Quantum gravitational fluctuations of a time delay observable in the Minkowski vacuum of linearized gravity [arXiv:1307.0256 ; follow-up on arXiv:1111.7127]

Béatrice Bonga and Igor Khavkine

Institute for Theoretical Physics Utrecht University

4 July 2013

Motivation

If I had a theory of Quantum Gravity (QG), what would I do with it?

- Our answer: Compute qualitative and quantitative QG corrections to experiments and observations.
- Idea: Work backwards! Start with a potential experiment (even if only in principle possible), described operationally.
 Construct a mathematical model of it and obtain an observable quantity with an unambiguous interpretation.

Motivation

If I had a theory of Quantum Gravity (QG), what would I do with it?

- Our answer: Compute qualitative and quantitative QG corrections to experiments and observations.
- Idea: Work backwards! Start with a potential experiment (even if only in principle possible), described operationally.
 Construct a mathematical model of it and obtain an observable quantity with an unambiguous interpretation.

Motivation

If I had a theory of Quantum Gravity (QG), what would I do with it?

- Our answer: Compute qualitative and quantitative QG corrections to experiments and observations.
- Idea: Work backwards! Start with a potential experiment (even if only in principle possible), described operationally.
 Construct a mathematical model of it and obtain an observable quantity with an unambiguous interpretation.

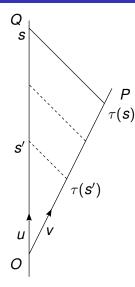
Outline

Motivation: Observables from Thought Experiments

2 Thought experiment

3 Calculation

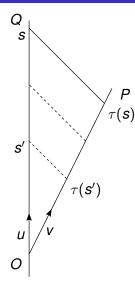
Thought experiment set-up I



- Two inertially moving, localized systems: the lab and the probe.
- Probe is launched from the lab at event *O*.
- Both carry a proper-time clock, which is synchronized at *O*.
- Probe sends signals that are time stamped with the emission time τ at P.
- The lab records the signals at reception time, s at Q, together with the time stamp τ(s).

Observable

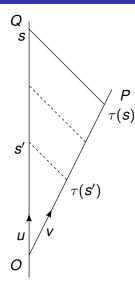
Thought experiment set-up I



- Two inertially moving, localized systems: the lab and the probe.
- Probe is launched from the lab at event *O*.
- Both carry a proper-time clock, which is synchronized at *O*.
- Probe sends signals that are time stamped with the emission time τ at P.
- The lab records the signals at reception time, s at Q, together with the time stamp τ(s).

Observable

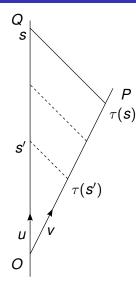
Thought experiment set-up I



- Two inertially moving, localized systems: the lab and the probe.
- Probe is launched from the lab at event *O*.
- Both carry a proper-time clock, which is synchronized at *O*.
- Probe sends signals that are time stamped with the emission time τ at P.
- The lab records the signals at reception time, s at Q, together with the time stamp τ(s).

Observable

Thought experiment set-up I

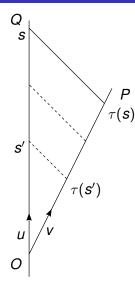


- Two inertially moving, localized systems: the lab and the probe.
- Probe is launched from the lab at event *O*.
- Both carry a proper-time clock, which is synchronized at *O*.
- Probe sends signals that are time stamped with the emission time τ at P.
- The lab records the signals at reception time, s at Q, together with the time stamp τ(s).

Observable

Calculation Result Co

Thought experiment set-up I

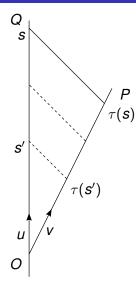


- Two inertially moving, localized systems: the lab and the probe.
- Probe is launched from the lab at event *O*.
- Both carry a proper-time clock, which is synchronized at *O*.
- Probe sends signals that are time stamped with the emission time τ at P.
- The lab records the signals at reception time, *s* at *Q*, together with the time stamp $\tau(s)$.

