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Gravity and NC Geometry

Problem

Euclidean gravity in two dimensions

The gravity action can be written in terms of constrained BF theory:

S[A,B, λ] =

ˆ
Σ

Tr(BF ) −

ˆ
Σ

λ (Tr(B2
) + 1) ,

invariant under the adjoint action of SO(2) with Lie algebra so(2).

Σ is (typically) a compact surface

B is a scalar field; F the curvature of a connection A

B and F are so(2)-valued

Tr∶ so(2) → R is a Killing form

λ is a volume form (Lagrange multiplier)

We are interested in the quantum version.
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Gravity and NC Geometry

Problem

Quantisation – ‘Path integral’ approach

The quantum theory is described by expectation values of operators:

⟨O⟩Σ =

ˆ
DADBDλO[A,B, λ]e−iS[A,B,λ]

Topological – all expectation values are topological invariants
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Problem

Purpose of this talk

Problem

Can we describe operators encoding spinor information and find

⟨O⟩Σ =

ˆ
DADBDλ

ˆ
DψDψ̄O[A,B, λ,ψ, ψ̄]e−iS[A,B,λ]

without breaking topological invariance?
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Strategy I

Expectation values in BF theory

Auxiliary problem

Calculate exactly the expectation values

⟨O⟩Σ =

ˆ
DADBDλO[A,B, λ]e−i

´
Σ

Tr(BF)+i ´
Σ
λ(Tr(B2)+1)

by giving them a geometrical interpretation.

Starting point: calculating the vacuum expectation value

⟨1⟩Σ =

ˆ
DADBe−i

´
Σ

Tr(BF)
=

ˆ
DAδ(F )

What is the importance of flat connections?



Gravity and NC Geometry

Strategy I

Expectation values in BF theory

Auxiliary problem

Calculate exactly the expectation values

⟨O⟩Σ =

ˆ
DADB

ˆ
DλO[A,B, λ]e i

´
Σ
λ(Tr(B2)+1)e−i

´
Σ

Tr(BF)

by giving them a geometrical interpretation.

Starting point: calculating the vacuum expectation value

⟨1⟩Σ =

ˆ
DADBe−i

´
Σ

Tr(BF)
=

ˆ
DAδ(F )

What is the importance of flat connections?



Gravity and NC Geometry

Strategy I

Expectation values in BF theory

Auxiliary problem

Calculate exactly the expectation values

⟨O⟩Σ =

ˆ
DADBO[A,B]e−i

´
Σ

Tr(BF)

by giving them a geometrical interpretation.

Starting point: calculating the vacuum expectation value

⟨1⟩Σ =

ˆ
DADBe−i

´
Σ

Tr(BF)
=

ˆ
DAδ(F )

What is the importance of flat connections?



Gravity and NC Geometry

Strategy I

Expectation values in BF theory

Auxiliary problem

Calculate exactly the expectation values

⟨O⟩Σ =

ˆ
DADBO[A,B]e−i

´
Σ

Tr(BF)

by giving them a geometrical interpretation.

Starting point: calculating the vacuum expectation value

⟨1⟩Σ =

ˆ
DADBe−i

´
Σ

Tr(BF)
=

ˆ
DAδ(F )

What is the importance of flat connections?



Gravity and NC Geometry

Strategy I

Quantisation – ‘Canonical’ approach

T ∗
(A)

quantise - L2
(A)

T ∗
(A0/G)

constraint

? quantise- L2
(A0/G)

constraint

?

A is the space of connections A (configuration space)

A0/G – the moduli space of flat connections

‘Moduli space’ refers to the invariance under the action of G

‘Flat connection’ is the choice of ‘gauge’, F = 0
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Strategy I

The vacuum expectation value

⟨1⟩Σ =

ˆ
DAδ(F ) = vol (A0/G)

Breakthrough of rigorous path integral approaches:

Using the geometry of Σ to probe the geometry of A0/G
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Strategy I

The vacuum expectation value

⟨1⟩Σ =

ˆ
DAδ(F ) = vol (A0/G)

Breakthrough of rigorous path integral approaches:

Using the geometry of Σ to probe the geometry of A0/G

Key points

Find some ‘good’ functions f (A) – parallel transport variables

Investigate them along some ‘regions’ of Σ – edges of a triangulation

Impose gauge invariance – G = SO(2) – and gauge fixing
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Strategy I

The vacuum expectation value

e
´
γ
A
= g ∈ SO(2)

Basis for L2(A): ρi(g)ab

This basis is also dense in R[SO(2)], the group algebra.

L2(A) ≃ R[SO(2)]
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Strategy I

The vacuum expectation value

Loop variables: χi(g) = Trρi(g)

Invariance under SO(2): χi(g) = χi(hgh−1)

L2(A/SO(2)) ≃ Z (R[SO(2)])
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Strategy I

The vacuum expectation value

⟨1⟩Σ =

ˆ
DAδ(F ) = vol (A0/G)

What do we conclude?

Geometrical properties have been translated into algebraic ones

The Hilbert spaces have extra structure – they are also algebras

Triangulation independence ⇔ axioms of the algebra R[SO(2)]
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Ansatz
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Strategy I

Ansatz

The linear map

L2
(A/SO(2)) → L2

(A/SO(2))

is an operator in the Hilbert space.

It follows

L2
(A/SO(2)) → L2

(A/SO(2))

must also be one.
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Strategy I

What is the information encoded in the defects?

Defect lines: vector spaces with inner product.

The vector space carries left and right actions from R[SO(2)]

Vertices: linear maps
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Strategy I

What is the information encoded in the defects?

Some results:

Expectation values constructed from defects are homotopy invariant

Operator implementing gravity constraint has been constructed

Simply connected cover data can be recovered
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Strategy II

What about the spinors?

Problem

Can we describe operators encoding spinor information and find

⟨O⟩Σ =

ˆ
DADBDλ

ˆ
DψDψ̄O[A,B, λ,ψ, ψ̄]e−iS[A,B,λ]

without breaking topological invariance?
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Strategy II

The role of non-commutative geometry

Classical case

Non-commutative geometry

Defect formalism

C∞(Σ)

⋆ algebra A

R[SO(2)]

Spinor fields on Σ

Hilbert space H

Vector space V

Dirac operator

D ∶H → H

Linear map V → V

Charge conjugation

J ∶H → H, J2
= ±1

Specific V

γ5

Γ∶H → H,Γ2
= ±1

Specific V
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Epilogue

Work in progress:

Find all defect vector spaces V satisfying the NC axioms

Use non-orientable case to suppress false candidates

Relate expectation values with classical fermionic fields
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Epilogue

Thank you!
Sara Tavares

sara.oriana@gmail.com
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