Causal Structure for Noncommutative Geometry

Michał Eckstein Jagellonian University & Copernicus Center, Kraków, Poland

Joint project with Nicolas Franco(CC, Kraków) Class. Quant. Grav. 30 (2013) 135007, (arXiv:1212.5171v3)

Zakopane, July 6, 2013

Foundation for Polish Science

1 / 14

Michał Eckstein (Kraków)

Causal Structure for NCG

Zakopane, July 6, 2013

- Dual description of geometry forget about points!
- New noncommutative horizons

• Drawbacks of the standard spectral approach

- Relativistic physics is Lorentzian not Riemannian
- Applications need for a Wick rotation $(t \rightarrow it)$
- We loose the causal structure

- Wick rotation implemented in a controllable way
- Can encompass the causal structure

Introduction & motivation

• Why (non)commutative geometry?

- Dual description of geometry forget about points!
- New noncommutative horizons

• Drawbacks of the standard spectral approach

- Relativistic physics is Lorentzian not Riemannian
- Applications need for a Wick rotation $(t \rightarrow it)$
- We loose the causal structure

- Wick rotation implemented in a controllable way
- Can encompass the causal structure

- Dual description of geometry forget about points!
- New noncommutative horizons

• Drawbacks of the standard spectral approach

- Relativistic physics is Lorentzian not Riemannian
- Applications need for a Wick rotation $(t \rightarrow it)$
- We loose the causal structure

- Wick rotation implemented in a controllable way
- Can encompass the causal structure

- Dual description of geometry forget about points!
- New noncommutative horizons

• Drawbacks of the standard spectral approach

- Relativistic physics is Lorentzian not Riemannian
- Applications need for a Wick rotation $(t \rightarrow it)$
- We loose the causal structure

- Wick rotation implemented in a controllable way
- Can encompass the causal structure

- Dual description of geometry forget about points!
- New noncommutative horizons
- Drawbacks of the standard spectral approach
 - Relativistic physics is Lorentzian not Riemannian
 - Applications need for a Wick rotation $(t \rightarrow it)$
 - We loose the causal structure
- Lorentzian spectral triples a remedy?
 - Wick rotation implemented in a controllable way
 - Can encompass the causal structure

- Dual description of geometry forget about points!
- New noncommutative horizons
- Drawbacks of the standard spectral approach
 - Relativistic physics is Lorentzian not Riemannian
 - Applications need for a Wick rotation $(t \rightarrow it)$
 - We loose the causal structure
- Lorentzian spectral triples a remedy?
 - Wick rotation implemented in a controllable way
 - Can encompass the causal structure

- Dual description of geometry forget about points!
- New noncommutative horizons
- Drawbacks of the standard spectral approach
 - Relativistic physics is Lorentzian not Riemannian
 - Applications need for a Wick rotation $(t \rightarrow it)$
 - We loose the causal structure
- Lorentzian spectral triples a remedy?
 - Wick rotation implemented in a controllable way
 - Can encompass the causal structure

- Dual description of geometry forget about points!
- New noncommutative horizons
- Drawbacks of the standard spectral approach
 - Relativistic physics is Lorentzian not Riemannian
 - Applications need for a Wick rotation $(t \rightarrow it)$
 - We loose the causal structure
- Lorentzian spectral triples a remedy?
 - Wick rotation implemented in a controllable way
 - Can encompass the causal structure

- Dual description of geometry forget about points!
- New noncommutative horizons
- Drawbacks of the standard spectral approach
 - Relativistic physics is Lorentzian not Riemannian
 - Applications need for a Wick rotation $(t \rightarrow it)$
 - We loose the causal structure
- Lorentzian spectral triples a remedy?
 - Wick rotation implemented in a controllable way
 - Can encompass the causal structure

- Dual description of geometry forget about points!
- New noncommutative horizons
- Drawbacks of the standard spectral approach
 - Relativistic physics is Lorentzian not Riemannian
 - Applications need for a Wick rotation $(t \rightarrow it)$
 - We loose the causal structure
- Lorentzian spectral triples a remedy?
 - Wick rotation implemented in a controllable way
 - Can encompass the causal structure

- 2 Spectral Triples

э

- \mathcal{A} pre- C^* -algebra (unital)
- \mathcal{H} Hilbert space \exists a faithful representation $\pi(\mathcal{A}) \subset \mathcal{B}(\mathcal{H})$
- $\bullet \ \mathcal{D}$ the Dirac operator selfadjoint, unbounded
 - $(\mathcal{D} \lambda)^{-1}$ for any $\lambda \notin \mathbb{R}$ compact resolvent
 - $[\mathcal{D}, \pi(a)] \in \mathcal{B}(\mathcal{H})$ for all $a \in \mathcal{A}$

• . . .

• The spectrum of Lorentzian ${\cal D}$ is way more complicated

- \mathcal{A} pre- C^* -algebra (unital)
- \mathcal{H} Hilbert space \exists a faithful representation $\pi(\mathcal{A}) \subset \mathcal{B}(\mathcal{H})$
- $\bullet \ \mathcal{D}$ the Dirac operator selfadjoint, unbounded
 - $(\mathcal{D}-\lambda)^{-1}$ for any $\lambda \notin \mathbb{R}$ compact resolvent
 - $[\mathcal{D}, \pi(a)] \in \mathcal{B}(\mathcal{H})$ for all $a \in \mathcal{A}$

• . . .

• The spectrum of Lorentzian $\mathcal D$ is way more complicated

- \mathcal{A} pre- C^* -algebra (unital)
- \mathcal{H} Hilbert space (need for indefinite products) \exists a faithful representation $\pi(\mathcal{A}) \subset \mathcal{B}(\mathcal{H})$
- $\bullet \ \mathcal{D}$ the Dirac operator selfadjoint, unbounded
 - $(\mathcal{D}-\lambda)^{-1}$ for any $\lambda \notin \mathbb{R}$ compact resolvent
 - $[\mathcal{D}, \pi(a)] \in \mathcal{B}(\mathcal{H})$ for all $a \in \mathcal{A}$

• . . .