Observable

Calculation Result Co

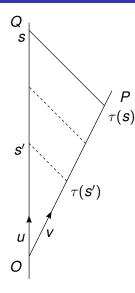
Thought experiment set-up I



- Two inertially moving, localized systems: the lab and the probe.
- Probe is launched from the lab at event *O*.
- Both carry a proper-time clock, which is synchronized at *O*.
- Probe sends signals that are time stamped with the emission time τ at P.
- The lab records the signals at reception time, *s* at *Q*, together with the time stamp $\tau(s)$.

Observable

Thought experiment set-up II

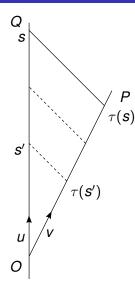


Introduce quantum gravitational effects

$$\begin{array}{l} \bullet \ g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} \\ \bullet \ h_{\mu\nu} \longrightarrow \hat{h}_{\mu\nu} \end{array}$$

- In classical limit, $QG \longrightarrow GR$
- Generalize this idea knowing that the

Thought experiment set-up II



Introduce quantum gravitational effects

$$g_{\mu
u} = \eta_{\mu
u} + h_{\mu
u}$$

 $h_{\mu
u} \longrightarrow \hat{h}_{\mu
u}$

Why is this reasonable?

- In classical limit, $QG \longrightarrow GR$
- Generalize this idea knowing that the Fock quantization of a linear theory is often a good approximation of the quantum theory of any field whose dynamics is approximated by a linear theory – in the appropriate limit,
 QG → quantum linearized gravity

Calculation

Observable expectation values I

Choose $|\psi\rangle$ to be the Poincaré invariant Fock vacuum

- Natural choice
- Simplifies calculations

• Physical quantities
$$\langle 0|\hat{\tau}^n(s)|0\rangle = \int d\tau \, \tau^n P(\tau) \sim \int d\tau \, \tau^n e^{-\frac{\tau-\mu}{2\sigma^2}}$$

• $\hat{\tau}(s)$ is linear in $h \Longrightarrow$ any moment can be computed using μ and σ^2 of the emission time $\hat{\tau}(s)$

Observable expectation values I

- Choose $|\psi
 angle$ to be the Poincaré invariant Fock vacuum
 - Natural choice
 - Simplifies calculations
- Physical quantities $\langle 0|\hat{\tau}^n(s)|0\rangle = \int d\tau \, \tau^n P(\tau) \sim \int d\tau \, \tau^n e^{-\frac{\tau-\mu}{2\sigma^2}}$
- $\hat{\tau}(s)$ is linear in $h \Longrightarrow$ any moment can be computed using μ and σ^2 of the emission time $\hat{\tau}(s)$

Observable expectation values I

- Choose $|\psi
 angle$ to be the Poincaré invariant Fock vacuum
 - Natural choice
 - Simplifies calculations
- Physical quantities $\langle 0|\hat{\tau}^n(s)|0\rangle = \int d\tau \, \tau^n P(\tau) \sim \int d\tau \, \tau^n e^{-\frac{\tau-\mu}{2\sigma^2}}$
- $\hat{\tau}(s)$ is linear in $h \Longrightarrow$ any moment can be computed using μ and σ^2 of the emission time $\hat{\tau}(s)$

Observable expectation values II

$$\tau(s) = \frac{s}{\gamma} \longrightarrow \tilde{\tau}(s) = e^{r(h)} \tau_{\eta}(s) = \frac{s}{\gamma} (1 + r(\hat{h}) + \mathcal{O}(h^2))$$

where γ = time dilation factor

$$\mu = \langle 0|\tilde{\tau}(s)|0\rangle = \frac{s}{\gamma} \langle 0|1|0\rangle + \langle 0|r(\hat{h})|0\rangle + \mathcal{O}(h^2) = \frac{s}{\gamma} + \mathcal{O}(h^2)$$

