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Motivation: Problems with Scalar Field Inflation

Inflation is an add-on to the Big Bang
cosmology at early times to explain:

Flatness/isotropy of the Universe.
Primordial density perturbations.

Definition
Inflation ⇔ ä > 0.

Scalar Field Inflation: The simplest inflationary models are obtained by
minimally coupling Einstein gravity to a scalar field φ, the inflaton, with
some choice of potential, e.g. V (φ) = m2φ2/2.

Problems:
Does not explain the flatness of the potential, i.e. why m � mP.
Requires super-Planckian field excursions, i.e. ∆φ w 14mP > mP.
And what is this φ field anyway?

However: A plethora of other inflationary scenarios are possible!
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Scalar Field Inflation: The simplest inflationary models are obtained by
minimally coupling Einstein gravity to a scalar field φ, the inflaton, with
some choice of potential, e.g. V (φ) = m2φ2/2.

Problems:
Does not explain the flatness of the potential, i.e. why m � mP.
Requires super-Planckian field excursions, i.e. ∆φ w 14mP > mP.
And what is this φ field anyway?

However: A plethora of other inflationary scenarios are possible!

Marius Oltean Gravitational Waves from Preheating in Matrix Inflation



Motivation: Problems with Scalar Field Inflation

Inflation is an add-on to the Big Bang
cosmology at early times to explain:

Flatness/isotropy of the Universe.
Primordial density perturbations.

Definition
Inflation ⇔ ä > 0.
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Matrix Inflation from String Theory
Matrix inflation (or M-flation):

The inflaton: three N ×N Hermitian
matrices Φi (∀1 ≤ i ≤ 3).
The potential: from the dynamics of
N D3-branes in a specific d = 10 IIB
SUGRA background, so that Φi ∝ Xi

transverse to the D3-branes.
(A. Ashoorioon, H. Firouzjahi and M. M. Sheikh-Jabbari, JCAP 0906:018, 2009, arXiv:0903.1481)

Gauged M-flation Action

S =

∫
d4x
√
−g
{
−m2

P

2
R − 1

4
Tr (FµνF

µν)− 1

2
Tr (DµΦiD

µΦi)−V

}
,

V = Tr

(
−λ

4
[Φi ,Φj ][Φi ,Φj ] +

iκ

3
εjkl [Φk ,Φl ]Φj +

m2

2
Φ2

i

)
where Fµν = 2∂[µAν] + ig

YM
[Aµ,Aν ], DµΦi = ∂µΦi + ig

YM
[Aµ,Φi ].

(A. Ashoorioon, M. M. Sheikh-Jabbari, JCAP 1106 (2011) 014, arXiv:1101.0048)
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Equations of Motion and Truncation to the SU (2) Sector
The EOMs for the scalar and gauge fields are:

DµD
µΦi + λ[Φj , [Φi ,Φj ]]− iκεijk [Φj ,Φk ]−m2Φi = 0,

DµFµν − ig
YM

[Φi ,D
νΦi ] = 0.

If {Ji}3i=1 are the N ×N generators of SU (2): [Ji ,Jj ] = iεijkJk , let

Φi = φ̂Ji + Ψi .

Remark

If initially Ψi = Ψ̇i = 0 and φ̂ 6= 0, the EOMs imply Ψi = 0 for all time.
Moreover, if Aµ = 0 as well, Φi will not source it.

Hence, Ψi and Aµ are spectators – they can be turned off classically:

S =

∫
d4x
√
−g
{
−m2

P

2
R + TrJ2

(
−1

2
∂µφ̂∂

µφ̂− λ

2
φ̂4 +

2κ

3
φ̂3 − m2

2
φ̂2

)}
where TrJ2 = Tr(JiJi) = N (N 2 − 1)/4. Setting φ =

√
TrJ2φ̂, this just

becomes the usual scalar field inflationary action with a quartic potential.
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The Effective Potential

With λeff = 8λ
N (N 2−1) , κeff = 2κ

[N (N 2−1)]1/2
,

V0 (φ) =
λeff

4
φ4 − 2κeff

3
φ3 +

m2

2
φ2

=
λeff

4
φ2 (φ− µ)

2
, µ :=

√
2m√
λeff

where λm2 = (2κ/3)
2 is fixed, to have a

constant dilaton in the SUGRA theory.

The necessary values for successful inflation can be determined by
imposing 60 e-foldings and some CMB observations (δH and ns).
Solves all three problems raised earlier: the couplings are naturally
small; the field displacement is less than the UV cutoff (1101.0048);
and the inflaton has a known (stringy) origin.
The next question is: How can we probe this with observations?
Look to preheating.
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Preheating and Parametric Resonance: Basic Idea

Definition
Preheating is the epoch just
after inflation, during which the
inflaton decays into SM particles
via damped oscillations about its
minimum.

The idea is to treat φ classically, but the matter field χ quantumly:

χ̂ (t ,x) =

∫
d3k

(2π)
3/2

(
χ∗k (t) âke

ik·x + χk (t) â†ke
−ik·x

)
.