• The spectrum of Lorentzian \mathcal{D} is way more complicated

- \mathcal{A} pre- C^* -algebra (unital)
- \mathcal{H} Hilbert space (need for indefinite products) \exists a faithful representation $\pi(\mathcal{A}) \subset \mathcal{B}(\mathcal{H})$
- \mathcal{D} the Dirac operator selfadjoint, unbounded
 - $(\mathcal{D}-\lambda)^{-1}$ for any $\lambda \notin \mathbb{R}$ compact resolvent
 - $[\mathcal{D}, \pi(a)] \in \mathcal{B}(\mathcal{H})$ for all $a \in \mathcal{A}$

• . . .

• The spectrum of Lorentzian \mathcal{D} is way more complicated

- \mathcal{A} pre- C^* -algebra (unital)
- \mathcal{H} Hilbert space (need for indefinite products) \exists a faithful representation $\pi(\mathcal{A}) \subset \mathcal{B}(\mathcal{H})$
- \mathcal{D} the Dirac operator selfadjoint, unbounded
 - $(\mathcal{D} \lambda)^{-1}$ for any $\lambda \notin \mathbb{R}$ compact resolvent
 - $[\mathcal{D}, \pi(a)] \in \mathcal{B}(\mathcal{H})$ for all $a \in \mathcal{A}$

• . . .

• The spectrum of Lorentzian \mathcal{D} is way more complicated

- \mathcal{A} pre- C^* -algebra (unital)
- \mathcal{H} Hilbert space (need for indefinite products) \exists a faithful representation $\pi(\mathcal{A}) \subset \mathcal{B}(\mathcal{H})$
- \mathcal{D} the Dirac operator selfadjoint, unbounded
 - (D − λ)⁻¹ for any λ ∉ ℝ- compact resolvent
 [D, π(a)] ∈ B(H) for all a ∈ A
- . . .
- The spectrum of Lorentzian $\mathcal D$ is way more complicated

• A Hilbert space \mathcal{H} .

- A non-unital pre- C^* -algebra \mathcal{A} with a faithful representation as $\mathcal{B}(\mathcal{H})$.
- A preferred unitization $\widetilde{\mathcal{A}}$ of \mathcal{A} which is a pre- C^* -algebra with a faithful representation as bounded operators on \mathcal{H} and such that \mathcal{A} is an ideal of $\widetilde{\mathcal{A}}$.
- An unbounded operator \mathcal{D} densely defined on \mathcal{H} such that, $\forall a \in \widetilde{\mathcal{A}}$:
 - $[\mathcal{D}, a]$ extends to a bounded operator on \mathcal{H} ,
 - $a\Delta_3^{-1}$ is compact, with $\Delta_3 := \left(\frac{1}{2}(\mathcal{DD}^* + \mathcal{D}^*\mathcal{D}) + 1\right)^{1/2}$.
- \bullet A bounded operator $\mathfrak J$ on $\mathcal H$ fundamental symmetry such that:
 - $\mathfrak{J}^2 = 1$,
 - J* = J,
 - $[\mathfrak{J},a]=0 \quad \forall a\in \widetilde{\mathcal{A}},$
 - $\mathcal{D}^* = -\mathfrak{J}\mathcal{D}\mathfrak{J}$,
 - ullet $\,\,\mathfrak{J}$ captures the Lorentzian signature of the metric

Lorentzian spectral triples

- A Hilbert space \mathcal{H} .
- A non-unital pre- C^* -algebra \mathcal{A} with a faithful representation as $\mathcal{B}(\mathcal{H})$.
- A preferred unitization $\widetilde{\mathcal{A}}$ of \mathcal{A} which is a pre- C^* -algebra with a faithful representation as bounded operators on \mathcal{H} and such that \mathcal{A} is an ideal of $\widetilde{\mathcal{A}}$.
- An unbounded operator \mathcal{D} densely defined on \mathcal{H} such that, $\forall a \in \widetilde{\mathcal{A}}$:
 - $[\mathcal{D}, a]$ extends to a bounded operator on \mathcal{H} ,
 - $a\Delta_3^{-1}$ is compact, with $\Delta_3 := \left(\frac{1}{2}(\mathcal{DD}^* + \mathcal{D}^*\mathcal{D}) + 1\right)^{1/2}$
- A bounded operator \mathfrak{J} on $\mathcal H$ fundamental symmetry such that:
 - $\mathfrak{J}^2 = 1$,
 - $\mathfrak{J}^* = \mathfrak{J}$,
 - $[\mathfrak{J}, a] = 0 \quad \forall a \in \mathcal{A},$
 - $\mathcal{D}^* = -\mathfrak{J}\mathcal{D}\mathfrak{J}$,
 - \mathfrak{J} captures the Lorentzian signature of the metric

- A Hilbert space \mathcal{H} .
- A non-unital pre- C^* -algebra \mathcal{A} with a faithful representation as $\mathcal{B}(\mathcal{H})$.
- A preferred unitization $\widetilde{\mathcal{A}}$ of \mathcal{A} which is a pre- C^* -algebra with a faithful representation as bounded operators on \mathcal{H} and such that \mathcal{A} is an ideal of $\widetilde{\mathcal{A}}$.
- An unbounded operator \mathcal{D} densely defined on \mathcal{H} such that, $\forall a \in \widetilde{\mathcal{A}}$:
 - $[\mathcal{D}, a]$ extends to a bounded operator on \mathcal{H}_{i}
 - $a\Delta_3^{-1}$ is compact, with $\Delta_3 := \left(\frac{1}{2}(\mathcal{DD}^* + \mathcal{D}^*\mathcal{D}) + 1\right)^{1/2}$
- \bullet A bounded operator $\mathfrak J$ on $\mathcal H$ fundamental symmetry such that:
 - $\mathfrak{J}^2 = 1$,
 - J* = J,
 - $[\mathfrak{J},a]=0 \quad \forall a\in \widetilde{\mathcal{A}},$
 - $\mathcal{D}^* = -\mathfrak{J}\mathcal{D}\mathfrak{J}$,
 - ullet $\, \mathfrak{J}$ captures the Lorentzian signature of the metric.

