Higher Conformal Couplings from Weyl Gauge Theory

Lesław Rachwał (ICTP \& SISSA)

LIII School, 29.06.2013, Zakopane

Outline

- Motivation
- Weyl gauge theory
- General method
- Applications
- Conclusions

Motivation

- On flat spacetime: no dimensionfull couplings \Rightarrow scale invariance Symmetry may be enhanced to full conformal (Iorio, O'Raifeartaigh, Sachs, Wiesendanger)
- On curved spacetime:

Conformal (Weyl) rescalings, coupling to spacetime curvature

$$
L=(\partial \phi)^{2}+\frac{d-2}{4(d-1)} R \phi^{2}
$$

- How to obtain this non-minimal couplings preserving conformal covariance?

Motivation

Various methods have been used:

- BRST covariant algebra for Weyl-gravity (Boulanger)
- Unfolded Dynamics Approach (Shaynkman, Tipunin, Vasiliev)
- Tractor calculus (Gover, Shaukat, Waldron)
- Ambient space techniques (Fefferman, Graham)
- Ricci gauging (Iorio, O'Raifeartaigh, Sachs, Wiesendanger)
- Others (Manvelyan, Mkrtchyan, Erdmenger)
- In this talk method based on decoupling of Weyl gauge fields (related to Weyl geometry)

Weyl gauge theory

- Gauge transformation of lengths $d s^{\prime 2}=\Omega^{2} d s^{2}$
- Gauge transformations on fields $g_{\mu \nu}^{\prime}=\Omega^{2} g_{\mu \nu} \quad \Phi^{\prime}=\Omega^{w} \Phi$
- If $\Omega=\Omega(x)$ then need to introduce abelian Weyl gauge potential b_{μ}
- Weyl curvature (field strength) $B_{\mu \nu}=\frac{1}{2}\left(\partial_{\mu}^{\prime} b_{v}-\partial_{\nu} b_{\mu}\right)$
- Coordinates and derivatives do not transform $\quad x^{\prime \mu}=x^{\mu} \quad \partial^{\prime}{ }_{\mu}=\partial_{\mu}$
- However Riemannian connection is not Weyl covariant!

$$
\Gamma_{\mathrm{LC} v \rho}^{\prime \mu} \neq \Gamma_{\mathrm{LC} v \rho}^{\mu}
$$

Weyl gauge theory

- Unique, symmetric, torsionfree linear connection \Rightarrow Weyl connection

$$
\tilde{\Gamma}_{v \rho}^{\mu}=\Gamma_{\mathrm{LC} v \rho}^{\mu}-\delta_{v}^{\mu} b_{\rho}-\delta_{\rho}^{\mu} b_{v}+g_{v \rho} b^{\mu}
$$

- 1st consequence: Weyl connection is Weyl invariant $\tilde{\Gamma}_{v \rho}^{\mu}=\tilde{\Gamma}_{v \rho}^{\mu}$
- 2nd consequence: cov. derivative $\tilde{\nabla}_{\mu}$ with $\tilde{\Gamma}_{v \rho}^{\mu}$ preserve Weyl symmetry
- Weyl covariant derivatives
on scalar fields: $D_{\mu} \phi=\left(\partial_{\mu}-w b_{\mu}\right) \phi$ on tensor fields: $D_{\mu} T=\left(\tilde{\nabla}_{\mu}-w b_{\mu}\right) T$
- Transformation law of cov. Weyl derivatives of any tensor T (indices suppressed)

$$
\left(D_{\mu} T\right)^{\prime}=\Omega^{w} D_{\mu} T \quad T^{\prime}=\Omega^{w} T
$$

Weyl curvatures

- Riemann-Weyl curvature tensor $\left[D_{\mu}, D_{v}\right] v^{\rho}=r_{\mu \nu}{ }^{\rho}{ }_{\sigma} v^{\sigma}$
- Ricci-Weyl tensor and scalar $\quad r_{v \sigma}=r_{\mu \nu}{ }^{\mu}{ }_{\sigma} \quad r=g^{v \sigma} r_{\nu \sigma}$
- Riemann-Weyl and Ricci-Weyl tensors are conf. inv.,
- Ricci-Weyl scalar is conf. cov. with $w=-2$
- Trivial Weyl gauge field $\quad B_{\mu v}=0$
\Rightarrow Weyl curvatures in terms of ordinary spacetime curvatures and Weyl gauge potential b_{u}

$$
\begin{aligned}
& r_{\mu v \rho \sigma}=R_{\mu v \rho \sigma}+g_{\mu \rho}\left(\nabla_{v} b_{\sigma}^{\mu}+b_{v} b_{\sigma}\right)-g_{\mu \sigma}\left(\nabla_{v} b_{\rho}+b_{v} b_{\rho}\right)-g_{v \rho}\left(\nabla_{\mu} b_{\sigma}+b_{\mu} b_{\sigma}\right)+ \\
& \quad+g_{v \sigma}\left(\nabla_{\mu} b_{\rho}+b_{\mu} b_{\rho}\right)-\left(g_{\mu \rho} g_{v \sigma}-g_{\mu \sigma} g_{v \rho}\right) b^{2}
\end{aligned} \begin{aligned}
& r_{\mu v}=R_{\mu v}+(d-2) b_{\mu} b_{v}+(d-2) \nabla_{\mu} b_{v}-(d-2) b^{2} g_{\mu v}+(\nabla \cdot b) g_{\mu v} \\
& r=R+2(d-1)(\nabla \cdot b)-(d-1)(d-2) b^{2}
\end{aligned}
$$