$$\sigma^2 = \langle 0|\tilde{\tau}(s)^2|0\rangle - \langle 0|\tilde{\tau}(s)|0\rangle^2$$

$$= \frac{s^2}{\gamma^2} (1 + 0 + \langle 0|r(\hat{h})^2|0\rangle + \langle 0|r_2(\hat{h})|0\rangle - 1 + \mathcal{O}(h^3)) \sim \frac{s^2}{\gamma^2} \langle 0|r(\hat{h})^2|0\rangle$$

where $r(\hat{h})$ is a linear integro-differential operator on h and $r_2(h)$ is quadratic in h^2 .

ght experiment

Observable expectation values II

$$\tau(s) = \frac{s}{\gamma} \longrightarrow \tilde{\tau}(s) = e^{r(h)} \tau_{\eta}(s) = \frac{s}{\gamma} (1 + r(\hat{h}) + \mathcal{O}(h^2))$$

where γ = time dilation factor

$$\begin{split} \mu &= \langle \mathbf{0} | \tilde{\tau}(\boldsymbol{s}) | \mathbf{0} \rangle = \frac{\boldsymbol{s}}{\gamma} \langle \mathbf{0} | \mathbf{1} | \mathbf{0} \rangle + \langle \mathbf{0} | \boldsymbol{r}(\hat{h}) | \mathbf{0} \rangle + \mathcal{O}(h^2) = \frac{\boldsymbol{s}}{\gamma} + \mathcal{O}(h^2) \\ \sigma^2 &= \langle \mathbf{0} | \tilde{\tau}(\boldsymbol{s})^2 | \mathbf{0} \rangle - \langle \mathbf{0} | \tilde{\tau}(\boldsymbol{s}) | \mathbf{0} \rangle^2 \\ &= \frac{\boldsymbol{s}^2}{\gamma^2} (1 + \mathbf{0} + \langle \mathbf{0} | \boldsymbol{r}(\hat{h})^2 | \mathbf{0} \rangle + \langle \mathbf{0} | \boldsymbol{r}_2(\hat{h}) | \mathbf{0} \rangle - 1 + \mathcal{O}(h^3)) \sim \frac{\boldsymbol{s}^2}{\gamma^2} \langle \mathbf{0} | \boldsymbol{r}(\hat{h})^2 | \mathbf{0} \rangle \end{split}$$

where $r(\hat{h})$ is a linear integro-differential operator on *h* and $r_2(h)$ is quadratic in h^2 .

- All terms contain $\langle \hat{h}(x) \hat{h}(y)
 angle \sim rac{1}{(x-y)^2}$
- Need regularization for $x \longrightarrow y$
- Compare with QED, (*E*(*x*)²) diverges, but (*E*(*x*)²) is finite and represents the vacuum noise in a detector with sensitivity profile *g̃*(*x*).
- Use smearing

$$\hat{h}(x) \longrightarrow \tilde{h}(x) = \int \mathrm{d}z \, \hat{h}(x-z) \, g(z)$$

- All terms contain $\langle \hat{h}(x)\hat{h}(y)
 angle \sim rac{1}{(x-y)^2}$
- Need regularization for $x \longrightarrow y$
- Compare with QED, (*E*(*x*)²) diverges, but (*E*(*x*)²) is finite and represents the vacuum noise in a detector with sensitivity profile *g̃*(*x*).
- Use smearing

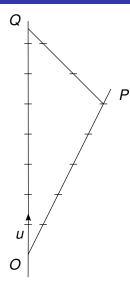
$$\hat{h}(x) \longrightarrow \tilde{h}(x) = \int \mathrm{d}z \, \hat{h}(x-z) \, g(z)$$

- All terms contain $\langle \hat{h}(x)\hat{h}(y)
 angle \sim rac{1}{(x-y)^2}$
- Need regularization for $x \longrightarrow y$
- Compare with QED, (*E*(*x*)²) diverges, but (*E*(*x*)²) is finite and represents the vacuum noise in a detector with sensitivity profile *g*(*x*).
- Use smearing

$$\hat{h}(x) \longrightarrow \tilde{h}(x) = \int \mathrm{d}z \, \hat{h}(x-z) \, g(z)$$