- A Hilbert space \mathcal{H} .
- A non-unital pre- C^* -algebra \mathcal{A} with a faithful representation as $\mathcal{B}(\mathcal{H})$.
- A preferred unitization $\widetilde{\mathcal{A}}$ of \mathcal{A} which is a pre- C^* -algebra with a faithful representation as bounded operators on \mathcal{H} and such that \mathcal{A} is an ideal of $\widetilde{\mathcal{A}}$.
- An unbounded operator \mathcal{D} densely defined on \mathcal{H} such that, $\forall a \in \widetilde{\mathcal{A}}$:
 - $[\mathcal{D}, a]$ extends to a bounded operator on \mathcal{H} ,
 - $a\Delta_{\mathfrak{J}}^{-1}$ is compact, with $\Delta_{\mathfrak{J}} := \left(\frac{1}{2}(\mathcal{D}\mathcal{D}^* + \mathcal{D}^*\mathcal{D}) + 1\right)^{1/2}$.
- \bullet A bounded operator $\mathfrak J$ on $\mathcal H$ fundamental symmetry such that:
 - $\mathfrak{J}^2 = 1$
 - J^{*} = J,
 - $[\mathfrak{J},a]=0 \quad \forall a\in \widetilde{\mathcal{A}},$
 - $\mathcal{D}^* = -\mathfrak{J}\mathcal{D}\mathfrak{J}$,
 - ullet $\, \mathfrak{J}$ captures the Lorentzian signature of the metric

- A Hilbert space \mathcal{H} .
- A non-unital pre- C^* -algebra \mathcal{A} with a faithful representation as $\mathcal{B}(\mathcal{H})$.
- A preferred unitization $\widetilde{\mathcal{A}}$ of \mathcal{A} which is a pre- C^* -algebra with a faithful representation as bounded operators on \mathcal{H} and such that \mathcal{A} is an ideal of $\widetilde{\mathcal{A}}$.
- An unbounded operator \mathcal{D} densely defined on \mathcal{H} such that, $\forall a \in \widetilde{\mathcal{A}}$:
 - $\bullet ~ [\mathcal{D},a]$ extends to a bounded operator on $\mathcal{H}\textsc{,}$
 - $a\Delta_{\mathfrak{J}}^{-1}$ is compact, with $\Delta_{\mathfrak{J}} := \left(\frac{1}{2}(\mathcal{D}\mathcal{D}^* + \mathcal{D}^*\mathcal{D}) + 1\right)^{1/2}$.
- \bullet A bounded operator $\mathfrak J$ on $\mathcal H$ fundamental symmetry such that:
 - $\mathfrak{J}^2 = 1$
 - $\mathfrak{J}^* = \mathfrak{J}$,
 - $[\mathfrak{J}, a] = 0 \quad \forall a \in \widetilde{\mathcal{A}},$
 - $\mathcal{D}^* = -\mathfrak{J}\mathcal{D}\mathfrak{J}$,
 - \mathfrak{J} captures the Lorentzian signature of the metric

- A Hilbert space \mathcal{H} .
- A non-unital pre- C^* -algebra \mathcal{A} with a faithful representation as $\mathcal{B}(\mathcal{H})$.
- A preferred unitization $\widetilde{\mathcal{A}}$ of \mathcal{A} which is a pre- C^* -algebra with a faithful representation as bounded operators on \mathcal{H} and such that \mathcal{A} is an ideal of $\widetilde{\mathcal{A}}$.
- An unbounded operator \mathcal{D} densely defined on \mathcal{H} such that, $\forall a \in \widetilde{\mathcal{A}}$:
 - $[\mathcal{D}, a]$ extends to a bounded operator on \mathcal{H} ,
 - $a\Delta_{\mathfrak{J}}^{-1}$ is compact, with $\Delta_{\mathfrak{J}} := \left(\frac{1}{2}(\mathcal{D}\mathcal{D}^* + \mathcal{D}^*\mathcal{D}) + 1\right)^{1/2}$.
- \bullet A bounded operator $\mathfrak J$ on $\mathcal H$ fundamental symmetry such that:
 - $\mathfrak{J}^2 = 1$
 - $\mathfrak{J}^* = \mathfrak{J}$,
 - $[\mathfrak{J}, a] = 0 \quad \forall a \in \widetilde{\mathcal{A}},$
 - $\mathcal{D}^* = -\mathfrak{J}\mathcal{D}\mathfrak{J}$,
 - \mathfrak{J} captures the Lorentzian signature of the metric

- A Hilbert space \mathcal{H} .
- A non-unital pre- C^* -algebra \mathcal{A} with a faithful representation as $\mathcal{B}(\mathcal{H})$.
- A preferred unitization $\widetilde{\mathcal{A}}$ of \mathcal{A} which is a pre- C^* -algebra with a faithful representation as bounded operators on \mathcal{H} and such that \mathcal{A} is an ideal of $\widetilde{\mathcal{A}}$.
- An unbounded operator \mathcal{D} densely defined on \mathcal{H} such that, $\forall a \in \widetilde{\mathcal{A}}$:
 - $[\mathcal{D}, a]$ extends to a bounded operator on \mathcal{H} ,
 - $a\Delta_{\mathfrak{J}}^{-1}$ is compact, with $\Delta_{\mathfrak{J}} := \left(\frac{1}{2}(\mathcal{D}\mathcal{D}^* + \mathcal{D}^*\mathcal{D}) + 1\right)^{1/2}$.
- A bounded operator $\mathfrak J$ on $\mathcal H$ fundamental symmetry such that:
 - $\mathfrak{J}^2 = 1$,
 - $\mathfrak{J}^* = \mathfrak{J}$,
 - $[\mathfrak{J}, a] = 0 \quad \forall a \in \widetilde{\mathcal{A}},$
 - $\mathcal{D}^* = -\mathfrak{J}\mathcal{D}\mathfrak{J}$,
 - $\bullet~\mathfrak{J}$ captures the Lorentzian signature of the metric.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

