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Horizons

An observer in a spacetime (M, gab) is represented by an

inextendible timelike curve γ. Let I−(γ) denote the

chronological past of γ. The future horizon, h+, of γ is

defined to be the boundary, İ−(γ) of I−(γ).
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γ )(I
−

Theorem: Each point p ∈ h+ lies on a null geodesic

segment contained entirely within h+ that is future



inextendible. Furthermore, the convergence of these null

geodesics that generate h+ cannot become infinite at a

point on h+.

Can similarly define a past horizon, h−. Can also define

h+ and h− for families of observers.
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Black Holes and Event Horizons

Consider an asymptotically flat spacetime (M, gab). (The

notion of asymptotic flatness can be defined precisely

using the notion of conformal null infinity.) Consider the

family of observers Γ who escape to arbitrarily large

distances at late times. If the past of these observers

I−(Γ) fails to be the entire spacetime, then a black hole

B ≡M − I−(Γ) is said to be present. The horizon, h+, of

these observers is called the future event horizon of the

black hole.

This definition allows “naked singularities” to be present.



Cosmic Censorship

A Cauchy surface, C, in a (time orientable) spacetime

(M, gab) is a set with the property that every

inextendible timelike curve in M intersects C in precisely

one point. (M, gab) is said to be globally hyperbolic if it

possesses a Cauchy surface C. This implies that M has

topology R× C.

An asymptotically flat spacetime (M, gab) possessing a

black hole is said to be predictable if there exists a region

of M containing the entire exterior region and the event

horizon, h+, that is globally hyperbolic. This expresses

the idea that no “naked singularities” are present.



Cosmic Censor Hypothesis: The maximal Cauchy

evolution—which is automatically globally hyperbolic—of

an asymptotically flat initial data set (with suitable

matter fields) generically yields an asymptotically flat

spacetime with complete null infinity.

The validity of the cosmic censor hypothesis would assure

that any observer who stays outside of black holes could

not be causally influenced by singularities.



Spacetime Diagram of Gravitational Collapse
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Spacetime Diagram of Gravitational Collapse

with Angular Directions Suppressed and Light
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Null Geodesics and the Raychauduri Equation

For a congruence of null geodesics with affine parameter

λ and null tangent ka, define the expansion, θ, by

θ = ∇ak
a

The area, A of an infinitesimal area element transported

along the null geodesics varies as

d(lnA)

dλ
= θ

For null geodesics that generate a null hypersurface (such

as the event horizon of a black hole), the twist, ωab,

vanishes. The Raychauduri equation—which is a direct



consequence of the geodesic deviation equation—then

yields
dθ

dλ
= −

1

2
θ2 − σabσ

ab −Rabk
akb

where σab is the shear of the congruence. Thus, provided

that Rabk
akb ≥ 0 (i.e., the null energy condition holds),

we have
dθ

dλ
≤ −

1

2
θ2

which implies
1

θ(λ)
≤

1

θ0
+

1

2
λ

Consequently, if θ0 < 0, then θ(λ1) = −∞ at some

λ1 < 2/|θ0| (provided that the geodesic can be extended

that far).



The Area Theorem

Any horizon h+, is generated by future inextendible null

geodesics; cannot have θ = −∞ at any point of h+.

Thus, if the horizon generators are complete, must have

θ ≥ 0. However, for a predictable black hole, can show

that θ ≥ 0 without having to assume that the generators

of the event horizon are future complete—by a clever

argument involving deforming the horizon outwards at a

point where θ < 0.

Let S1 be a Cauchy surface for the globally hyperbolic

region appearing in the definition of predictable black

hole. Let S2 be another Cauchy surface lying to the

future of S1. Since the generators of h+ are future



complete, all of the generators of h+ at S1 also are

present at S2. Since θ ≥ 0, it follows that the area carried

by the generators of h+ at S2 is greater or equal to

A[S1 ∩ h
+]. In addition, new horizon generators may be

present at S2. Thus, A[S2 ∩ h
+] ≥ A[S1 ∩ h

+], i.e., we

have the following theorem:

Area Theorem: For a predictable black hole with

Rabk
akb ≥ 0, the surface area A of the event horizon h+

never decreases with time.