- All terms contain $\langle \hat{h}(x) \hat{h}(y) \rangle \sim rac{1}{(x-y)^2}$
- Need regularization for $x \longrightarrow y$
- Compare with QED, (*E*(*x*)²) diverges, but (*E*(*x*)²) is finite and represents the vacuum noise in a detector with sensitivity profile *g*(*x*).
- Use smearing

$$\hat{h}(x) \longrightarrow \tilde{h}(x) = \int \mathrm{d}z \, \hat{h}(x-z) \, g(z)$$



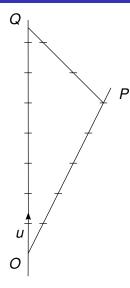
This gives

$$egin{aligned} ilde{h}(x) ilde{h}(y)
angle &\sim \int \mathrm{d} z_1 \int \mathrm{d} z_2 rac{ ilde{g}_u(z_1) ilde{g}_u(z_2)}{(x-z_1-y+z_2)^2} \ &\sim \int \mathrm{d} z rac{1}{(x-y-z)^2} g_u(z) \ &\sim rac{1}{\mu^2} \end{aligned}$$

where $\mu = \text{spatio-temporal resolution of } g_u(z)$

• We take $g_u(z) \sim g(z_\perp^2) \delta(z \cdot u)$

• This breaks Lorentz symmetry. Up to this point entire calculation was Lorentz invariant!



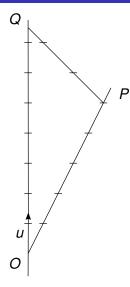
This gives

$$egin{aligned} ilde{h}(x) ilde{h}(y)
angle &\sim \int \mathrm{d} z_1 \int \mathrm{d} z_2 rac{ ilde{g}_u(z_1) ilde{g}_u(z_2)}{(x-z_1-y+z_2)^2} \ &\sim \int \mathrm{d} z rac{1}{(x-y-z)^2} g_u(z) \ &\sim rac{1}{\mu^2} \end{aligned}$$

where $\mu =$ spatio-temporal resolution of $g_{u}(z)$

• We take $g_u(z) \sim g(z_\perp^2) \delta(z \cdot u)$

• This breaks Lorentz symmetry. Up to this



This gives

$$egin{aligned} ilde{h}(x) ilde{h}(y)
angle &\sim \int \mathrm{d} z_1 \int \mathrm{d} z_2 rac{ ilde{g}_u(z_1) ilde{g}_u(z_2)}{(x-z_1-y+z_2)^2} \ &\sim \int \mathrm{d} z rac{1}{(x-y-z)^2} g_u(z) \ &\sim rac{1}{\mu^2} \end{aligned}$$

where $\mu =$ spatio-temporal resolution of $g_{u}(z)$

- We take $g_u(z) \sim g(z_\perp^2) \delta(z \cdot u)$
- This breaks Lorentz symmetry. Up to this point entire calculation was Lorentz invariant!

Result I

$$\langle \tilde{r}^2 \rangle = \frac{\ell_p^2}{\mu^2} \left(\rho_0 + \rho_1 \frac{\mu}{s} + \rho_2 \frac{\mu^2}{s^2} + \left(\frac{\mu^3}{s^3} \right) \right) + \left(\frac{\ell_p^2}{\mu^2} \right)$$

$$\begin{aligned} v &= v_{rel}/c < 1 & v = 1 \\ \rho_0 &= \frac{1}{v^2} \left(\frac{51}{8} + 8v + \frac{141}{8}v^2 \right) - \frac{1}{v^2} \left(3 + 4v \right) \frac{1 - v^2}{v} \log \left(\frac{1 + v}{1 - v} \right) & \rho_0 = 29 \\ \rho_1 &= -2\pi^2 & \rho_1 = -\frac{1}{4}\pi^2 \\ \rho_2 &= 0 & \rho_2 = 0 \end{aligned}$$