- A Hilbert space \mathcal{H} .
- A non-unital pre- C^* -algebra \mathcal{A} with a faithful representation as $\mathcal{B}(\mathcal{H})$.
- A preferred unitization $\widetilde{\mathcal{A}}$ of \mathcal{A} which is a pre- C^* -algebra with a faithful representation as bounded operators on \mathcal{H} and such that \mathcal{A} is an ideal of $\widetilde{\mathcal{A}}$.
- An unbounded operator \mathcal{D} densely defined on \mathcal{H} such that, $\forall a \in \widetilde{\mathcal{A}}$:
 - $\bullet ~ [\mathcal{D},a]$ extends to a bounded operator on $\mathcal{H}\textsc{,}$
 - $a\Delta_{\mathfrak{J}}^{-1}$ is compact, with $\Delta_{\mathfrak{J}} := \left(\frac{1}{2}(\mathcal{D}\mathcal{D}^* + \mathcal{D}^*\mathcal{D}) + 1\right)^{1/2}$.
- \bullet A bounded operator $\mathfrak J$ on $\mathcal H$ fundamental symmetry such that:
 - $\mathfrak{J}^2 = 1$,
 - $\mathfrak{J}^* = \mathfrak{J}$,
 - $[\mathfrak{J}, a] = 0 \quad \forall a \in \widetilde{\mathcal{A}},$
 - $\mathcal{D}^* = -\mathfrak{J}\mathcal{D}\mathfrak{J}$,
 - $\bullet~\mathfrak{J}$ captures the Lorentzian signature of the metric.

- $\mathcal{A} \subset C_0^\infty(M)$ smooth functions vanishing at ∞
- $\widetilde{\mathcal{A}} \subset C^\infty_b(M)$ smooth bounded functions with bounded derivatives
- $\mathcal{H} = L^2(M,S)$ Hilbert space of square integrable spinor sections over M .
- $\mathcal{D} = -i(c \circ \nabla^S) = -i\gamma^\mu \nabla^S_\mu$ is the Dirac operator.
- spacelike reflection $r \in \operatorname{Aut}(TM)$, $r^2 = 1$, $g(r \cdot, r \cdot) = g(\cdot, \cdot)$ $g^r(\cdot, \cdot) := g(\cdot, r \cdot)$ - positive definite metric on $TM = F^- \oplus F^+$
- \mathfrak{J}_r fundamental symmetry associated with r

$$\mathfrak{J}_r c(e_0)\mathfrak{J}_r = -c(re_0), \qquad \qquad \mathfrak{J}_r = ic(e_0) = i\gamma^0$$

- $\mathcal{A} \subset C_0^\infty(M)$ smooth functions vanishing at ∞
- $\widetilde{\mathcal{A}} \subset C^\infty_b(M)$ smooth bounded functions with bounded derivatives
- $\mathcal{H} = L^2(M,S)$ Hilbert space of square integrable spinor sections over M .
- $\mathcal{D} = -i(c \circ \nabla^S) = -i\gamma^{\mu} \nabla^S_{\mu}$ is the Dirac operator.
- spacelike reflection $r \in \operatorname{Aut}(TM)$, $r^2 = 1$, $g(r \cdot, r \cdot) = g(\cdot, \cdot)$ $g^r(\cdot, \cdot) := g(\cdot, r \cdot)$ - positive definite metric on $TM = F^- \oplus F^+$
- \mathfrak{J}_r fundamental symmetry associated with r

$$\mathfrak{J}_r c(e_0)\mathfrak{J}_r = -c(re_0), \qquad \qquad \mathfrak{J}_r = ic(e_0) = i\gamma^0$$

- $\mathcal{A} \subset C_0^\infty(M)$ smooth functions vanishing at ∞
- $\widetilde{\mathcal{A}} \subset C^\infty_b(M)$ smooth bounded functions with bounded derivatives
- $\mathcal{H} = L^2(M,S)$ Hilbert space of square integrable spinor sections over M .
- $\mathcal{D} = -i(c \circ \nabla^S) = -i\gamma^{\mu} \nabla^S_{\mu}$ is the Dirac operator.
- spacelike reflection $r \in \operatorname{Aut}(TM)$, $r^2 = 1$, $g(r \cdot, r \cdot) = g(\cdot, \cdot)$ $g^r(\cdot, \cdot) := g(\cdot, r \cdot)$ - positive definite metric on $TM = F^- \oplus F^+$
- \mathfrak{J}_r fundamental symmetry associated with r

$$\mathfrak{J}_r c(e_0)\mathfrak{J}_r = -c(re_0), \qquad \qquad \mathfrak{J}_r = ic(e_0) = i\gamma^0$$

- $\mathcal{A} \subset C_0^\infty(M)$ smooth functions vanishing at ∞
- $\widetilde{\mathcal{A}} \subset C^\infty_b(M)$ smooth bounded functions with bounded derivatives
- $\mathcal{H} = L^2(M,S)$ Hilbert space of square integrable spinor sections over M .
- $\mathcal{D} = -i(c \circ \nabla^S) = -i\gamma^{\mu} \nabla^S_{\mu}$ is the Dirac operator.
- spacelike reflection $r \in \operatorname{Aut}(TM)$, $r^2 = 1$, $g(r \cdot, r \cdot) = g(\cdot, \cdot)$ $g^r(\cdot, \cdot) := g(\cdot, r \cdot)$ - positive definite metric on $TM = F^- \oplus F^+$
- \mathfrak{J}_r fundamental symmetry associated with r

$$\mathfrak{J}_r c(e_0)\mathfrak{J}_r = -c(re_0), \qquad \qquad \mathfrak{J}_r = ic(e_0) = i\gamma^0$$

- $\mathcal{A} \subset C_0^\infty(M)$ smooth functions vanishing at ∞
- $\widetilde{\mathcal{A}} \subset C^\infty_b(M)$ smooth bounded functions with bounded derivatives
- $\mathcal{H} = L^2(M,S)$ Hilbert space of square integrable spinor sections over M .
- $\mathcal{D} = -i(c \circ \nabla^S) = -i\gamma^{\mu} \nabla^S_{\mu}$ is the Dirac operator.
- spacelike reflection $r \in \operatorname{Aut}(TM)$, $r^2 = 1$, $g(r \cdot, r \cdot) = g(\cdot, \cdot)$ $g^r(\cdot, \cdot) := g(\cdot, r \cdot)$ - positive definite metric on $TM = F^- \oplus F^+$
- \mathfrak{J}_r fundamental symmetry associated with r

$$\mathfrak{J}_r c(e_0)\mathfrak{J}_r = -c(re_0), \qquad \qquad \mathfrak{J}_r = ic(e_0) = i\gamma^0$$