Killing Vector Fields

An isometry is a diffeomorphism (“coordinate

transformation”) that leaves the metric, gab invariant. A

Killing vector field, ξa, is the infinitesimal generator of a

one-parameter group of isometries. It satisfies

0 = Lξgab = 2∇(aξb)

For a Killing field ξa, let Fab = ∇aξb = ∇[aξb]. Then ξ
a is

uniquely determined by its value and the value of Fab at

an aribitrarily chosen single point p.



Bifurcate Killing Horizons

2-dimensions: Suppose a Killing field ξa vanishes at a

point p. Then ξa is determined by Fab at p. In

2-dimensions, Fab =∝ ǫab, so ξ
a is unique up to scaling

If gab is Riemannian, the orbits of the isometries

generated by ξa must be closed and, near p, the orbit

structure is like a rotation in flat space:

.
p

Similarly, if gab is Lorentzian, the isometries must carry



the null geodesics through p into themselves and, near p,

the orbit structure is like a Lorentz boost in

2-dimensional Minkowski spacetime:

. p

4-dimensions: Similar results to the 2-dimensional case

hold if ξa vanishes on a 2-dimensional surface Σ. In

particular, if gab is Lorentzian and Σ is spacelike, then,

near Σ, the orbit structure of ξa will look like a Lorentz

boost in 4-dimensional Minkowski spacetime. The pair of



intersecting (at Σ) null surfaces hA and hB generated by

the null geodesics orthogonal to Σ is called a

bifurcate Killing horizon.

. Σ

h
B

hA

It follows that ξa is normal to both hA and hB. More

generally, any null surface h having the property that a

Killing field is normal to it is called a Killing horizon.



Surface Gravity and the Zeroth Law

Let h be a Killing horizon associated with Killing field

ξa. Let U denote an affine parameterization of the null

geodesic generators of h and let ka denote the

corresponding tangent. Since ξa is normal to h, we have

ξa = fka

where f = ∂U/∂u where u denotes the Killing parameter

along the null generators of h. Define the surface gravity,

κ, of h by

κ = ξa∇a ln f = ∂ ln f/∂u

Equivalently, we have ξb∇bξ
a = κξa on h. It follows

immediately that κ is constant along each generator of h.



Consequently, the relationship between affine parameter

U and Killing parameter u on an arbitrary Killing

horizon is given by

U = exp(κu)

Can also show that

κ = lim
h
(V a)

where V ≡ [−ξaξa]
1/2 is the “redshift factor” and a is the

proper acceleration of observers following orbits of ξa.

In general, κ can vary from generator to generator of h.

However, we have the following three theorems:

Zeroth Law (1st version): Let h be a (connected) Killing



horizon in a spacetime in which Einstein’s equation holds

with matter satisfying the dominant energy condition.

Then κ is constant on h.

Zeroth Law (2nd version): Let h be a (connected) Killing

horizon. Suppose that either (i) ξa is hypersurface

orthogonal (static case) or (ii) there exists a second

Killing field ψa which commutes with ξa and satisfies

∇a(ψ
bωb) = 0 on h, where ωa is the twist of ξa

(stationary-axisymmetric case with “t-φ reflection

symmetry”). Then κ is constant on h.

Zeroth Law (3rd version): Let hA and hB be the two null

surfaces comprising a (connected) bifurcate Killing

horizon. Then κ is constant on hA and hB.



Constancy of κ and Bifurcate Killing Horizons

As just stated, κ is constant over a bifurcate Killing

horizon. Conversely, it can be shown that if κ is constant

and non-zero over a Killing horizon h, then h can be

extended locally (if necessary) so that it is one of the null

surfaces (i.e., hA or hB) of a bifurcate Killing horizon.

In view of the first version of the 0th law, we see that

apart from “degenerate horizons” (i.e., horizons with

κ = 0), bifurcate horizons should be the only types of

Killing horizons relevant to general relativity.



Event Horizons and Killing Horizons

Hawking Rigidity Theorem: Let (M, gab) be a stationary,

asymptotically flat solution of Einstein’s equation (with

matter satisfying suitable hyperbolic equations) that

contains a black hole. Then the event horizon, h+, of the

black hole is a Killing horizon.

