Kerr Killing tensor and its conserved charge at \mathcal{I}^+

Aruna Kesavan

The Pennsylvania State University

July 04, 2013

Work done in collaboration with Abhay Ashtekar.

Aruna Kesavan Kerr Killing tensor and its conserved charge at \mathcal{I}^+

- 4 周 ト 4 日 ト 4 日

- Physical problem
- Killing vector fields and conserved quantities
- Asymptotic Kerr Killing tensor and conserved quantity
- Summary and Outlook

イロト イポト イヨト イヨト

- 2

• **Physical system:** Initial conditions that evolve under Einstein's equations and settle down finally to a Kerr blackhole.

(日) (御) (臣) (臣) (臣)

- **Physical system:** Initial conditions that evolve under Einstein's equations and settle down finally to a Kerr blackhole.
- **Problem:** Associate conserved charge with Kerr Killing tensor.

イロト 不得 とうせい かほとう ほ

•
$$\mathcal{L}_K g_{ab} = 0$$
 or $\nabla_{(a} K_{b)} = 0$

・ 同 ト ・ ヨ ト ・ ヨ ト

- 2

•
$$\mathcal{L}_{K}g_{ab} = 0$$
 or $\nabla_{(a}K_{b)} = 0$

t^a = (∂_t)^a, φ^a₃ = (∂_φ)^a correspond to stationarity and axi-symmetry in Kerr.

→ 同 → → 三 → → 三 三 三

•
$$\mathcal{L}_{K}g_{ab} = 0$$
 or $\nabla_{(a}K_{b)} = 0$

- $t^a = (\partial_t)^a$, $\phi_3^a = (\partial_{\phi})^a$ correspond to stationarity and axi-symmetry in Kerr.
- Conserved charges:
 - Komar mass for t^a : $Q_t = -\frac{1}{8\pi} \int_S \epsilon_{abcd} \nabla^c t^d dS^{ab}$ S is a 2 surface enclosing the blackhole.

•
$$\mathcal{L}_{K}g_{ab} = 0$$
 or $\nabla_{(a}K_{b)} = 0$

- $t^a = (\partial_t)^a$, $\phi_3^a = (\partial_{\phi})^a$ correspond to stationarity and axi-symmetry in Kerr.
- Conserved charges:
 - Komar mass for t^a : $Q_t = -\frac{1}{8\pi} \int_S \epsilon_{abcd} \nabla^c t^d dS^{ab}$ S is a 2 surface enclosing the blackhole.
 - Works in the Kerr region, but not in the dynamical region.

 Go to future null infinity, *I*⁺, consider generator *τ^a*, which in the limit is same as *t^a*.

- Go to future null infinity, *I*⁺, consider generator *τ^a*, which in the limit is same as *t^a*.
- Energy at null infinity: $Q_{\tau} = -\frac{1}{8\pi} \int_{S} \epsilon_{abcd} \nabla^{c} \tau^{d} dS^{ab}$.

- Go to future null infinity, *I*⁺, consider generator *τ^a*, which in the limit is same as *t^a*.
- Energy at null infinity: $Q_{\tau} = -\frac{1}{8\pi} \int_{S} \epsilon_{abcd} \nabla^{c} \tau^{d} dS^{ab}$.
- Same as Komar mass in the Kerr region.

- Go to future null infinity, \mathcal{I}^+ , consider generator τ^a , which in the limit is same as t^a .
- Energy at null infinity: $Q_{\tau} = -\frac{1}{8\pi} \int_{S} \epsilon_{abcd} \nabla^{c} \tau^{d} dS^{ab}$.
- Same as Komar mass in the Kerr region.
- CAN be defined in the dynamical region!