- $\mathcal{A} \subset C_0^\infty(M)$ smooth functions vanishing at ∞
- $\widetilde{\mathcal{A}} \subset C^\infty_b(M)$ smooth bounded functions with bounded derivatives
- $\mathcal{H} = L^2(M,S)$ Hilbert space of square integrable spinor sections over M .
- $\mathcal{D} = -i(c \circ \nabla^S) = -i\gamma^{\mu} \nabla^S_{\mu}$ is the Dirac operator.
- spacelike reflection $r \in \operatorname{Aut}(TM)$, $r^2 = 1$, $g(r \cdot, r \cdot) = g(\cdot, \cdot)$ $g^r(\cdot, \cdot) := g(\cdot, r \cdot)$ - positive definite metric on $TM = F^- \oplus F^+$
- \mathfrak{J}_r fundamental symmetry associated with r

$$\mathfrak{J}_r c(e_0)\mathfrak{J}_r = -c(re_0), \qquad \qquad \mathfrak{J}_r = ic(e_0) = i\gamma^0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- $\mathcal{A} \subset C_0^\infty(M)$ smooth functions vanishing at ∞
- $\widetilde{\mathcal{A}} \subset C^\infty_b(M)$ smooth bounded functions with bounded derivatives
- $\mathcal{H} = L^2(M,S)$ Hilbert space of square integrable spinor sections over M .
- $\mathcal{D} = -i(c \circ \nabla^S) = -i\gamma^{\mu} \nabla^S_{\mu}$ is the Dirac operator.
- spacelike reflection $r \in \operatorname{Aut}(TM)$, $r^2 = 1$, $g(r \cdot, r \cdot) = g(\cdot, \cdot)$ $g^r(\cdot, \cdot) := g(\cdot, r \cdot)$ - positive definite metric on $TM = F^- \oplus F^+$
- \mathfrak{J}_r fundamental symmetry associated with r

$$\mathfrak{J}_r c(e_0)\mathfrak{J}_r = -c(re_0), \qquad \qquad \mathfrak{J}_r = ic(e_0) = i\gamma^0$$

- 3 Causality

-

э

Causality - a reminder

- Two points p, q are causally related p ≤ q iff
 p = q or ∃ a future directed causal curve linking p and q.
- \leq induces a partial order relation on the set of points of M.
- Causal futures and pasts

• $J^+(p) = \{q \in M : p \preceq q\}$ - causal future of p. • $J^-(p) = \{q \in M : q \preceq p\}$ - causal past of p.

• global hyperbolicity \implies no closed causal curves

Theorem [Geroch (1967)]

Compact Lorentzian manifold always contain closed causal curves.

- Two points p, q are causally related p ≤ q iff
 p = q or ∃ a future directed causal curve linking p and q.
- \leq induces a partial order relation on the set of points of M.
- Causal futures and pasts

• $J^+(p) = \{q \in M : p \preceq q\}$ - causal future of p. • $J^-(p) = \{q \in M : q \preceq p\}$ - causal past of p.

• global hyperbolicity \implies no closed causal curves

Theorem [Geroch (1967)]

Compact Lorentzian manifold always contain closed causal curves.

- 4 同 ト 4 目 ト

- Two points p, q are causally related p ≤ q iff
 p = q or ∃ a future directed causal curve linking p and q.
- \leq induces a partial order relation on the set of points of M.
- Causal futures and pasts

•
$$J^+(p) = \{q \in M : p \leq q\}$$
 - causal future of p .

- $J^-(p) = \{q \in M \ : \ q \preceq p\}$ causal past of p.
- global hyperbolicity \implies no closed causal curves

Theorem [Geroch (1967)]

Compact Lorentzian manifold always contain closed causal curves.

- Two points p, q are causally related p ≤ q iff
 p = q or ∃ a future directed causal curve linking p and q.
- \leq induces a partial order relation on the set of points of M.
- Causal futures and pasts

•
$$J^+(p) = \{q \in M : p \leq q\}$$
 - causal future of p .

- $J^-(p) = \{q \in M \ : \ q \preceq p\}$ causal past of p.
- \bullet global hyperbolicity \Longrightarrow no closed causal curves

Theorem [Geroch (1967)]

Compact Lorentzian manifold always contain closed causal curves.

- 《圖》 《圖》 《圖》 - 圖

- Two points p, q are causally related p ≤ q iff
 p = q or ∃ a future directed causal curve linking p and q.
- \leq induces a partial order relation on the set of points of M.
- Causal futures and pasts

•
$$J^+(p) = \{q \in M : p \leq q\}$$
 - causal future of p .

- $J^-(p) = \{q \in M \ : \ q \preceq p\}$ causal past of p.
- global hyperbolicity \Longrightarrow no closed causal curves

Theorem [Geroch (1967)]

Compact Lorentzian manifold always contain closed causal curves.

commutative C^* -algbras $\stackrel{1:1}{\longleftrightarrow}$ (locally) compact Hausdorff topological spaces

• States
$$S(\mathcal{A}) = \{\varphi\}$$
 on \mathcal{A} :

- positive linear functionals with $\|\varphi\| = 1$
- $S(\mathcal{A})$ is a closed convex set
- $P(\mathcal{A})$ extremal points pure states
- Points of $X \stackrel{1:1}{\longleftrightarrow} P(C(X)) \quad \forall_{x \in X} \quad \chi_x : \mathcal{A} \to \mathbb{C}, \quad \chi_x(f) := f(x)$

Causal functions

 $\mathcal{C}(M) = \{f \in C^{\infty}(M, \mathbb{R}) \ : \ f - \mathsf{non-decreasing} \ \mathsf{along} \ \mathsf{future} \ \mathsf{dir.} \ \mathsf{causal} \ \mathsf{curves} \}$

commutative C^* -algbras $\stackrel{(1:1)}{\longleftrightarrow}$ (locally) compact Hausdorff topological spaces

• States
$$S(\mathcal{A}) = \{\varphi\}$$
 on \mathcal{A} :

- positive linear functionals with $\|\varphi\|=1$
- $S(\mathcal{A})$ is a closed convex set
- $P(\mathcal{A})$ extremal points pure states

• Points of $X \stackrel{1:1}{\longleftrightarrow} P(C(X)) \quad \forall_{x \in X} \quad \chi_x : \mathcal{A} \to \mathbb{C}, \quad \chi_x(f) := f(x)$