 $(1) \\ (2) \\ (3) \\ (7)$

Béatrice Bonga (Penn State)

1.0

Result II

• Low v approximation

$$\left< riangle au(\boldsymbol{s}) \right> \sim \sqrt{\frac{3}{8}} \left(\frac{1}{v} \frac{\boldsymbol{s}}{\mu} \right) \ell_{\boldsymbol{p}}$$

with enhancement factors

1
$$s/\mu$$
 = set-up length scale/detector resolution
2 $1/v = c/v_{rel}$

S	1 m/s	10 ⁵ m/s (Hubble recession velocity at 1 Mpc)	10 ⁸ m/s (relativis velocity)
lab scale (1 m/s)	10 ¹⁷	10 ¹²	10 ⁹
cosmological (1 Mpc)	10 ³⁹	10 ³⁴	10 ³¹

The (dimensionless) enhancement factor (on top of the Planck scale $\ell_{\rho} \sim 10^{-44}$ s) for $\Delta \tau$ for a detector resolution scale $\mu = 10^{-9}$ m (X-ray wavelength).

Béatrice Bonga (Penn State)

- Currently this is not observable, however, it is not out of the question that alternative lab scenarios may be closer to the current state of the art.
- Lorentz invariance is broken, which is likely due to our choice of smearing.
- The divergence for $v \rightarrow 0$ is puzzling.
 - our approximation scheme requires $\mu/s \ll 1$, but as $v \to 0$ this is violated (this is also true for the limit $v \to 1$);
 - the quadratic correction that we neglected for pragmatic reasons may cancel the low velocity divergence.

• Aim was to construct an observable within realm of QG and calculate its effect.

Nice features

- + Easily extendable to other planar geometries.
- + Generalizable to curved (background) spacetimes
- + Can be used to contrast predictions of the conservative linearized gravity with more 'exotic quantum gravity' models.

• Future application: Which observable can tell us the 'size' of a black hole? And what can it say about BH evaporation?

• Aim was to construct an observable within realm of QG and calculate its effect.

Nice features

- + Easily extendable to other planar geometries.
- + Generalizable to curved (background) spacetimes
- + Can be used to contrast predictions of the conservative linearized gravity with more 'exotic quantum gravity' models.
- Future application: Which observable can tell us the 'size' of a black hole? And what can it say about BH evaporation?

• Aim was to construct an observable within realm of QG and calculate its effect.

Nice features

- + Easily extendable to other planar geometries.
- + Generalizable to curved (background) spacetimes
- + Can be used to contrast predictions of the conservative linearized gravity with more 'exotic quantum gravity' models.
- Future application: Which observable can tell us the 'size' of a black hole? And what can it say about BH evaporation?

- Aim was to construct an observable within realm of QG and calculate its effect.
- Nice features
 - + Easily extendable to other planar geometries.
 - + Generalizable to curved (background) spacetimes
 - + Can be used to contrast predictions of the conservative linearized gravity with more 'exotic quantum gravity' models.
- Future application: Which observable can tell us the 'size' of a black hole? And what can it say about BH evaporation?

- Aim was to construct an observable within realm of QG and calculate its effect.
- Nice features
 - + Easily extendable to other planar geometries.
 - + Generalizable to curved (background) spacetimes
 - + Can be used to contrast predictions of the conservative linearized gravity with more 'exotic quantum gravity' models.
- Future application: Which observable can tell us the 'size' of a black hole? And what can it say about BH evaporation?

- Aim was to construct an observable within realm of QG and calculate its effect.
- Nice features
 - + Easily extendable to other planar geometries.
 - + Generalizable to curved (background) spacetimes
 - + Can be used to contrast predictions of the conservative linearized gravity with more 'exotic quantum gravity' models.
- Future application: Which observable can tell us the 'size' of a black hole? And what can it say about BH evaporation?