- Go to future null infinity, *I*⁺, consider generator *τ^a*, which in the limit is same as *t^a*.
- Energy at null infinity: $Q_{\tau} = -\frac{1}{8\pi} \int_{S} \epsilon_{abcd} \nabla^{c} \tau^{d} dS^{ab}$.
- Same as Komar mass in the Kerr region.
- CAN be defined in the dynamical region!
- τ^a is an asymptotic symmetry vector field (BMS generator), can be rigidly transported on all of \mathcal{I}^+ .

- Go to future null infinity, *I*⁺, consider generator *τ^a*, which in the limit is same as *t^a*.
- Energy at null infinity: $Q_{\tau} = -\frac{1}{8\pi} \int_{S} \epsilon_{abcd} \nabla^{c} \tau^{d} dS^{ab}$.
- Same as Komar mass in the Kerr region.
- CAN be defined in the dynamical region!
- τ^a is an asymptotic symmetry vector field (BMS generator), can be rigidly transported on all of \mathcal{I}^+ .
- τ^a exists on \mathcal{I}^+ even when t^a does not exist as a spacetime Killing vector field.

- Go to future null infinity, *I*⁺, consider generator *τ^a*, which in the limit is same as *t^a*.
- Energy at null infinity: $Q_{\tau} = -\frac{1}{8\pi} \int_{S} \epsilon_{abcd} \nabla^{c} \tau^{d} dS^{ab}$.
- Same as Komar mass in the Kerr region.
- CAN be defined in the dynamical region!
- τ^a is an asymptotic symmetry vector field (BMS generator), can be rigidly transported on all of \mathcal{I}^+ .
- τ^a exists on \mathcal{I}^+ even when t^a does not exist as a spacetime Killing vector field.
- In general, Bondi energy: $Q_{\tau,dyn} = -\frac{1}{8\pi} \int_{S} C_{abcd} l^{a} \tau^{b} l^{c} \tau^{d} +$ Radiation part (Ashtekar, Streubel 1981)

- Go to future null infinity, *I*⁺, consider generator *τ^a*, which in the limit is same as *t^a*.
- Energy at null infinity: $Q_{\tau} = -\frac{1}{8\pi} \int_{S} \epsilon_{abcd} \nabla^{c} \tau^{d} dS^{ab}$.
- Same as Komar mass in the Kerr region.
- CAN be defined in the dynamical region!
- τ^a is an asymptotic symmetry vector field (BMS generator), can be rigidly transported on all of \mathcal{I}^+ .
- τ^a exists on \mathcal{I}^+ even when t^a does not exist as a spacetime Killing vector field.
- In general, Bondi energy: $Q_{\tau,dyn} = -\frac{1}{8\pi} \int_{S} C_{abcd} l^{a} \tau^{b} l^{c} \tau^{d} +$ Radiation part (Ashtekar, Streubel 1981) C_{abcd} : Weyl tensor, l^{a} null vector satisfying $l_{a}\tau^{a} = -1$.

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

- Go to future null infinity, *I*⁺, consider generator *τ^a*, which in the limit is same as *t^a*.
- Energy at null infinity: $Q_{\tau} = -\frac{1}{8\pi} \int_{S} \epsilon_{abcd} \nabla^{c} \tau^{d} dS^{ab}$.
- Same as Komar mass in the Kerr region.
- CAN be defined in the dynamical region!
- τ^a is an asymptotic symmetry vector field (BMS generator), can be rigidly transported on all of \mathcal{I}^+ .
- τ^a exists on \mathcal{I}^+ even when t^a does not exist as a spacetime Killing vector field.
- In general, Bondi energy: $Q_{\tau,dyn} = -\frac{1}{8\pi} \int_{S} C_{abcd} l^{a} \tau^{b} l^{c} \tau^{d} +$ Radiation part (Ashtekar, Streubel 1981) C_{abcd} : Weyl tensor, l^{a} null vector satisfying $l_{a}\tau^{a} = -1$.
- ADM mass Bondi mass = Radiation energy flux.