Causal functions

 $\mathcal{C}(M) = \{f \in C^{\infty}(M, \mathbb{R}) \ : \ f - \mathsf{non-decreasing} \ \mathsf{along} \ \mathsf{future} \ \mathsf{dir.} \ \mathsf{causal} \ \mathsf{curves} \}$

commutative C^* -algbras $\stackrel{1:1}{\longleftrightarrow}$ (locally) compact Hausdorff topological spaces

• States
$$S(\mathcal{A}) = \{\varphi\}$$
 on \mathcal{A} :

- positive linear functionals with $\|\varphi\|=1$
- $S(\mathcal{A})$ is a closed convex set
- $P(\mathcal{A})$ extremal points pure states
- Points of $X \stackrel{1:1}{\longleftrightarrow} P(C(X)) \quad \forall_{x \in X} \quad \chi_x : \mathcal{A} \to \mathbb{C}, \quad \chi_x(f) := f(x)$

Causal functions

 $\mathcal{C}(M) = \{f \in C^\infty(M,\mathbb{R}) \ : \ f-\mathsf{non-decreasing} \ \mathsf{along} \ \mathsf{future} \ \mathsf{dir.} \ \mathsf{causal} \ \mathsf{curves} \}$

commutative C^* -algbras $\stackrel{1:1}{\longleftrightarrow}$ (locally) compact Hausdorff topological spaces

• States
$$S(\mathcal{A}) = \{\varphi\}$$
 on \mathcal{A} :

- positive linear functionals with $\|\varphi\|=1$
- $S(\mathcal{A})$ is a closed convex set
- $P(\mathcal{A})$ extremal points pure states
- Points of $X \stackrel{1:1}{\longleftrightarrow} P(C(X)) \quad \forall_{x \in X} \quad \chi_x : \mathcal{A} \to \mathbb{C}, \quad \chi_x(f) := f(x)$

Causal functions

 $\mathcal{C}(M) = \{ f \in C^{\infty}(M, \mathbb{R}) \ : \ f - \text{non-decreasing along future dir. causal curves} \}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

A causal cone C is a subset of elements in $\widetilde{\mathcal{A}}$ such that:

(a) $\forall_{a \in \mathcal{C}} \quad a^* = a;$ (b) $\forall_{a,b \in \mathcal{C}} \quad a + b \in \mathcal{C};$ (c) $\forall_{a \in \mathcal{C}} \forall_{\lambda \ge 0} \quad \lambda a \in \mathcal{C};$ (d) $\forall_{a \in \mathcal{C}} = a^{-1} \in \mathcal{C};$

(e) $\overline{\operatorname{span}_{\mathbb{C}}(\mathcal{C})} = \overline{\widetilde{\mathcal{A}}}$ (the closure denotes the C^* -algebra completion);

 $(f) \ \forall_{a \in \mathcal{C}} \ \forall_{\phi \in \mathcal{H}} \quad \langle \phi, \mathfrak{J}[\mathcal{D}, a] \phi \rangle \leq 0.$

Proposition [N. Franco, M.E. (2013)]

Let $\mathcal C$ be a causal cone, then for every two states $\chi,\xi\in S(\widetilde{\mathcal A})$ define

```
\chi \leq \xi iff \forall_{a \in \mathcal{C}} \quad \chi(a) \leq \xi(a).
```

The relation \leq defines a partial order relation on $S(\widetilde{\mathcal{A}})$.

Michał Eckstein (Kraków)

A causal cone C is a subset of elements in $\widetilde{\mathcal{A}}$ such that:

- $(a) \ \forall_{a \in \mathcal{C}} \quad a^* = a;$
- (b) $\forall_{a,b\in\mathcal{C}} \quad a+b\in\mathcal{C};$
- $(c) \ \forall_{a \in \mathcal{C}} \ \forall_{\lambda \geq 0} \quad \lambda a \in \mathcal{C};$
- $(d) \ \forall_{x \in \mathbb{R}} \quad x1 \in \mathcal{C};$

(e) $\overline{\operatorname{span}_{\mathbb{C}}(\mathcal{C})} = \widetilde{\mathcal{A}}$ (the closure denotes the C^* -algebra completion);

(f) $\forall_{a \in \mathcal{C}} \forall_{\phi \in \mathcal{H}} \quad \langle \phi, \mathfrak{J}[\mathcal{D}, a] \phi \rangle \leq 0.$

Proposition [N. Franco, M.E. (2013)]

Let $\mathcal C$ be a causal cone, then for every two states $\chi,\xi\in S(\widetilde{\mathcal A})$ define

```
\chi \leq \xi iff \forall_{a \in \mathcal{C}} \quad \chi(a) \leq \xi(a).
```

The relation \leq defines a partial order relation on $S(\widetilde{\mathcal{A}})$.

Michał Eckstein (Kraków)

A causal cone C is a subset of elements in $\widetilde{\mathcal{A}}$ such that:

- (a) $\forall_{a \in \mathcal{C}} \quad a^* = a;$
- (b) $\forall_{a,b\in\mathcal{C}} \quad a+b\in\mathcal{C};$
- $(c) \ \forall_{a \in \mathcal{C}} \ \forall_{\lambda \geq 0} \quad \lambda a \in \mathcal{C};$
- $(d) \ \forall_{x \in \mathbb{R}} \quad x1 \in \mathcal{C};$

(e) $\overline{\operatorname{span}_{\mathbb{C}}(\mathcal{C})} = \widetilde{\mathcal{A}}$ (the closure denotes the C^* -algebra completion); (f) $\forall_{a \in \mathcal{C}} \forall_{\phi \in \mathcal{H}} \quad \langle \phi, \mathfrak{J}[\mathcal{D}, a] \phi \rangle \leq 0.$

Proposition [N. Franco, M.E. (2013)]

Let $\mathcal C$ be a causal cone, then for every two states $\chi,\xi\in S(\widetilde{\mathcal A})$ define

```
\chi \leq \xi iff \forall_{a \in \mathcal{C}} \quad \chi(a) \leq \xi(a).
```

The relation \leq defines a partial order relation on $S(\widetilde{\mathcal{A}})$.

