Uniqueness of extreme horizons in 4-dimensional Einstein-Yang-Mills theory

Based on arXiv:1302.4616 with James Lucietti

Carmen Li

The University of Edinburgh

2 July 2013

- 2 Near-horizon geometry
- 3 Non-abelian gauge fields near extreme horizon
- 4 Near-horizon Einstein-Yang Mills Equations
- 5 Stationary Near-Horizon Geometries

Introduction

- **1** Black hole entropy proportional to area of the horizon
- Extreme black holes have zero surface gravity hence zero Hawking temperature
- **③** Easier to establish a microscopic description to extreme BH entropy
- All SUSY black holes are extremal
- All known extreme black holes have an AdS₂ factor in their near-horizon (NH) geometries
- Existence of AdS₂ near-horizon symmetry enhancement proved for certain extreme black holes in various dimensions
- It holds for extreme BH in any Einstein gravity theory coupled to arbitrary number of Maxwell fields and uncharged scalars in D= 4, 5 (Kunduri, Lucietti, Reall '07)

Introduction

- Can we extend this to Einstein gravity coupled to non-abelian gauge fields?
- 2 No uniqueness theorem for extreme black holes
- Black hole uniqueness does not apply to Einstein-Yang-Mills (EYM) black holes (Smoller, Wasserman, Yau '93)
- 4-D SU(2) EYM theory with $\Lambda < 0$ is a consistent truncation of 11-D SUGRA on S^7 (Pope '85)
- Consider the simplest set up: D=4 Einstein-Yang-Mills with a compact semi-simple gauge group and a cosmological constant
- ${\small \bigodot}$ Focus on stationary and $\Lambda \leq 0,$ but local results remain valid for $\Lambda > 0$

Near-horizon geometry

- Use Gaussian null coordinates (v, r, x^a) which are regular on the Killing horizon $\mathcal N$
- Output: Provide the second second
- $\textbf{0} \hspace{0.1 in neighbourhood of \mathcal{N} spacetime metric takes the form}$

$$g = rf(r, x)dv^2 + 2dvdr + 2rh_a(r, x)dvdx^a + \gamma_{ab}(r, x)dx^adx^b$$

- Extreme horizon $\kappa = 0$ implies f(r, x) = rF(r, x)
- **5** Consider diffeomorphism $v \rightarrow v/\epsilon$ and $r \rightarrow \epsilon r$ where $\epsilon > 0$
- Near-horizon limit: take $\epsilon \rightarrow 0$ (Reall '02)

Near-horizon symmetry

So in NH limit extreme black hole metric is

$$g_{NH} = r^2 F(x) dv^2 + 2dv dr + 2rh_a(x) dv dx^a + \gamma_{ab}(x) dx^a dx^b$$

② NH metric symmetries: r → er, v → v/e and v → v + c form a 2-d non-abelian isometry group

Non-abelian gauge fields near extreme horizon

- $\textbf{0} \quad \text{Compact Lie group whose Lie algebra } \mathfrak{g} \text{ is semisimple}$
- ② Thus g admits a positive definite invariant metric given by (A, B) ≡ Tr(AB) for A, B ∈ g
- Yang-Mills gauge field A, field strength $\mathcal{F} = dA + \frac{1}{2}[A, A]$
- Gauge-covariant derivative $\mathcal{D}X = dX + [\mathcal{A}, X]$
- Einstein-Yang-Mills equations are

$$\begin{aligned} R_{\mu\nu} &= 2 \operatorname{Tr} \left(\mathcal{F}_{\mu}{}^{\delta} \mathcal{F}_{\nu\delta} - \frac{1}{4} g_{\mu\nu} \mathcal{F}_{\rho\sigma} \mathcal{F}^{\rho\sigma} \right) + \Lambda g_{\mu\nu} \\ \mathcal{D} \star \mathcal{F} &= 0 \end{aligned}$$