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

- Go to future null infinity, *I*⁺, consider generator *τ^a*, which in the limit is same as *t^a*.
- Energy at null infinity: $Q_{\tau} = -\frac{1}{8\pi} \int_{S} \epsilon_{abcd} \nabla^{c} \tau^{d} dS^{ab}$.
- Same as Komar mass in the Kerr region.
- CAN be defined in the dynamical region!
- τ^a is an asymptotic symmetry vector field (BMS generator), can be rigidly transported on all of \mathcal{I}^+ .
- τ^a exists on \mathcal{I}^+ even when t^a does not exist as a spacetime Killing vector field.
- In general, Bondi energy: $Q_{\tau,dyn} = -\frac{1}{8\pi} \int_{S} C_{abcd} l^{a} \tau^{b} l^{c} \tau^{d} +$ Radiation part (Ashtekar, Streubel 1981) C_{abcd} : Weyl tensor, l^{a} null vector satisfying $l_{a}\tau^{a} = -1$.
- ADM mass Bondi mass = Radiation energy flux.
- Similarly ∂_{ϕ} gives Angular momentum.

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

• Killing tensor: Generalisation of Killing vector field.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ... □

• Killing tensor: Generalisation of Killing vector field. $\nabla_{(a}K_{bc)} = 0$

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 ○ のへで

 Killing tensor: Generalisation of Killing vector field. ∇_{(a}K_{bc)} = 0 Trivial Example: Sum of products of KVFs. K^{ab} = φ₁^aφ₁^b + φ₂^aφ₂^b + φ₃^aφ₃^b in any spherically symmetric spacetime gives J², square of the total angular momentum.

- 3

- Killing tensor: Generalisation of Killing vector field. $\nabla_{(a}K_{bc)} = 0$ Trivial Example: Sum of products of KVFs. $K^{ab} = \phi_1^a \phi_1^b + \phi_2^a \phi_2^b + \phi_3^a \phi_3^b$ in any spherically symmetric spacetime gives J^2 , square of the total angular momentum.
- Kerr has a **non-trivial** Killing tensor. $K^{ab} = 2\rho^2 \tilde{l}^{(a} \tilde{n}^{b)} + r^2 \tilde{g}^{ab};$ \tilde{l}^a, \tilde{n}^a principal null directions with $\partial_t, \partial_\phi$ and ∂_r components.

(a)

- Killing tensor: Generalisation of Killing vector field. $\nabla_{(a}K_{bc)} = 0$ Trivial Example: Sum of products of KVFs. $K^{ab} = \phi_1^a \phi_1^b + \phi_2^a \phi_2^b + \phi_3^a \phi_3^b$ in any spherically symmetric spacetime gives J^2 , square of the total angular momentum.
- Kerr has a **non-trivial** Killing tensor. $K^{ab} = 2\rho^2 \tilde{I}^{(a} \tilde{n}^{b)} + r^2 \tilde{g}^{ab};$ \tilde{I}^a, \tilde{n}^a principal null directions with $\partial_t, \partial_\phi$ and ∂_r components.
- NOT trivially obtained from Killing vectors ∂_t and ∂_{ϕ} .

(a)

- Killing tensor: Generalisation of Killing vector field. $\nabla_{(a}K_{bc)} = 0$ Trivial Example: Sum of products of KVFs. $K^{ab} = \phi_1^a \phi_1^b + \phi_2^a \phi_2^b + \phi_3^a \phi_3^b$ in any spherically symmetric spacetime gives J^2 , square of the total angular momentum.
- Kerr has a **non-trivial** Killing tensor. $K^{ab} = 2\rho^2 \tilde{l}^{(a} \tilde{n}^{b)} + r^2 \tilde{g}^{ab};$ \tilde{l}^a, \tilde{n}^a principal null directions with $\partial_t, \partial_\phi$ and ∂_r components.
- NOT trivially obtained from Killing vectors ∂_t and ∂_{ϕ} .
- Problem:
 - For trivial KT, say, $K_{ab} = \sum_{i,j} v i_{(a} v j_{b)}$, Conserved charge $Q_K = \sum_{i,j} Q_{vi} Q_{vj}$