Michał Eckstein (Kraków)

A causal cone C is a subset of elements in \widetilde{A} such that:

- (a) $\forall_{a \in \mathcal{C}} \quad a^* = a;$ (b) $\forall_{a,b \in \mathcal{C}} \quad a + b \in \mathcal{C};$ (c) $\forall_{a \in \mathcal{C}} \forall_{\lambda \ge 0} \quad \lambda a \in \mathcal{C};$ (d) $\forall_{x \in \mathbb{R}} \quad x1 \in \mathcal{C};$
- (d) $\forall_{x \in \mathbb{R}} \quad x1 \in \mathcal{C};$ (e) $\overline{\operatorname{span}_{\mathbb{C}}(\mathcal{C})} = \overline{\widetilde{\mathcal{A}}}$ (the closure denotes the C*-algebra completion); (f) $\forall_{a \in \mathcal{C}} \forall_{\phi \in \mathcal{H}} \quad \langle \phi, \mathfrak{J}[\mathcal{D}, a] \phi \rangle \leq 0.$

Proposition [N. Franco, M.E. (2013)]

Let $\mathcal C$ be a causal cone, then for every two states $\chi,\xi\in S(\widetilde{\mathcal A})$ define

```
\chi \leq \xi iff \forall_{a \in \mathcal{C}} \quad \chi(a) \leq \xi(a).
```

The relation \leq defines a partial order relation on $S(\widetilde{\mathcal{A}})$.

Michał Eckstein (Kraków)

A causal cone C is a subset of elements in \widetilde{A} such that:

$$\begin{array}{ll} (a) \ \forall_{a \in \mathcal{C}} & a^* = a; \\ (b) \ \forall_{a,b \in \mathcal{C}} & a + b \in \mathcal{C}; \\ (c) \ \forall_{a \in \mathcal{C}} \ \forall_{\lambda \geq 0} & \lambda a \in \mathcal{C}; \\ (d) \ \forall_{x \in \mathbb{R}} & x1 \in \mathcal{C}; \\ (e) \ \overline{\operatorname{span}_{\mathbb{C}}(\mathcal{C})} = \overline{\widetilde{\mathcal{A}}} \ \text{(the closure denotes the C^*-algebra completion);} \\ (f) \ \forall_{a \in \mathcal{C}} \ \forall_{\phi \in \mathcal{H}} & \langle \phi, \mathfrak{J}[\mathcal{D}, a] \phi \rangle \leq 0. \end{array}$$

Proposition [N. Franco, M.E. (2013)]

Let $\mathcal C$ be a causal cone, then for every two states $\chi,\xi\in S(\widehat{\mathcal A})$ define

```
\chi \preceq \xi iff \forall_{a \in \mathcal{C}} \quad \chi(a) \leq \xi(a).
```

The relation \leq defines a partial order relation on $S(\widehat{\mathcal{A}})$.

Michał Eckstein (Kraków)

A causal cone C is a subset of elements in \widetilde{A} such that:

$$\begin{array}{ll} (a) \ \forall_{a \in \mathcal{C}} & a^* = a; \\ (b) \ \forall_{a,b \in \mathcal{C}} & a + b \in \mathcal{C}; \\ (c) \ \forall_{a \in \mathcal{C}} \ \forall_{\lambda \geq 0} & \lambda a \in \mathcal{C}; \\ (d) \ \forall_{x \in \mathbb{R}} & x1 \in \mathcal{C}; \\ (e) \ \overline{\operatorname{span}_{\mathbb{C}}(\mathcal{C})} = \overline{\widetilde{\mathcal{A}}} \ \text{(the closure denotes the C^*-algebra completion);} \\ (f) \ \forall_{a \in \mathcal{C}} \ \forall_{\phi \in \mathcal{H}} & \langle \phi, \mathfrak{J}[\mathcal{D}, a] \phi \rangle \leq 0. \end{array}$$

Proposition [N. Franco, M.E. (2013)]

Let ${\mathcal C}$ be a causal cone, then for every two states $\chi,\xi\in S({\widetilde{\mathcal A}})$ define

$$\chi \preceq \xi$$
 iff $\forall_{a \in \mathcal{C}} \quad \chi(a) \le \xi(a)$.

The relation \leq defines a partial order relation on $S(\widetilde{\mathcal{A}})$.

Michał Eckstein (Kraków)

10 / 14

Theorem (N. Franco, M.E. [2013])

Let $(\mathcal{A}, \widetilde{\mathcal{A}}, \mathcal{H}, \mathcal{D}, \mathfrak{J})$ be a commutative Lorentzian spectral triple constructed from a globally hyperbolic Lorentzian manifold M. Then,

$$P(\mathcal{A}) \cong \operatorname{Spec}(\mathcal{A}) \cong M,$$

and the partial order relation \preceq on $S(\widetilde{\mathcal{A}})$ restricted to $P(\mathcal{A})$ corresponds to the usual causal relation on M.

Causal future and past of states

Let $X = S(\widehat{\mathcal{A}}), P(\widehat{\mathcal{A}}), P(\mathcal{A})$, for every $\chi \in X$ define

 $J^+_X(\chi) = \{\xi \in X : \chi \preceq \xi\} \quad ext{and} \quad J^-_X(\chi) = \{\xi \in X : \xi \preceq \chi\}.$

Theorem (N. Franco, M.E. [2013])

Let $(\mathcal{A}, \widetilde{\mathcal{A}}, \mathcal{H}, \mathcal{D}, \mathfrak{J})$ be a commutative Lorentzian spectral triple constructed from a globally hyperbolic Lorentzian manifold M. Then,

 $P(\mathcal{A}) \cong \operatorname{Spec}(\mathcal{A}) \cong M,$

and the partial order relation \preceq on $S(\widetilde{\mathcal{A}})$ restricted to $P(\mathcal{A})$ corresponds to the usual causal relation on M.

Causal future and past of states

Let $X = S(\widetilde{\mathcal{A}}), P(\widetilde{\mathcal{A}}), P(\mathcal{A})$, for every $\chi \in X$ define

 $J^+_X(\chi) = \{\xi \in X: \chi \preceq \xi\} \quad \text{and} \quad J^-_X(\chi) = \{\xi \in X: \xi \preceq \chi\}.$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Noncommutative "extra" dimensions

Consider $\mathcal{A} = M_2(\mathbb{C})$, then $\dim_g(\mathcal{A}) = 0$, but $P(\mathcal{A}) \cong S^2$.

