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What is Causal Dynamical Triangulation?

Causal Dynamical Triangulation (CDT) is a background
independent approach to quantum gravity.

∫
D[g ]e iS

EH [g ] →
∑
T

e−S
R [T ]

CDT provides a lattice regularization of the formal gravitational
path integral via a sum over causal triangulations.
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Path integral formulation of quantum mechanics

A classical particle follows a unique trajectory.

Quantum mechanics can be described by Path Integrals: All
possible trajectories contribute to the transition amplitude.

To define the functional integral, we discretize the time
coordinate and approximate each path by linear pieces.
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Path integral formulation of quantum gravity

General Relativity: gravity is encoded in space-time
geometry.

The role of a trajectory is now played by the geometry of
four-dimensional space-time.

All space-time histories contribute to the transition amplitude.

1+1D Example: State of system: one-dimensional spatial geometry
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Path integral formulation of quantum gravity

General Relativity: gravity is encoded in space-time
geometry.

The role of a trajectory is now played by the geometry of
four-dimensional space-time.

All space-time histories contribute to the transition amplitude.

1+1D Example: Evolution of one-dimensional closed universe
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Path integral formulation of quantum gravity

General Relativity: gravity is encoded in space-time
geometry.

The role of a trajectory is now played by the geometry of
four-dimensional space-time.

All space-time histories contribute to the transition amplitude.

Sum over all two-dimensional surfaces joining the in- and out-state
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Transition amplitude

Our aim is to calculate the amplitude of a transition between two
geometric states:

G (gi , gf , t) ≡
∫

gi→gf

D[g ]eiS
EH [g ]

To define this path integral we have to specify the measure D[g ]
and the domain of integration - a class of admissible space-time
geometries joining the in- and out- geometries.
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Causality - difference between DT and CDT

Causal Dynamical Triangulations assume global proper-time
foliation. Spatial slices (leaves) have fixed topology and are
not allowed to split in time.

Foliation distinguishes between time-like and spatial-like links.

In Euclidean DT one cannot avoid introducing causal
singularities, which lead to creation of baby universes.

EDT and CDT differ in a class of admissible space-time
geometries.
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Regularization by triangulation

1 Discretization is a the standard regularization used in QFT.
2 Spatial states are 3D geometries with a topology S3.

Discretized states are made of equilateral tetrahedra.
3 4D simplicial manifold is obtained by gluing pairs of

4-simplices along their 3-faces.
4 The metric is flat inside each 4-simplex.
5 Length of time links at and space links as is constant.
6 Curvature (angle deficit) is localized at triangles.

2D 3D 4D
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Regge action

The Einstein-Hilbert action has a natural realization on piecewise
linear geometries called Regge action

SE [g ] = − 1

G

∫
dt

∫
dDx
√
g(R − 2Λ)

N0 number of vertices

N4 number of simplices

N14 number of simplices of type {1, 4}
K0 K4 ∆ bare coupling constants (G ,Λ, at/as )
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Regge action

The Einstein-Hilbert action has a natural realization on piecewise
linear geometries called Regge action

SR [T ] = −K0N0 + K4N4 + ∆(N14 − 6N0)

N0 number of vertices

N4 number of simplices

N14 number of simplices of type {1, 4}
K0 K4 ∆ bare coupling constants (G ,Λ, at/as )
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Causal Dynamical Triangulations

The partition function of quantum gravity is defined as a
formal integral over all geometries weighted by the
Einstein-Hilbert action.

Z =

∫
D[g ]e iS

EH [g ]

To make sense of the gravitational path integral one uses
the standard method of regularization - discretization.

The path integral is written as a non-perturbative sum over all
causal triangulations T .

Wick rotation is well defined due to global proper-time
foliation. (at → iat)
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Numerical setup

To calculate the expectation value of an observable, we
approximate the path integral by a sum over a finite set of
Monte Carlo configurations

〈O[g ]〉 =
1

Z

∫
D[g ]O[g ]e−S[g ]

↓

〈O[T ]〉 =
1

Z

∑
T
O[T ]e−S[T ]

↓

〈O[T ]〉 ≈ 1

K

K∑
i=1

O[T (i)]

Monte Carlo algorithm probes the space of configurations
with the probability P[T ] = 1

Z e
−S[T ].
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Monte Carlo simulations

Random walk over configuration space, consisting of a series of
Monte Carlo moves.