- Killing tensor: Generalisation of Killing vector field. $\nabla_{(a}K_{bc)} = 0$ Trivial Example: Sum of products of KVFs. $K^{ab} = \phi_1^a \phi_1^b + \phi_2^a \phi_2^b + \phi_3^a \phi_3^b$ in any spherically symmetric spacetime gives J^2 , square of the total angular momentum.
- Kerr has a **non-trivial** Killing tensor. $K^{ab} = 2\rho^2 \tilde{l}^{(a} \tilde{n}^{b)} + r^2 \tilde{g}^{ab};$ \tilde{l}^a, \tilde{n}^a principal null directions with $\partial_t, \partial_\phi$ and ∂_r components.
- NOT trivially obtained from Killing vectors ∂_t and ∂_{ϕ} .
- Problem:
 - For trivial KT, say, $K_{ab} = \sum_{i,j} v i_{(a} v j_{b)}$, Conserved charge $Q_K = \sum_{i,j} Q_{vi} Q_{vj}$
 - For non-trivial Killing tensors, NO general prescription!

- $K^{ab} = 2\rho^2 \tilde{l}^{(a} \tilde{n}^{b)} + r^2 \tilde{g}^{ab}$ This is NOT a trivial sum of products of Killing vector fields.
- However, at \mathcal{I}^+ ..

- $K^{ab} = 2\rho^2 \tilde{l}^{(a} \tilde{n}^{b)} + r^2 \tilde{g}^{ab}$ This is NOT a trivial sum of products of Killing vector fields.
- However, at *I*⁺.. *K^{ab}* → φ₁^{(a}φ₁^{b)} + φ₂^{(a}φ₂^{b)} + (φ₃^(a) + aτ^(a))(φ₃^{b)} + aτ^{b)}) -(a cosθ τ^(a))(a cosθ τ^{b)}) where φ₁, φ₂, φ₃ are rotational fields, τ^a is the generator of null infinity, a: angular momentum parameter of Kerr BH, θ: polar coordinate.

- $K^{ab} = 2\rho^2 \tilde{l}^{(a} \tilde{n}^{b)} + r^2 \tilde{g}^{ab}$ This is NOT a trivial sum of products of Killing vector fields.
- However, at \mathcal{I}^+ .. $\mathcal{K}^{ab} \rightarrow \phi_1^{(a} \phi_1^{b)} + \phi_2^{(a} \phi_2^{b)} + (\phi_3^{(a} + a \tau^{(a)})(\phi_3^{b)} + a \tau^{b)}) - (a \cos\theta \tau^{(a)})(a \cos\theta \tau^{b)})$ where ϕ_1 , ϕ_2 , ϕ_3 are rotational fields, τ^a is the generator of null infinity, *a*: angular momentum parameter of Kerr BH, θ : polar coordinate.
- Product of generators of **BMS** group, the *asymptotic* symmetry group!

- $K^{ab} = 2\rho^2 \tilde{l}^{(a} \tilde{n}^{b)} + r^2 \tilde{g}^{ab}$ This is NOT a trivial sum of products of Killing vector fields.
- However, at \mathcal{I}^+ .. $\mathcal{K}^{ab} \rightarrow \phi_1^{(a} \phi_1^{b)} + \phi_2^{(a} \phi_2^{b)} + (\phi_3^{(a} + a \tau^{(a)})(\phi_3^{b)} + a \tau^{b)}) - (a \cos\theta \tau^{(a)})(a \cos\theta \tau^{b)})$ where ϕ_1 , ϕ_2 , ϕ_3 are rotational fields, τ^a is the generator of null infinity, *a*: angular momentum parameter of Kerr BH, θ : polar coordinate.
- Product of generators of BMS group, the *asymptotic* symmetry group!
 - Preserves universal structure of asymptotic flatness at null infinity. (BMS, Ashtekar etc.)

