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Motivation

There are several reasons to study the hydrodynamics within AdS/CFT framework:

Ongoing programme of strongly coupled plasma investigation at LHC, RHIC

Strongly coupled dynamics of non-abelian gauge theory at �nite temperature

Possible insight into non-equilibrium physics beyond hydrodynamics
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What is hydrodynamics?

It is an e�ective theory of low energy dynamics of conserved charges, which
remain after integrating high energy d.o.f.:

∇µTµν(x) = 0

It assumes local thermal equilibrium, which introduces e�ective collective degrees
of freedom: local temperature T (x), velocity �eld uµ(x) and other conserved

quantities, varying only on large scales: ε =
lmfp

L
<< 1

Thermodynamic variables in Tµν(T (x), uµ(x), ...) can be expanded in gradients,
∇T
T2 ∼ ε, to obtain viscous contributions to perfect �uid

Usually we take this series �for granted� and use it as the hydrodynamic equation,
but is it a convergent expansion?
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Equations of hydrodynamics

Recent progress in �uid/gravity duality allowed for derivation of 2nd order viscous
conformal hydrodynamics in d = 4 (up to 3rd ord. in boost-invariant case)

T
µν = (πT )4(ηµν + 4uµuν)− 2(πT )3σµν

+ (πT )2(ln(2)Tµν
2a + 2Tµν

2b + (2− ln(2))(
1

3
T
µν
2c + T

µν
2d + T

µν
2e ))

Where transport coe�cients are: η, τΠ, κ, λ1, λ2, λ3, and

σµν = P
µα

P
νβ∂(αuβ) −

1

3
P
µν∂αu

α

T
µν
2a = εαβγ(µσν)

γ uαlβ

T
µν
2b = σµασνα −

1

3
P
µνσαβσαβ

T
µν
2c = ∂αu

ασµν

T
µν
2d = Du

µ
Du

ν − 1

3
P
µν
Du

α
Duα

T
µν
2e = P

µα
P
νβ
D(∂(αuβ))−

1

3
P
µν
P
αβ

D(∂αuβ)

lµ = εαβγµu
α∂βuγ , D = u

α∂α, P
µν = u

µ
u
ν + ηµν .
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Particular dual hydrodynamics from AdS/CFT
MH, RJ, PW, PRL 108, 201602 (2012)

Consider boost-invariant d = 4 conformal �uid, the Bjorken model for RHIC

Boundary coordinates are such that: ds2 = −dτ2 + τ2dy2 + dx2⊥

The stress tensor obeying symmetries has just one unknown function ε(τ), to be
speci�ed by AdS dual evolution:

T
µ
ν = Diag(−ε(τ), pL(τ), pT (τ), pT (τ)), Tµ

µ = 0

pL = −ε− τε′, pT = ε+
1

2
τε′, u = ∂τ , u

2 = −1

This system models the QGP expansion at mid-rapidity region (�∞� collision
energy) and is motivated by the search for the rapid themalization mechanism

To such a �uid one can construct a gravity dual

In order to trace the whole evolution and thermalization, full nonlinear spectral
numerical simulation was developed, employing ADM-like formulation

ε(τ) was then obtained from the numerical solution
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�In�nite order� hydrodynamics

In this much constrained system one can rewrite the hydrodyamics equations
∇µTµν = 0 in a very interesting fashon

Those equations are �rst order in time, and we only have proper time τ as an
independent variable

By introducing dimensionless variable w = Te� (τ)τ ∼ ε1/4(τ)τ we can write:

τ

w

d

dτ
w =

Fhydro(w)

w

Fhydro(w)/w is in hydrodynamic regime completely determined by transport
coe�cients and universal

On every hydrodynamic solution it evaluates to unity (it is the de�nition of the
hydrodynamic equation)

From numerical simulations we can independently read-o� ε′(τ) and ε(τ), so we
can parametrically plot the function Fhydro(w)/w

But that function from full nonlinear evolution contains the whole information on
the plasma dynamics, even beyond equlibrium and hydrodynamics

Thus one can observe the transition to 'all-order' hydrodynamics, and also what
happens before it
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�In�nite order� hydrodynamics
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Tempting possibility

The late time expansion of the function F (w)/w is known explicitly up to 3rd

order in the boost invariant case:

F (w)

w
=

2

3
+

1

9πw
+

1− ln2

27π2w2
+

15− 2π2 − 45ln2 + 24ln22

972π3w3
+ . . .

