Microcanonical Entropy of Quantum Isolated Horizon, 'quantum hair N' and fixation of γ

Abhishek Majhi

Astro-particle Physics and Cosmology Division; Saha Institute of Nuclear Physics

53rd Cracow School of Theoretical Physics, Zakopane, 2013

An Outline

- Isolated Horizon(IH) : A brief introduction, some relevant properties
- Spin Network : A few words on Quantum Geometry
- Punctures on IH : Visualization of Quantum IH (QIH)
- Macrostates of QIH : Spin Configuration
- Macroscopic Parameters of the theory according to a recent proposal

- Microcanonical Entropy : Calculation
- Restriction on the Barbero-Immirzi parameter(γ)

Isolated Horizon

Introduction and some Properties

- IH : An inner boundary of spacetime
 - ► 3D Null hypersurface
 - Topologically $R \times S^2$
 - Non-expanding \Rightarrow *Constant* Area (A_{cl})
 - Thermodynamical variables and parameters can be defined *locally* on IH
 - ► IH allows matter and radiation arbitrarily close to it
 - ▶ IH boundary conditions → Laws of IH Mechanics
 - Surface gravity (κ_{IH}) constant on IH (Zeroth Law on IH)
 - $E_{radiation} = E_{ADM} E_{IH};$ E_{IH} satisfies 1st law of IH Mechanics: $\delta E_{IH} = \frac{\kappa_{IH}}{8\pi} \delta A_{IH} + \cdots$

Isolated Horizon

Event Horizon : a special case

Event Horizon(EH) is a special case of IH :

- IH + *stationarity* \Rightarrow Event Horizon(EH)
- Surface gravity (κ_{EH}) constant on EH (Zeroth Law on EH)
- For EH, $E_{radiation} = 0 \Rightarrow E_{ADM} = E_{EH} = \text{mass of black hole}$

• E_{ADM} satisfies 1st law of black hole Mechanics

Spin Networks

Bulk quantum geometry(spatial) described by Spin Networks :

- Non-trivial, flexible lattice much like a 'fish-net'
- Collection of *edges* and *vertices*
- Edges assigned with spins
- Two distinct *edges* meet ONLY at a *vertex*

Figure: A Spin Network with 3 edges and 2 vertices

Punctures

Punctures : Intersection points of Spin Network and IH

- Defects on smooth topology of IH
- Edges deposit corresponding spins at the punctures
- The distribution of *punctures* on IH gives the quantum picture : *Quantum Isolated Horizon* (QIH)
- Effect of a *puncture* with spin j, manifested by its area contribution : A_j = 8πγℓ_p²√j(j + 1) where
 γ =Barbero-Immirzi parameter, ℓ_p =Planck length
- Contribution from *N* no. of *punctures*, *n* th puncture having spin $j_n : A = 8\pi\gamma \ell_p^2 \sum_{n=1}^N \sqrt{j_n(j_n+1)}$

An Intuitive Picture of QIH

Figure: Bulk spin network intersects with IH at the punctures : QIH

Degrees of Freedom on QIH

Action for spacetime admitting IH \Rightarrow Chern-Simons(CS) action as boundary term \Rightarrow EoM (Einstein equation)

SU(2) Singlet States of CS theory coupled to Punctures (sources) \equiv DoF of QIH

- Physical Hilbert space of a quantum black hole for a particular set of punctures {𝒫} : ℋ_{Phys} = ℋ_V ⊗ ℋ_S mod 𝔅
 V ≡ Bulk, S ≡ Boundary(QIH), 𝔅 ≡ Gauge Group
- G ⊃ internal SU(2) rotations (results from local Lorentz invariance after fixing the local boost d.o.f [R.Kaul, P.Majumdar; PRD(2011)])
- Rotational Invariant states \implies Physical DoF of QIH

Microstates of QIH

▶ Given a set of N punctures (j₁, · · · , j_N) on a QIH, no. of microstates :

$$\Omega(j_1, \cdots, j_N) = \frac{2}{k+2} \sum_{a=1}^{k+1} \frac{\sin \frac{a\pi(2j_1+1)}{k+2} \cdots \sin \frac{a\pi(2j_N+1)}{k+2}}{\left(\sin \frac{a\pi}{k+2}\right)^{N-2}}$$

(Kaul-Majumdar, PLB 98), and also $j \le k/2$

• $k \equiv A_{cl}/4\pi\gamma\ell_p^2$ is the level of the CS theory

Macrostates

- ▶ Macrostates of QIH : Spin configurations {*s_j*}
- Degeneracy of a particular configuration :

$$\Omega[\{s_j\}] = \frac{2}{k+2} \sum_{a=1}^{k+1} \sin^2 \frac{a\pi}{k+2} \prod_j \frac{N!}{s_j!} \left\{ \frac{\sin \frac{a\pi(2j+1)}{k+2}}{\sin \frac{a\pi}{k+2}} \right\}^{s_j}$$

► $\{s_j\} \Rightarrow s_{1/2}$ punctures with spin 1/2, s_1 punctures with spin 1, ..., $s_{k/2}$ punctures with spin k/2

Macroscopic parameters

According to a recent proposal by Ghosh-Perez (PRL, 2011), total number of punctures *N* is a macroscopic parameter of QIH.