Ergodicity - all configurations can be generated by the set of
Pachner moves.

Detailed balance condition - P(A)W (A → B) = P(B)W (B → A)

Fixed topology - moves don’t change the topology.

Causality - moves preserve the foliation.

4D CDT - set of 7 moves.

Moves in 3D
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Spatial slices

The simplest observable giving information about the
geometry, is the spatial volume ni defined as a number of
tetrahedra building a three-dimensional slice i = 1 . . .T .

Restricting our considerations to the spatial volume ni we
reduce the problem to one-dimensional quantum mechanics.

3D spatial slices with topology S3
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Phase diagram

S [T ] = −K0N0 + K4N4 + ∆(N14 − 6N0)
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De Sitter space-time as background geometry

In phase C the time translation symmetry is spontaneously
broken and the distribution ni is bell-shaped.
The average volume 〈ni 〉 is with high accuracy given by formula

〈ni 〉 = H cos3

(
i

W

)
It describes Euclidean de Sitter space (S4), a classical vacuum
solution.
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Hausdorff dimension

The spatial volume 〈ni 〉 scales with total volume N4 as

t = N
−1/4

4 i , v̄(t) = N
−3/4

4 〈ni 〉 =
3

4ω
cos3

( t
ω

)
.

Such result is expected for a genuine four-dimensional Universe.
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Spectral dimension

Simulations of the diffusion process allow to compute spectral
dimension ds .

2.8
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d S
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Fit

Extrapolation of the results gives short and long range behavior

ds(σ → 0) = 1.95± 0.10, ds(σ →∞) = 4.02± 0.10,

where σ is a fictitious diffusion time.
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Minisuperspace model

v̄(t) = 3
4ω cos3

(
t
ω

)
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Classical trajectory v̄(t) corresponds to Euclidean de Sitter space (S4), a
spatially homogeneous and isotropic vacuum solution.

We ,,freeze” all degrees of freedom except spatial volume and assume
that metric on S3 × S1 space-time has form

ds2 = dt2 + a2(t)dΩ2
3, v(t) = a3(t)

In this particular case, the Einstein-Hilbert action takes form

S =
1

G

∫
dt

∫
dΩ
√
g(R − 6λ)

with classical solution v̄(t).
Andrzej Görlich Causal Dynamical Triangulations



Minisuperspace model

v̄(t) = 3
4ω cos3

(
t
ω

)
0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.5 0 0.5 1

t

v̄(t)

20k
40k
80k

120k
160k

Fit

Classical trajectory v̄(t) corresponds to Euclidean de Sitter space (S4), a
spatially homogeneous and isotropic vacuum solution.
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G

∫
v̇2

v
+ v

1
3 − λvdt

with classical solution v̄(t).
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Classical trajectory v̄(t) corresponds to Euclidean de Sitter space (S4), a
spatially homogeneous and isotropic vacuum solution.

We ,,freeze” all degrees of freedom except spatial volume and assume
that metric on S3 × S1 space-time has form

ds2 = dt2 + a2(t)dΩ2
3, v(t) = a3(t)

In this particular case, the Einstein-Hilbert action takes form

S =
1

G

∫
v̇2

v
+ v

1
3 − λvdt

with classical solution v̄(t).

Question?

How well does the minisuperspace model describe quantum
fluctuations of spatial volume in CDT?
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Quantum fluctuations

We can measure the correlation matrix of spatial volume
fluctuations around the classical solution n̄ = 〈n〉,

Cij ≡ 〈(ni − 〈ni 〉)(nj − 〈nj〉)〉

The propagator C appears in the semiclassical expansion of the
effective action describing quantum fluctuations

S [n = n̄+η] = S [n̄]+
1

2

∑
i ,j

ηi [C−1]ij ηj+O(η3), [C−1]ij =
∂2S [n]

∂ni∂nj

∣∣∣∣
n=n̄
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Effective action

Minisuperspace action S [v ] =
1

G

∫
v̇2

v
+ v

1
3 − λvdt

⇓

Discretization S [n] =
1

Γ

∑
t

(
(nt+1 − nt)