The stationary Killing field, ξa, must be tangent to h+. If

ξa is normal to h+ (so that h+ is a Killing horizon of ξa),

then it can be shown that ξa is hypersurface orhogonal,

i.e., the spacetime is static. If ξa is not normal to h+,

then there must exist another Killing field, χa , that is

normal to the horizon. It can then be further shown that

there is a linear combination, ψa, of ξa and χa whose



orbits are spacelike and closed, i.e., the spacetime is

axisymmetric. Thus, a stationary black hole must be

static or axisymmetric.

We can choose the normalization of χa so that

χa = ξa + Ωψa

where Ω is a constant, called the

angular velocity of the horizon.



Idealized (“Analytically Continued”) Black Hole

“Equilibrium State”
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A Close Analog: Lorentz Boosts in Minkowski Spacetime

horizon of accelerated
observers

null plane: past

orbits of

symmetry
boost

Lorentz

horizon of accelerated
observers

null plane: future

Note: For a black hole with M ∼ 109M⊙, the curvature

at the horizon of the black hole is smaller than the

curvature in this room! An observer falling into such a

black hole would hardly be able to tell from local

measurements that he/she is not in Minkowski spacetime.



Summary

• If cosmic censorship holds, then—starting with

nonsingular initial conditions—gravitational collapse

will result in a predictable black hole.

• The surface area of the event horizon of a black hole

will be non-decreasing with time (2nd law).

It is natural to expect that, once formed, a black hole

will quickly asymptotically approach a stationary

(“equilibrium”) final state. The event horizon of this

stationary final state black hole:

• will be a Killing horizon

• will have constant surface gravity, κ (0th law)



• if κ 6= 0, will have bifurcate Killing horizon structure
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Variational Formulas

Lagrangian for vacuum general relativity:

La1...aD =
1

16π
R ǫa1...aD .

First variation:

δL = E · δg + dθ ,

with

θa1...ad−1
=

1

16π
gacgbd(∇dδgbc −∇cδgbd)ǫca1...ad−1

.

Symplectic current ((D − 1)-form):

ω(g; δ1g, δ2g) = δ1θ(g; δ2g)− δ2θ(g; δ1g) .



Symplectic form:

WΣ(g; δ1g, δ2g) ≡

∫
Σ

ω(g; δ1g, δ2g)

= −
1

32π

∫
Σ

(δ1habδ2p
ab − δ2habδ1p

ab) ,

with

pab ≡ h1/2(Kab − habK) .

Noether current:

JX ≡ θ(g,£Xg)−X · L

= X · C + dQX .



Fundamental variational identity:

ω(g; δg,£Xg) = X · [E(g) · δg] +X · δC

+d [δQX(g)−X · θ(g; δg)]

ADM conserved quantities:

δHX =

∫
∞

[δQX(g)−X · θ(g; δg)]

For a stationary black hole, choose X to be the horizon

Killing field

Ka = ta +
∑

Ωiφ
a
i

Integration of the fundamental identity yields the first



law of black hole mechanics:

0 = δM −
∑
i

ΩiδJi −
κ

8π
δA .



Black Holes and Thermodynamics

Stationary black hole ↔ Body in thermal equilibrium

Just as bodies in thermal equilibrium are normally

characterized by a small number of “state parameters”

(such as E and V ) a stationary black hole is uniquely

characterized by M,J,Q.

0th Law

Black holes: The surface gravity, κ, is constant over the

horizon of a stationary black hole.

Thermodynamics: The temperature, T , is constant over a

body in thermal equilibrium.



1st Law

Black holes:

δM =
1

8π
κδA+ ΩHδJ + ΦHδQ

Thermodynamics:

δE = TδS − PδV

2nd Law

Black holes:

δA ≥ 0

Thermodynamics:

δS ≥ 0



Analogous Quantities

M ↔ E ← But M really is E!

1
2π
κ ↔ T

1
4
A ↔ S
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Particle Creation by Black Holes

Black holes are perfect black bodies! As a result of

particle creation effects in quantum field theory, a distant

observer will see an exactly thermal flux of all species of

particles appearing to emanate from the black hole. The

temperature of this radiation is

kT =
h̄κ

2π
.

