention!

N. Franco: Lorentzian approach to noncommutative geometry PhD thesis
University of Namur (2011) (Namur: Presses Universitaires de Namur),
(arXiv:1108.0592)

N. Franco, M. Eckstein: An algebraic formulation of causality for
noncommutative geometry,
Class. Quant. Grav. 30 (2013) 135007, (arXiv:1212.5171v3)
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