- $K^{ab} = 2\rho^2 \tilde{l}^{(a} \tilde{n}^{b)} + r^2 \tilde{g}^{ab}$ This is NOT a trivial sum of products of Killing vector fields.
- However, at \mathcal{I}^+ .. $\mathcal{K}^{ab} \rightarrow \phi_1^{(a} \phi_1^{b)} + \phi_2^{(a} \phi_2^{b)} + (\phi_3^{(a} + a \tau^{(a)})(\phi_3^{b)} + a \tau^{b)}) - (a \cos\theta \tau^{(a)})(a \cos\theta \tau^{b)})$ where ϕ_1 , ϕ_2 , ϕ_3 are rotational fields, τ^a is the generator of null infinity, *a*: angular momentum parameter of Kerr BH, θ : polar coordinate.
- Product of generators of BMS group, the *asymptotic* symmetry group!
 - Preserves universal structure of asymptotic flatness at null infinity. (BMS, Ashtekar etc.) Larger than the Poincaré group.

• $K^{ab} = 2\rho^2 \tilde{l}^{(a} \tilde{n}^{b)} + r^2 \tilde{g}^{ab}$ This is NOT a trivial sum of products of Killing vector fields.

• However, at
$$\mathcal{I}^+$$
..
 $K^{ab} \rightarrow \phi_1^{(a} \phi_1^{b)} + \phi_2^{(a} \phi_2^{b)} + (\phi_3^{(a} + a \tau^{(a)})(\phi_3^{b)} + a \tau^{b)}) - (a \cos\theta \tau^{(a)})(a \cos\theta \tau^{b)})$
where ϕ_1 , ϕ_2 , ϕ_3 are rotational fields, τ^a is the generator of null infinity, *a*: angular momentum parameter of Kerr BH, θ : polar coordinate.

- Product of generators of BMS group, the *asymptotic* symmetry group!
 - Preserves universal structure of asymptotic flatness at null infinity. (BMS, Ashtekar etc.) Larger than the Poincaré group.
- Associate charge to Killing tensor as follows:

 $Q_{\mathcal{K}} = \Sigma_i Q_{v_i} Q_{v_i}$ where $Q_{v_i} =$ Weyl part + Radiation part.

Asymptotic Kerr Killing tensor

• $K^{ab} \rightarrow \phi_1^{(a} \phi_1^{b)} + \phi_2^{(a} \phi_2^{b)} + (\phi_3^{(a} + a\tau^{(a)})(\phi_3^{b)} + a\tau^{b)}) - a^2 \cos^2 \theta \tau^{(a} \tau^{b)}$

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 ○ のへで

- $\mathcal{K}^{ab} \rightarrow \phi_1^{(a}\phi_1^{b)} + \phi_2^{(a}\phi_2^{b)} + (\phi_3^{(a} + a\tau^{(a)})(\phi_3^{b)} + a\tau^{b)}) a^2 \cos^2\theta \tau^{(a}\tau^{b)}$
- Naively, due to asymptotic flatness, may expect square of total angular momentum, but it is NOT!

- $K^{ab} \rightarrow \phi_1^{(a}\phi_1^{b)} + \phi_2^{(a}\phi_2^{b)} + (\phi_3^{(a} + a\tau^{(a)})(\phi_3^{b)} + a\tau^{b)}) a^2 \cos^2\theta \tau^{(a}\tau^{b)}$
- Naively, due to asymptotic flatness, may expect square of total angular momentum, but it is NOT!
- In addition to angular momentum, it contains information about z direction momentum!