For a Schwarzshild black hole (J = Q = 0) we have

κ = c3/4GM , so

T ∼ 10−7M⊙

M
.



The mass loss of a black hole due to this process is

dM

dt
∼ AT 4 ∝M 2 1

M 4
=

1

M 2
.

Thus, an isolated black hole should “evaporate”

completely in a time

τ ∼ 1073(
M

M⊙

)3sec .



Spacetime Diagram of Evaporating Black Hole
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Analogous Quantities

M ↔ E ← But M really is E!

1
2π
κ ↔ T ← But κ/2π really is the (Hawking)

temperature of a black hole!

1
4
A ↔ S



A Closely Related Phenomenon: The Unruh Effect

right wedge

View the “right wedge” of Minkowski spacetime as a

spacetime in its own right, with Lorentz boosts defining a

notion of “time translation symmetry”. Then, when

restricted to the right wedge, the ordinary Minkowski

vacuum state, |0〉, is a thermal state with respect to this

notion of time translations (Bisognano-Wichmann

theorem). A uniformly accelerating observer “feels



himself to be in a thermal bath at temperature

kT =
h̄a

2πc

(i.e., in SI units, T ∼ 10−23a).

For a black hole, the temperature locally measured by a

stationary observer is

kT =
h̄κ

2πV c

where V = (−ξaξa)
1/2 is the redshift factor associated

with the horizon Killing field. Thus, for an observer near

the horizon, kT → h̄a/2πc.



The Generalized Second Law

Ordinary 2nd law: δS ≥ 0

Classical black hole area theorem: δA ≥ 0

However, when a black hole is present, it really is

physically meaningful to consider only the matter outside

the black hole. But then, can decrease S by dropping

matter into the black hole. So, can get δS < 0.

Although classically A never decreases, it does decrease

during the quantum particle creation process. So, can get

δA < 0.

However, as first suggested by Bekenstein, perhaps have

δS′ ≥ 0



where

S′ ≡ S +
1

4

c3

Gh̄
A

where S = entropy of matter outside black holes and A =

black hole area.



Can the Generalized 2nd Law be Violated?

Slowly lower a box with (locally measured) energy E and

entropy S into a black hole.

black holeE, S

Lose entropy S

Gain black hole entropy δ(1
4
A) = E

Tb.h.

But, classically, E = V E → 0 as the “dropping point”

approaches the horizon, where V is the redshift factor.

Thus, apparently can get δS′ = −S + δ(1
4
A) < 0.



However: The temperature of the “acceleration

radiation” felt by the box varies as

Tloc =
Tb.h.

V
=

κ

2πV

and this gives rise to a “buoyancy force” which produces

a quantum correction to E that is precisely sufficient to

prevent a violation of the generalized 2nd law!



Analogous Quantities

M ↔ E ← But M really is E!

1
2π
κ ↔ T ← But κ/2π really is the (Hawking)

temperature of a black hole!

1
4
A ↔ S ← Apparent validity of the generalized 2nd law

strongly suggests that A/4 really is the physical entropy

of a black hole!



The Information “Paradox”

In a semiclassical description of the Hawking effect,

correlations are build up over time between the state of

the field outside and inside of the black hole.

Singularity
(r = 0)

r = 0
(origin of

coordinates)

Pure state

Mixed State

Correlations

Pure state



In a semiclassical treatment, if the black hole evaporates

completely, the final state will be mixed, i.e., one will

have dynamical evolution from a pure state to a mixed

state.

Logical possibilities (assuming black holes do form!):

• (i) Semiclassical picture is correct in its essential

features and pure → mixed.

• (ii) Remnants remain behind.

• (iii) Correlations are restored either (a) in a final

“burst” or (b) gradually during the evaporation

process, so that the final state is pure.



Difficulties with Alternatives (ii) and (iii)

Alternatives (ii) and (iii a) would require the existence of

a Planck scale object capable of storing (and, in the case

of (iii a), releasing) arbitrarily large amounts of

information. These alternatives have few, if any,

advocates at the present time (and I am certainly not

one of them).