Then, the simplest choice for an interaction is:

Sint ∝
∫

d4x
√
−gφ2χ2 ⇒ χ̈k + 3H χ̇k +

(
k2

a2
+ m2

eff (φ)

)
χk = 0,

where m2
eff (φ) is oscillatory and hence the EOM for χ has the form of a

Mathieu equation: well-known instabilities for certain ranges of k , leading
to exponential growth, i.e. parametric resonance.
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M-flation Spectators as Preheat Fields

Although the spectators Ψi and Aµ are turned off classically during
M-flation, they can be excited quantumly and thus serve as preheat fields!
Treating both in turn as perturbations, at quadratic order (1101.0048):

Spectator Masses (with degeneracy 2j + 1 for each mode)

scalar
{
M 2
αj

= 1
2λeffφ

2(j + 2)(j + 3)− 2κeffφ(j + 2) + m2, 0≤j≤N−2,

M 2
βj

= 1
2λeffφ

2(j − 1)(j − 2) + 2κeffφ(j − 1) + m2, 1≤j≤N ,

gauge
{
M 2

Aj
= 1

4λeffφ
2j (j + 1), 0≤j≤N−1.

Remark
The potential for each scalar mode must also receive a (φ-independent)
quartic correction to ameliorate the possibility of a tachyonic mass.

Parametric resonance during preheating can be a good source of GW.
We numerically computed their spectra in M-flation using Zhiqi Huang’s
HLattice 2.0 (Z. Huang, Phys. Rev. D83:123509, 2011, arXiv:1102.0227).
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Gravity Waves from M-flation Preheating: Scalar Modes
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Gravity Waves from M-flation Preheating: Gauge Mode

0 0.5 1 1.5 2 2.5 3

x 10
9

10
−22

10
−20

10
−18

10
−16

10
−14

10
−12

10
−10

GW spectrum for highest−j gauge mode

f (Hz)

d(
Ω

gw
h2 )/

d(
ln

f)

 

 
a=2
a=3
a=4
a=5
a=6
a=7

Marius Oltean Gravitational Waves from Preheating in Matrix Inflation



Gravity Waves from M-flation Preheating: Scalar vs Gauge
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Conclusions

M-flation, which resolves many of the theoretical difficulties
associated with standard chaotic inflation, can also make concrete
predictions from its built-in preheating mechanism.

In particular, M-flation preheating produces a large-amplitude GW
spectrum in the GHz band, chiefly thanks to its gauge spectators.

Such a spectrum could be observed by ultra-high frequency GW
detectors that probe the GHz band, e.g. the Birmingham HFGW
detector (below) or the INFN Genoa HFGW resonant antenna.
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Thank you for your attention.
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Appendix I: Spectator Perturbations to Quadratic Order

Scalar spectators: Inserting Φi = φ̂Ji + Ψi , Aµ = 0 into the action,

L(2)
Ψ = −1

2
Tr(∂µΨi)

2

+Tr

−
(
M 2/2

)
Ψ2

i , if iεijk [Jj ,Ψk ] = ωΨi︷ ︸︸ ︷[
λ

2
φ̂2 (εijk [Jj ,Ψk ])

2
+ i

(
λ

2
φ̂2 − κφ̂

)
εijk [Ji ,Ψj ]Ψk −

m2

2
Ψ2

i

]

Gauge spectators: Inserting Ψi = Φi − φ̂Ji = 0 into the action and
expanding to second order in Aµ, we get

L(2)
Aµ

= −1

4
Tr
(
∂[µAν]

)2
+

1

2
g2
YM
φ̂2Tr ([Ji ,Aµ] [Ji ,Aµ])︸ ︷︷ ︸

−
(
M 2

A/2
)

Tr
(
A2
µ

)
, if [Ji , [Ji ,Aµ]] = ωAµ

Marius Oltean Gravitational Waves from Preheating in Matrix Inflation



Appendix I: Spectator Perturbations to Quadratic Order

Scalar spectators: Inserting Φi = φ̂Ji + Ψi , Aµ = 0 into the action,

L(2)
Ψ = −1

2
Tr(∂µΨi)

2

+Tr

−
(
M 2/2

)
Ψ2

i , if iεijk [Jj ,Ψk ] = ωΨi︷ ︸︸ ︷[
λ

2
φ̂2 (εijk [Jj ,Ψk ])

2
+ i

(
λ

2
φ̂2 − κφ̂

)
εijk [Ji ,Ψj ]Ψk −

m2

2
Ψ2

i

]

Gauge spectators: Inserting Ψi = Φi − φ̂Ji = 0 into the action and
expanding to second order in Aµ, we get

L(2)
Aµ

= −1

4
Tr
(
∂[µAν]

)2
+

1

2
g2
YM
φ̂2Tr ([Ji ,Aµ] [Ji ,Aµ])︸ ︷︷ ︸

−
(
M 2

A/2
)

Tr
(
A2
µ

)
, if [Ji , [Ji ,Aµ]] = ωAµ

Marius Oltean Gravitational Waves from Preheating in Matrix Inflation



Appendix II: Scalar Spectator Quartic Couplings

For the potential of any scalar mode,

V = V0 (φ) +
M 2 (φ)

2
χ2 + Λχ4,

we calculate the quartic coupling to be:

Λαj−2

Λβj+2

}
=

(j + 1)
2

j (j + 1)

}
× λeff

4
N
(
N 2 − 1

)
×

2j∑
c=0

(2c + 1)

(
j j c
1 −1 0

)2{
j j c

N−1
2

N−1
2

N−1
2

}2

where (: : :) and {: : :} are Wigner 3j and 6j symbols, respectively
(expressible in terms of Clebsch–Gordan coefficients).
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