- $K^{ab} \rightarrow \phi_1^{(a}\phi_1^{b)} + \phi_2^{(a}\phi_2^{b)} + (\phi_3^{(a} + a\tau^{(a)})(\phi_3^{b)} + a\tau^{b)}) a^2 \cos^2\theta \tau^{(a}\tau^{b)}$
- Naively, due to asymptotic flatness, may expect square of total angular momentum, but it is NOT!
- In addition to angular momentum, it contains information about z direction momentum!

• For Kerr,
$$Q_K = 4(Ma)^2$$

Summary

 Blackhole formed in asymptotic future provides asymptotic timelike Killing vector field τ^a and rotation Killing vector field which leaves τ^a invariant.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ... □

Summary

- Blackhole formed in asymptotic future provides asymptotic timelike Killing vector field τ^a and rotation Killing vector field which leaves τ^a invariant.
- Rigidity of asymptotic symmetry vector fields then determines the vector fields throughout \mathcal{I}^+ .

Summary

- Blackhole formed in asymptotic future provides asymptotic timelike Killing vector field τ^a and rotation Killing vector field which leaves τ^a invariant.
- Rigidity of asymptotic symmetry vector fields then determines the vector fields throughout \mathcal{I}^+ .
- Kerr Killing tensor decomposes into sum of product of asymptotic symmetry vector fields.

- Blackhole formed in asymptotic future provides asymptotic timelike Killing vector field τ^a and rotation Killing vector field which leaves τ^a invariant.
- Rigidity of asymptotic symmetry vector fields then determines the vector fields throughout \mathcal{I}^+ .
- Kerr Killing tensor decomposes into sum of product of asymptotic symmetry vector fields.
- Can then compute charge of Killing tensor at various stages of blackhole formation!

- Blackhole formed in asymptotic future provides asymptotic timelike Killing vector field τ^a and rotation Killing vector field which leaves τ^a invariant.
- Rigidity of asymptotic symmetry vector fields then determines the vector fields throughout \mathcal{I}^+ .
- Kerr Killing tensor decomposes into sum of product of asymptotic symmetry vector fields.
- Can then compute charge of Killing tensor at various stages of blackhole formation!
- Use this to write a conservation law.

- Blackhole formed in asymptotic future provides asymptotic timelike Killing vector field τ^a and rotation Killing vector field which leaves τ^a invariant.
- Rigidity of asymptotic symmetry vector fields then determines the vector fields throughout \mathcal{I}^+ .
- Kerr Killing tensor decomposes into sum of product of asymptotic symmetry vector fields.
- Can then compute charge of Killing tensor at various stages of blackhole formation!
- Use this to write a conservation law.
- Conserved charge is NOT square of total angular momentum.

- Blackhole formed in asymptotic future provides asymptotic timelike Killing vector field τ^a and rotation Killing vector field which leaves τ^a invariant.
- Rigidity of asymptotic symmetry vector fields then determines the vector fields throughout \mathcal{I}^+ .
- Kerr Killing tensor decomposes into sum of product of asymptotic symmetry vector fields.
- Can then compute charge of Killing tensor at various stages of blackhole formation!
- Use this to write a conservation law.
- Conserved charge is NOT square of total angular momentum.
- It contains information about linear momentum: blackhole kick?

• Charge of Kerr Killing tensor at blackhole horizon.

<ロ> <部> < 部> < き> < き> < き</p>

- Charge of Kerr Killing tensor at blackhole horizon.
- Calculate rate of change of Carter's constant, solve for inspiralling geodesic in EMRI calculations.

- 3

THANK YOU!

Aruna Kesavan Kerr Killing tensor and its conserved charge at \mathcal{I}^+

• Conserved charge: For test particles along geodesics $Q_K = K^{a_1..a_n} p_{a_1}..p_{a_n}$ $p_a \nabla^a Q_K = 0$

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 ○ のへで

• Conserved charge: For test particles along geodesics $Q_K = K^{a_1..a_n} p_{a_1}..p_{a_n}$ $p_a \nabla^a Q_K = 0$

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 ○ のへで