Alternative (iii b) obviously requires a breakdown of

quantum field theory in a regime where the spacetime

curvature is far from Planckian scales, where one would

expect the known laws of physics to be applicable. As

AMPS has argued, this breakdown must involve either a

severe violation of causality or the conversion of the



horizon to a singularity (“firewall”). If the latter

alternative held and the entanglement between the

outside and inside of the black hole were eliminated, I

would expect the Hawking radiation to shut off, making

the entire analysis self-inconsistent.

What about alternative (i)?



Against Alternative (i): Violation of Unitarity

In scattering theory, the word “unitarity” has 2

completely different meanings: (1) Conservation of

probability; (2) Evolution from pure states to pure states.

Failure of (1) would represent a serious breakdown of

quantum theory (and, indeed, of elementary logic).

However, that is not what is being proposed in

alternative (i).

Failure of (2) would be expected to occur in any situation

where the final “time” is not a Cauchy surface, and it is

entirely innocuous.



Initial

Final

For example, we get “pure → mixed” for the evolution of

a massless Klein-Gordon field in Minkowski spacetime if

the final “time” is chosen to be a hyperboloid. This is a

prediction of quantum theory, not a violation of quantum

theory.

The “pure → mixed” evolution predicted by the

semiclassical analysis of black hole evaporation is of an

entirely similar character.



I find it ironic that some of the same people who declare

“pure → mixed” to be a violation of quantum theory

then endorse alternatives like (iii b), which really are

violations of quantum theory in a regime where it should

be valid. I have a deep and firm belief in the validity of

the known laws of quantum theory (below the Planck

scale), and I will continue to vigorously defend quantum

theory against those who claim to be saving it but who

are actually trying to destroy it.



Against Alternative (i): Failure of Energy

and Momentum Conservation

Banks, Peskin, and Susskind argued that evolution laws

taking “pure → mixed” would lead to violations of

energy and momentum conservation. However, they

considered only a “Markovian” type of evolution law

(namely, the Lindblad equation). This would not be an

appropriate model for black hole evaporation, as the

black hole clearly should retain a “memory” of what

energy it previously emitted.

There appears to be a widespread belief that any

quantum mechanical decoherence process requires energy

exchange and therefore a failure of conservation of energy



for the system under consideration. This is true if the

“environment system” is taken to be a thermal bath of

oscillators. However, it is not true in the case where the

“environment system” is a spin bath. In any case, Unruh

has recently provided an example of a quantum

mechanical system that interacts with a “hidden spin

system” in such a way that “pure → mixed” for the

quantum system but exact energy conservation holds.

Bottom line: There is no problem with maintaining exact

energy and momentum conservation in quantum

mechanics with an evolution wherein “pure → mixed”.



Against Alternative (i): AdS/CFT

“AdS/CFT” is a conjectured exact correspondence

between states in quantum gravity (in asymptotically

AdS spacetimes) and states of a conformal field theory

(defined on the asymptotic AdS boundary). The evidence

in favor of AdS/CFT consists mainly of examples of

nontrivial and unexpected relationships and

correspondences between various bulk and boundary

theories in AdS, but there is, to date, no mathematically

precise formulation of the conjecture. The AdS/CFT

argument against alternative (i) is simply that the

conformal field theory does not admit “pure → mixed”

evolution, so such evolution must also not be possible in



quantum gravity.

To my ears, this argument has a similar ring to arguing

that the occurrence of various miracles suggests the

existence of God and that, if God exists, His perfection

should not allow ...; so therefore ... cannot exist. The

problem is that if one is agnostic (rather than a true

believer or an atheist), it is difficult to come to a definite

conclusion about the validity of arguments concerning

the true meaning miracles, the existence of God, or the

exact nature of God’s perfection.

I therefore hope that a clear argument against alternative

(i) will emerge from the AdS/CFT ideas, in such a way

that it make assertions about where, when, and how



major departures from classical/semiclassical general

relativity occur in the process of black hole formation and

evaporation. Until then, I’m sticking with alternative (i)!



Conclusions

The study of black holes has led to the discovery of a

remarkable and deep connection between gravitation,

quantum theory, and thermodynamics. It is my hope and

expectation that further investigations of black holes will

lead to additional fundamental insights.