Is it possible to obtain expression for F (w)/w to some very high order in 1/w and
resume it?

Could it give some insight into the deep non-equilibrium region of Fig 1?

Extension of hydrodynamic F (w)/w could incorporate somehow the genuine
non-equilibrium D.O.F.

Result of simulation shows that the plot is regular (althoug very diverse) before
the hydrodynamic regime

Similarily, how would the energy density ε(τ) look like after such a resummation?

Is it possible to extend the plots to τ = 0?

We address these questions next
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Two approaches to the energy density series

There are in principle two ways to obtain perturbative contributions to energy
density from gravity

One is to consider �uid/gravity duality in the long wavelength regime and employ
gradients expansion

This permits only slow metric variations but of arbitrarily large scale

Thus it includes black hole formation, horizon dynamics and viscous processes,
like entropy production

The other way is to consider linearized evolution on a given background

This way leads to quasinormal modes and arbitrarily fast evolution, however
without dissipation

One can even consider �QNM� of dynamic geometries (R. Janik, R. Peschanski,
2006)

Is there some link between these two approaches?
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Gradient expansion for numerics
MH, RJ, PW, PRL 110, 211602 (2013)

We can construct semi-analytic series for ε(τ) and F (w)/w from a dual metric

Utilizing �uid/gravity duality, we start by choosing the metric (in proper-time E-F
coordinates) as:

ds
2 = 2dτdr − Adτ2 + Σ2

e
−2B

dy
2 + Σ2

e
B(dx21 + dx

2
2 )

Functions A, B, Σ depend on τ and r , and are systematically corrected in powers
of τ−2/3

Analytically known late time energy density,

ε(τ) =
3

8
N

2π2
1

τ4/3
(ε2 + ε3

1

τ2/3
+ ε4

1

τ4/3
+ ...),

re�ects gradient expansion of velocity uµ in units of temperature T :
T−1∇µuν ∼ ε−1/4τ−1 ∼ τ1/3τ−1 = τ−2/3

Terms εi are the �rst few transport coe�cients

We want to compute this series to very high order
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High order energy density

Using gradient expansion in proper time, expression for energy density ε(τ) (and
thus F (w)/w) was obtained, up to order 240, à la M. Heller et al., 2009

Einstein equations were analytically expanded in time τ and numerically
integrated in the bulk variable r

Resulting semi-analytic expression for the energy density reads:

ε(τ) =
1

τ4/3

N∑
i=0

εiτ
−2/3i ,N ∼ 240

By construction it should describe only hydrodynamic information, as it is
performed in the late time/long wavelength regime

One could hope that including higher and higher terms would improve the quality
of the energy approximation

It turns out, not quite so..

Przemek Witaszczyk On the Hydrodynamic Gradient Expansion of Holographic Fluid



Introduction
Higher order hydrodynamics

Holographic high order hydrodynamics

Full nonlinear result
Perturbative considerations
Conclusions

Perturbative-numeric F (w)/w

The expected improvment in 'universal hydrodynamic' function is not there:
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Divergence

A closer look at the character of the series coe�cients (basic step when handling
series..) reveals the anticipated truth:
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The nature of the series

This type of behavior is characteristic of asymptotic series with factorial grownth
of coe�cients,

εn ∼ Ca
n
n!

The Cauchy criterion and Stirling's formula indicate linear grownth of such a
series:

(εn/ε2)
1

n ∼ (|ann!|)
1

n ∼ (|annne−n|)
1

n ∼ an/e

It is thus natural to employ the Borel resummation technique to resum the series
and recover possible nonperturbative information limiting its convergence radius
to zero
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Borel resummation

Borel transform and sum are commonly used tools in the context of perturbation
theory in QFT

Here however we deal with expansion in time, not coupling constant

It is then interesting to see how the method will work

Borel tranform for a 'divergent function' ε(u) =
∑

k εku
k , u = τ−2/3, is de�ned

as:

εB(ζ) =
∞∑
k=0

ε̃kζ
k =

∞∑
k=0

εk
k!
ζk

This auxiliary series should possess non-zero radius of convergence, and de�ne an
analytic function around ζ = 0