- ► Two *macroscopic* parameters of the theory : *k* and *N*
- Macrostates designated by N, k
- Configurations obey two constraints :

$$\sum_{j} s_j \sqrt{j(j+1)} = k/2 \quad , \quad \sum_{j} s_j = N$$

Most probable distribution

- Microcanonical Entropy : $S_{MC} = \log \Omega(N, k)$
- Most probable configuration {s_j^{*}} for given k, N maximizes entropy
- Hence, $S_{MC} \simeq \log \Omega[\{s_j^{\star}\}]$
- Distribution s_i^* obtained from

$$\delta \log \Omega[\{s_j\}] - \lambda \sum_j \delta s_j \sqrt{j(j+1)} - \sigma \sum_j \delta s_j = 0$$

Most probable distribution(contd. ...)

Most probable distribution

$$s_j^{\star} = N \exp\left[-\lambda \sqrt{j(j+1)} - \sigma - \frac{\delta}{\delta s_j} \log g[\{s_j\}]\right]$$

where

$$g[\{s_j\}] = \frac{2}{k+2} \sum_{a=1}^{k+1} \sin^2 \frac{a\pi}{k+2} \left\{ \frac{\sin \frac{a\pi(2j+1)}{k+2}}{\sin \frac{a\pi}{k+2}} \right\}^{s_j}$$

A rigorous calculation approximately yields

$$\Omega[\{s_j\}] \sim \frac{N!}{\prod_j s_j!} (2j+1)^{s_j} N^{-3/2}$$

Microcanonical Entropy in terms of k and N

Microcanonical entropy of QIH

$$S = \log \Omega[\{s_j^{\star}\}] = \frac{\lambda k}{2} + N\sigma - \frac{3}{2}\log N + \cdots$$

• λ and σ are the solutions of the following equations

$$\exp[\sigma] = \sum_{j} (2j+1) \exp[-\lambda \sqrt{j(j+1)}]$$

$$k/2 = N \sum_{j} \sqrt{j(j+1)} (2j+1) \exp[\lambda \sqrt{j(j+1)} - \sigma]$$

イロド 4日 1 4 日 1 4 日 1 日 - シスペ

Approximations involving λ and σ

In the limit $k \to \infty$, the two equations can approximated as follows :

$$\begin{split} e^{\sigma} &\simeq \int_{1/2}^{\infty} (2j+1)e^{-\lambda\sqrt{j(j+1)}}dj \\ &= \frac{2}{\lambda^2} \left(1 + \frac{\sqrt{3}}{2}\lambda\right)e^{-\frac{\sqrt{3}}{2}\lambda} \\ \frac{k}{2N} &\simeq \frac{\int_{1/2}^{\infty} (2j+1)\sqrt{j(j+1)}e^{-\lambda\sqrt{j(j+1)}}dj}{\int_{1/2}^{\infty} (2j+1)e^{-\lambda\sqrt{j(j+1)}}dj} \\ &= 1 + \frac{2}{\lambda} + \frac{4}{\lambda(\sqrt{3}\lambda+2)} \end{split}$$

イロド・日本・油ド・モート ヨー のへぐ

Plot of e^{σ} as a function of λ

Figure: e^{σ} is plotted as a function of λ

 $\sigma < 0$ i.e. $e^{\sigma} < 1$ happens for $\lambda > 1.313$

Fixing γ to obtain $S_{MC} = A_{cl}/4\ell_p^2 + N\sigma(\gamma)$

- Define the *microcanonical* ensemble by choosing k = k₁ and N = N₁; then λ = λ(k₁/N₁) ≡ λ₁.
- We can claim $\gamma = \lambda_1/2\pi = \gamma_1(\text{say})$ to obtain $S_{MC} = A_{cl1}/4\ell_p^2 + N\sigma(\gamma_1)$, where $A_{cl1} = 4\pi\gamma_1k_1\ell_p^2$.
- Similarly, one can make another choice $k = k_2$ and $N = N_2$, such that $(k_1/N_1) \neq (k_2/N_2)$, for which there exists a corresponding γ_2 and A_{cl2} so that we obtain $S_{MC} = A_{cl2}/4\ell_p^2 + N\sigma(\gamma_2)$.
- For every such choice of k/N there exists an unique value of γ , given by $\lambda(k/N)/2\pi$, which results in the *microcanonical* entropy given by $S_{MC} = A_{cl}/4\ell_p^2 + N\sigma(\gamma)$.

Whose entropy is this ?

Hilbert space of a QIH

► The *full* Hilbert space of a QIH is given by

$$\mathcal{H}_{QIH}^{k} = \bigoplus_{\{\mathcal{P}\}} \operatorname{Inv}\left(\bigotimes_{l=1}^{N} \mathcal{H}_{j_{l}}\right)$$

where there is a SUM over all possible sets of punctures

- Fluctuations of N purely quantum mechanical, devoid of any thermodynamic phenomenon
- Quantum fluctuations underlying a classical equilibrium are the sole origin of microcanonical entropy of a system
- Fixing N is tantamount to look at a subspace of the full Hilbert space

Nature of the term $N\sigma(\gamma)$

- Entropy is the measure of unavailability of information
- Fixing N restricts to a subspace of the full Hilbert space, which in other words is equivalent to providing more information about the system
- Entropy should be reduced
- Hence, we can conclude that

 $N\sigma(\gamma) < 0$

Bound on γ

- We have $\gamma = \lambda/2\pi$
- $\sigma(\gamma) < 0$ imposes a bound on γ given by

 $0.209 < \gamma < \infty$

オロドメタドオ 目と きょうへん

THANK YOU FOR YOUR KIND ATTENTION !

イロドイクトイモドイモド ヨーのへで