• Take $\mathcal{A} = C_0^{\infty}(M) \otimes M_2(\mathbb{C})$

- $\mathcal{D} = \mathcal{D}_M \otimes \mathbf{1} + \gamma^5 \otimes \mathcal{D}_F$, with $\mathcal{D}_F = \text{diag}\{d_1, d_2\}$
- Causal elements $M_2(C_0^{\infty}(M)) \ni A = \begin{pmatrix} a & c \\ c^* & b \end{pmatrix}$

Noncommutative "extra" dimensions

Consider $\mathcal{A} = M_2(\mathbb{C})$, then $\dim_g(\mathcal{A}) = 0$, but $P(\mathcal{A}) \cong S^2$.

• Take $\mathcal{A} = C_0^{\infty}(M) \otimes M_2(\mathbb{C})$

• $\mathcal{D} = \mathcal{D}_M \otimes \mathbf{1} + \gamma^5 \otimes \mathcal{D}_F$, with $\mathcal{D}_F = \text{diag}\{d_1, d_2\}$

• Causal elements $M_2(C_0^{\infty}(M)) \ni A = \begin{pmatrix} a & c \\ c^* & b \end{pmatrix}$

Noncommutative "extra" dimensions

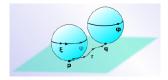
- Take $\mathcal{A} = C_0^{\infty}(M) \otimes M_2(\mathbb{C})$
- $\mathcal{D} = \mathcal{D}_M \otimes \mathbf{1} + \gamma^5 \otimes \mathcal{D}_F$, with $\mathcal{D}_F = \text{diag}\{d_1, d_2\}$
- Causal elements $M_2(C_0^{\infty}(M)) \ni A = \begin{pmatrix} a & c \\ c^* & b \end{pmatrix}$

Noncommutative "extra" dimensions

- Take $\mathcal{A} = C_0^{\infty}(M) \otimes M_2(\mathbb{C})$
- $\mathcal{D} = \mathcal{D}_M \otimes \mathbf{1} + \gamma^5 \otimes \mathcal{D}_F$, with $\mathcal{D}_F = \text{diag}\{d_1, d_2\}$
- Causal elements $M_2(C_0^{\infty}(M)) \ni A = \begin{pmatrix} a & c \\ c^* & b \end{pmatrix}$

Noncommutative "extra" dimensions

- Take $\mathcal{A} = C_0^{\infty}(M) \otimes M_2(\mathbb{C})$
- $\mathcal{D} = \mathcal{D}_M \otimes \mathbf{1} + \gamma^5 \otimes \mathcal{D}_F$, with $\mathcal{D}_F = \text{diag}\{d_1, d_2\}$
- Causal elements $M_2(C_0^{\infty}(M)) \ni A = \begin{pmatrix} a & c \\ c^* & b \end{pmatrix}$



- No classical causality violation
- Finite "speed of light" in the internal space!

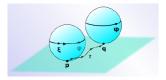
Noncommutative "extra" dimensions

- Take $\mathcal{A} = C_0^{\infty}(M) \otimes M_2(\mathbb{C})$
- $\mathcal{D} = \mathcal{D}_M \otimes \mathbf{1} + \gamma^5 \otimes \mathcal{D}_F$, with $\mathcal{D}_F = \text{diag}\{d_1, d_2\}$
- Causal elements $M_2(C_0^{\infty}(M)) \ni A = \begin{pmatrix} a & c \\ c^* & b \end{pmatrix}$

- No classical causality violation
- Finite "speed of light" in the internal space!

Noncommutative "extra" dimensions

- Take $\mathcal{A} = C_0^{\infty}(M) \otimes M_2(\mathbb{C})$
- $\mathcal{D} = \mathcal{D}_M \otimes \mathbf{1} + \gamma^5 \otimes \mathcal{D}_F$, with $\mathcal{D}_F = \text{diag}\{d_1, d_2\}$
- Causal elements $M_2(C_0^{\infty}(M)) \ni A = \begin{pmatrix} a & c \\ c^* & b \end{pmatrix}$



- No classical causality violation
- Finite "speed of light" in the internal space!

- Introduction & motivation
- 2 Spectral Triples
- 3 Causality

Э

E > < E >

• Forget about events - use states.

- Is there a hidden causal structure in gauge theories?
- Is the Universe commutative? Check it twice!

- N. Franco: Lorentzian approach to noncommutative geometry PhD thesis University of Namur (2011) (Namur: Presses Universitaires de Namur), (arXiv:1108.0592)
- N. Franco, M. Eckstein: An algebraic formulation of causality for noncommutative geometry, Class. Quant. Grav. 30 (2013) 135007, (arXiv:1212.5171v3)

- Forget about events use states.
- Is there a hidden causal structure in gauge theories?
- Is the Universe commutative? Check it twice!

- N. Franco: Lorentzian approach to noncommutative geometry PhD thesis University of Namur (2011) (Namur: Presses Universitaires de Namur), (arXiv:1108.0592)
- N. Franco, M. Eckstein: An algebraic formulation of causality for noncommutative geometry, Class. Quant. Grav. 30 (2013) 135007, (arXiv:1212.5171v3)

- Forget about events use states.
- Is there a hidden causal structure in gauge theories?
- Is the Universe commutative? Check it twice!

- N. Franco: Lorentzian approach to noncommutative geometry PhD thesis University of Namur (2011) (Namur: Presses Universitaires de Namur), (arXiv:1108.0592)
- N. Franco, M. Eckstein: An algebraic formulation of causality for noncommutative geometry, Class. Quant. Grav. 30 (2013) 135007, (arXiv:1212.5171v3)

- Forget about events use states.
- Is there a hidden causal structure in gauge theories?
- Is the Universe commutative? Check it twice!

- N. Franco: Lorentzian approach to noncommutative geometry PhD thesis University of Namur (2011) (Namur: Presses Universitaires de Namur), (arXiv:1108.0592)
- N. Franco, M. Eckstein: An algebraic formulation of causality for noncommutative geometry, Class. Quant. Grav. 30 (2013) 135007, (arXiv:1212.5171v3)