General method

1) Start with generally covariant expression X
2) Weyl covariantize all derivatives in your expression $\nabla_{\mu} \rightarrow D_{\mu}$
3) Impose condition of vanishing Weyl gauge field strength $B_{u y}=0$
4) Add all possible Weyl covariant terms T_{i} with the same weight w constructed out of Weyl curvatures, Weyl derivatives and original fields in $X \quad X+a_{i} T_{i} \quad w\left(T_{i}\right)=w(X)$
2 Weyl derivatives $D \Rightarrow$ one Weyl curvature
5) Expand resulting sum in Weyl gauge potentials $-b_{\mu}$ fields
6) Search for coefficients a_{i} and w, s.t. Weyl potentials decouple and terms with b_{μ} vanish
7) If a solution exists, then X conformally coupled to spacetime is given by $X+a_{i} T_{i}$

General method

- Linear algebra problem
- Applicable to any expression w/o dimensionful constants
- Works for fields with any spin and in any spacetime dimension
- Found conformal weights w agree with canonical dimensions of fields as assigned on flat spacetime
- Shows obvious links with more general gravitation-dilaton-conformal theory (Weyl gauge theory of gravitation)

Applications

- Scalar field with 4 derivatives $\quad L=\phi \square^{2} \phi \quad \square^{2} \phi=0$
- Old result from $d=4$, when $w(\phi)=0$

$$
\square^{2} \phi+\frac{1}{3}\left(\nabla_{\mu} R\right)\left(\nabla^{\mu} \phi\right)+2 \text { Ric }^{\mu \nu} \nabla_{\mu} \nabla_{\nu} \phi-\frac{2}{3} R \square \phi=0
$$

- In general dimension 3 new terms must be added

$$
r^{2} \phi \quad \operatorname{ric}^{2} \phi \quad(\square r) \phi \quad \Delta_{(4)} \phi=0
$$

- General result
$\Delta_{(4)} \phi=\square^{2} \phi+A R^{2} \phi+B \operatorname{Ric}^{2} \phi+C(\square R) \phi+D\left(\nabla_{\mu} R\right)\left(\nabla^{\mu} \phi\right)+E \operatorname{Ric}^{\mu \nu} \nabla_{\mu} \nabla_{\nu} \phi+F R \square \phi$
- Dimension-dependent coefficients

$$
\begin{gathered}
A=\frac{(d-4)\left(d^{3}-4 d^{2}+16 d-16\right)}{(4(d-1)(d-2))^{2}} \quad B=\frac{4-d}{(d-2)^{2}} \quad C=\frac{4-d}{4(d-1)} \quad D=\frac{6-d}{2(d-1)} \\
E=\frac{4}{d-2} \quad F=-\frac{(d-2)^{2}+4}{2(d-1)(d-2)} \quad w=\frac{4-d}{2}
\end{gathered}
$$

Applications 2

- Abelian gauge field in $d=6$ with Minkowski spacetime action $F \nabla^{2} F$ Gauge fields have no conformal weights $w\left(A_{\mu}\right)=w\left(F_{\mu \nu}\right)=0$ However ordinary cov. derivatives are not conf. cov.

$$
D_{\mu} A_{\rho}=\tilde{\nabla}_{\mu} A_{\rho} \neq \nabla_{\mu} A_{\rho}
$$

- Conformally covariant lagrangian exists

Terms to combine $\quad F^{\rho \sigma} \square F_{\rho \sigma} \quad F^{\rho \sigma} \nabla_{\rho} \nabla_{\mu} F^{\mu}{ }_{\sigma}$

- In our method we add $\quad r F^{\rho \sigma} F_{\rho \sigma} \quad \operatorname{ric}_{\rho \mu} F^{\rho \sigma} F^{\mu}{ }_{\sigma}$
- Final conf. coupled lagrangian with weight $w=-6$ on curved spacetime

$$
F^{\rho \sigma}\left(\square-\frac{R}{10}\right) F_{\rho \sigma}-2 F^{\rho \sigma}\left(\nabla_{\rho} \nabla_{\mu}+\frac{R_{\rho \mu}}{2}\right) F_{\sigma}^{\mu}
$$

Summary

- Conformal couplings to curved spacetimes
- Weyl gravitation as a gauge theory with Weyl rescalings
- Weyl curvatures and Weyl geometry
- Decoupling of Weyl gauge potential as an useful method for finding conformally coupled lagrangians and equations
- Applications to old and new results

Thank you
 for attention!