Non-abelian gauge fields near extreme horizon

- $\label{eq:choose the gauge such that $\mathcal{L}_{\mathcal{K}}\mathcal{A}=0$ and $\mathcal{L}_{\mathcal{K}}\mathcal{F}=0$}$
- Our Use residual gauge freedom to fix A_r = 0, thus most general gauge field is

$$\mathcal{A} = \mathcal{W}(r, x) dv + \mathcal{A}_{a}(r, x) dx^{a}$$

- $R_{\mu\nu}K^{\mu}K^{\nu}|_{\mathcal{N}} = 0$ allows us to recast EYM field equations as equations on H
- "hat" denotes restriction of any quantity to H e.g. $\hat{\mathcal{A}} = \hat{\mathcal{A}}_a(x)dx^a$, $\hat{\mathcal{D}} = \hat{d} + [\hat{\mathcal{A}}, \cdot]$

Non-abelian gauge fields near extreme horizon

• Define $\hat{E} = \partial_r \mathcal{W}|_{r=0}$, $\hat{G} = \star_2 \hat{\mathcal{F}}$ and $\hat{\mathcal{W}} = \mathcal{W}|_{r=0}$

2 Find
$$\hat{\mathcal{A}}_{a}, \hat{G}, \hat{E} \in Z_{\hat{\mathcal{W}}}$$

③ \mathcal{F} always admits NH limit; \mathcal{A} only admits NH limit if $\hat{\mathcal{W}} = 0$

$$\begin{aligned} \mathcal{A}_{NH} &= \hat{E}(x) r dv + \hat{\mathcal{A}}_{a}(x) dx^{a} \\ \mathcal{F}_{NH} &= \hat{E}(x) dr \wedge dv - r \hat{\mathcal{D}}_{a} \hat{E} dv \wedge dx^{a} + \frac{1}{2} \hat{G}(x) \hat{\epsilon}_{ab} dx^{a} \wedge dx^{b} \end{aligned}$$

- Regardless of the value of $\hat{\mathcal{W}}$, NH limit exists for the YM equation even though it contains \mathcal{A} explicitly
- Or Can use semi-simplicity of the algebra to show the problematic term [\hat{\mathcal{W}}, \hat{\beta}_{a,r}] always vanishes

Einstein-Yang-Mills Equations

$$\hat{R}_{ab} = \frac{1}{2}\hat{h}_{a}\hat{h}_{b} - \hat{\nabla}_{(a}\hat{h}_{b)} + \Lambda\hat{\gamma}_{ab} + \operatorname{Tr}\left(\hat{E}^{2} + \hat{G}^{2}\right)\hat{\gamma}_{ab}$$

$$\hat{F} = \frac{1}{2}\hat{h}_{a}\hat{h}^{a} - \frac{1}{2}\hat{\nabla}_{a}\hat{h}^{a} + \Lambda - \operatorname{Tr}\left(\hat{E}^{2} + \hat{G}^{2}\right)$$

$$\hat{G} - \hat{h}\hat{G} = \hat{\star}_{2}\left(\hat{D}\hat{E} - \hat{h}\hat{E}\right)$$

Also contracted Bianchi identity can be written as

$$\hat{\nabla}_{a}\hat{F}=\hat{F}\hat{h}_{a}+2\hat{h}_{b}\hat{\nabla}_{[a}\hat{h}_{b]}-2\mathrm{Tr}\left[\left(\hat{G}\hat{\epsilon}_{ab}+\hat{E}\hat{\gamma}_{ab}\right)\left(\hat{\mathcal{D}}^{b}\hat{E}-\hat{h}^{b}\hat{E}\right)\right]$$

Orop hats from now on

 $\hat{\mathcal{D}}$

- **1** Rigidity: all stationary rotating black holes are axisymmetric
- **②** Stationary NH metric admits in addition U(1) isometry, generated by Killing field m which commutes with K
- **③** *m* tangent to *H* so *H* can be S^2 or T^2 ; focus on S^2 for now
- Gan introduce coordinates (x, φ) on H for x₁ < x < x₂ such that m = ∂/∂φ and parametrize NH metric as

$$y_{ab}dx^a dx^b = \frac{dx^2}{B(x)} + B(x)d\phi^2$$

 $h_a dx^a = \Gamma(x)^{-1}(Bk(x)d\phi - \Gamma'(x)dx)$

- where B(x) > 0 with $B(x_1) = B(x_2) = 0$ and $\Gamma(x) > 0$ everywhere
- smoothness requires $\phi \sim \phi + 2\pi$ and $B'(x_1) = -B'(x_2) = 2$