Inverse operation de�ning resummation (and undoing prohbited change of sums)
is:

εR(u) =

∫ ∞
0

dζe−ζεB(ζu)

Unique Laplace transform should exist, provided integrand is regular in Reζ > 0
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Borel transformed energy

To perform the transform, function εB(ζ) should be integrable up to in�nity, at
least in some neighborhood of R+

In practice, this means that we must analytically continue the transform, if it does
not reach to in�nity
For �nite expressions obtained from numerics, one often employs Padé
approximants (like in e.g. Z. Ambrozinski, J. Wosiek, 2013)
Our energy density treated like that reveals interesting poles structure:
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Borel transformed energy

Pade continuation reveals something that may be complicated cut structure

The radius of convergence is now estimated from Cauchy's criterion to be
|ω̃0| ∼ 6.37 (and agrees with a �t of subleading power grownth of the series, an)

Absence of Pade poles on the R+ is a good sign and suggests possibility of energy
and F (w)/w resummation

However presence of poles on the right halfplane introduces certain (interesting!)
ambiguity

Now complex integral may reach in�nity in many nonequivalent ways!

What are these numbers: poles and |ω̃0|?
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A di�erent approach

Let us now consider the other way, linearized evolution on the dynamic backgroud

The dynamics of metric perturbation can be investigated numerically on the
background of perfect �uid with �rst viscous correction:

B(τ, z) = Bhydro(τ, z) + δB(τ, z), 2gδB(τ, z) = 0

From the latter, the contribution to energy density ε(τ) is computed following
AdS/CFT dictionary

The result, very interestingly, con�rms and generalizes previous analytic dynamic
background calculations of �Viscous QNM� by R. Janik, R. Peschanski in 2006,

δε(τ) ∼ ταqnme−i
3

2
ωqnmτ

2/3

,

with:

αqnm = −1.5422 + 0.5199i , ωqnm = 3.1195− 2.7467i

Now due to viscous correction to geometry, subleading power contribution αqnm is
present
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Back to Borel transformed energy

It is interesting to compare this with the Borel resummed energy density εR(τ)

Due to ambiguity in computing Borel-Laplace integral, we can include some poles
in the contour

Encircling some of the poles introduce exponental factors to the resummed energy
density!

Contribution from the very tip of the structure is:

δε(τ) ∼ ταBorel e−i
3

2
ωBorel τ

2/3

,

and ωBorel = 3.1193− 2.7471i = ωqnm !!!

Moreover, αBorel = −1.5426 + 0.5192i = αqnm !!!

Non-equilibrium leading QNM is the obstruction controlling the radius of
convergence of Borel transformed energy εB(ζ)

The subleading viscous power term comes from the 'cut' nature of contribution,
τα+iβe.. and can be computed by a �t to a certain deformation of εR(τ)

This e�ect closely resembles instantonic phenomena in QFT, but here the
exponent is non-integer and in time, not coupling!
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We have seen some of these numbers before

Set of zero-momentum complex quasinormal modes of static black brain, qn/πT ,
A. Starinets 2002:
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QNM in Borel transformed energy εB(ζ)

Now several previous QNM can be found on the Borel-Pade plane!
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QNM in Borel transformed energy εB(ζ)

We see now, that the radius of convergence of Borel transformed energy density
εB(ζ) is controlled by the lowest non-hydrodynamic quasinormal mode ω0,

ωBorel = ωqnm = ω0

and radius of convergence is in fact:

|ω̃0| ∼ 6.37 ∼ 3

2
|ω0|

It is purely non-equlibrium fast degree of freedom, nevertheless it is contained in
the late time hydrodynamic equilibrium expansion

QNM are exponentially small (non-perturbative) in the late time limit τ →∞
It seems that the energy is an example on a resurgent series, in small parameters

τ−# and e−#τ+#
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Conclusions

Hydrodynamic gradient expansion is asymptotic

Genuine non-equilibrium d.o.f. are the master villains standing behind this threat

The non-perturbative ambiguity is in agreement with explicit QNM calculation,
even up to subleading �viscous� prefactor

Lack of poles on R+ may suggest the possibility of resummed hydrodynamics

It then may allow for a re�ned criterion of QGP hydrodynamization time

Maybe non-equilibrium d.o.f. could be explicitly included in the dynamics of Tµν?
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