1

• Can fix the gauge such that horizon gauge field is simply

$$\mathcal{A}_{a}dx^{a}=a(x)d\phi$$

2 It follows that
$$G(x) = a'(x)$$

③ $\hat{R}_{x\phi}$ Einstein equation implies k = constant

•
$$k = 0$$
 corresponds to the static case

• Define
$$A = \Gamma F - k^2 \Gamma^{-1} B$$

2 Changing $r \to \Gamma(x)r$, NH metric now takes the form

$$g_{NH} = \Gamma(x)[Ar^2dv^2 + 2dvdr] + \frac{1}{B}dx^2 + B(d\phi + krdv)^2$$

O Using YM equation x component of contracted BI simplifies to

$$BA' = 4\Gamma \mathrm{Tr}(E[a,G])$$

• Define obstruction term $T = Tr(\Gamma E[a, \Gamma G])$

• Define also
$$S = \Gamma^2 \text{Tr}(E^2 + G^2)$$

Symmetry enhancement

YM equation equivalent to

$$BS' = -4T$$
(1)
$$BT' = -\Gamma^{2} Tr \left([a, G]^{2} + [a, E]^{2} \right)$$
(2)

2 Now define vector field $X = B \frac{\partial}{\partial x}$

- **③** X is globally defined on S^2 and vanish at the endpoints $x = x_1, x_2$
- For any smooth function f on H, X(f) is smooth everywhere and vanishes at x = x₁, x₂

3 (1) implies
$$T(x_1) = T(x_2) = 0$$

(2) says
$$X(T)|_{x=x_1,x_2}=0$$
 and $X(T)\leq 0$

() Assume \exists a point in $x_1 < x < x_2$ where X(T) < 0 so that T' < 0

Indamental theorem of calculus then gives

$$T(x_2) - T(x_1) = \int_{x_1}^{x_2} T' dx < 0$$

- **③** This is a contradiction and we deduce that T = 0 identically and $A(x) = A_0$ is a constant
- Integrate *F* Einstein equation to get the sign of A_0 . For $\Lambda \le 0$, $A_0 < 0$ and we prove the AdS_2 symmetry enhancement:

$$g_{NH} = \Gamma(x)[A_0r^2dv^2 + 2dvdr] + \frac{1}{B}dx^2 + B(d\phi + krdv)^2$$

- T = 0 also implies S is constant. This in turn implies all components in A_{NH} and F_{NH} commute
- Olassification reduces to Einstein-Maxwell case
- **③** Find from R_{ab} Einstein equation $\Gamma(x) = \frac{k^2}{\beta} + \frac{\beta x^2}{4}$ where $\beta > 0$ is a constant
- Then $B(x) = \frac{P(X)}{\Gamma}$ where P(x) is polynomial of order 4:

$$P(x) = -\frac{\Lambda\beta x^4}{12} + \left(A_0 - \frac{2k^2\Lambda}{\beta}\right)x^2 + \frac{4}{\beta^3}(\Lambda k^4 - A_0\beta k^2 + S_0\beta^2)$$

- For Λ ≤ 0 smoothness at end points implies P(x) contains no odd power
- Metric is isometric to NH limit of extreme Kerr-Newman(AdS)
- O Can integrate YM equation to determine E, G

Excluding $H = T^2$

- **1** Now both (x, ϕ) are periodic
- **2** NH metric takes the same form with the same $\Gamma(x)$ which is quadratic function of x
- On the other hand Γ(x) is globally defined on H therefore must be periodic
- This is a contradiction thus we rule out T^2 (for any Λ)