2

nt+1 + nt
+ µn

1/3
t −λnt

)
Inverse of propagator C

ηi [C−1]ij ηj =
(ηi+1 − ηi )2

ki
− uiη

2
i , ki = g1n̄i , ui = g2n̄

−5/3

i

Andrzej Görlich Causal Dynamical Triangulations



Effective action

Minisuperspace action S [v ] =
1

G

∫
v̇2

v
+ v

1
3 − λvdt

⇓

Discretization S [n] =
1

Γ

∑
t

(
(nt+1 − nt)

2

nt+1 + nt
+ µn

1/3
t −λnt

)
Inverse of propagator C

ηi [C−1]ij ηj =
(ηi+1 − ηi )2

ki
− uiη

2
i , ki = g1n̄i , ui = g2n̄

−5/3

i

0

2000

4000

6000

8000

0 10 20 30 40 50 60 70 80

N̄
(i

),
g 1

k i

i

160k
120k
80k
40k
20k

Andrzej Görlich Causal Dynamical Triangulations



Effective action

Minisuperspace action S [v ] =
1

G

∫
v̇2

v
+ v

1
3 − λvdt

⇓

Discretization S [n] =
1

Γ

∑
t

(
(nt+1 − nt)

2

nt+1 + nt
+ µn

1/3
t −λnt

)
Inverse of propagator C

ηi [C−1]ij ηj =
(ηi+1 − ηi )2

ki
− uiη

2
i , ki = g1n̄i , ui = g2n̄

−5/3

i

0

2e-06

4e-06

6e-06

1000 2000 3000 4000 5000

u i

N̄(i)

Fit av−5/3

Monte Carlo, 160k

Andrzej Görlich Causal Dynamical Triangulations



Effective action

We can measure the discrete effective action

S [n] =
1

Γ

∑
t

(
(nt+1 − nt)

2

nt+1 + nt
+ µn

1/3
t −λnt

)
, Γ = g1, µ =

9

2
g1g2

and relate the effective coupling constant Γ and the cut-off a with
the Newton’s gravitational constant G ,

G = const · Γ · a2

We may express the lattice constant in term of Planck length and
estimate that the Universe built of 362000 simplices has a radius of
about 20 Planck lengths.
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Summary

Causal Dynamical Triangulations is a background independent approach
to quantum gravity.

1 Only geometric invariants like length and angles are involved. While
no coordinates are introduced, the model is manifestly
diffeomorphism-invariant.

2 Phase diagram consists of three phases. In phase C emerges a
four-dimensional universe with well defined time and space extent.

3 The background geometry corresponds to the Euclidean de Sitter
space, i.e. classical solution of the minisuperspace model.
However, in CDT no degrees of freedom are frozen.

4 Quantum fluctuations of the spatial volume are also properly
described by this simple model.
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Thank you for your attention!
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Spectral dimension of spatial slices
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Spectral dimension of spatial slices

The measured spectral dimension is almost a half smaller then
the expected classical value.
Such behaviour suggests a fractal nature of constant-time
slices (determined by foliation)

Is the character of quantum geometry fractal?

Can it be described by Gaussian fluctuations around an
average geometry?
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Structure of spatial slices
MINimal Baby Universe

Tree of minimal necks.
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Structure of spatial slices

The quantum geometry has a nontrivial microstructure

Spatial slices reveal a fractal nature, completely different from
smooth S3

Similarity to branched polymers

Quantum fluctuations can not be described by Gaussian
deviations from background geometry
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Monte Carlo simulations - Alexander moves

We construct a starting space-time manifold with given
topology (S3 × S1) and perform a random walk over
configuration space.

Ergodicity In the dynamical triangulation approach all possible
configurations are generated by the set of Alexander moves.

Fixed topology The moves don’t change the topology.
Causality Only moves that preserve the foliation are allowed.
4D CDT We have 4 types of moves.

Minimal configuration
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Monte Carlo Markov Chain

We perform a random walk in the phase-space of
configurations (space of piecewise linear geometries).

Each step is one of the 4D CDT moves.

The weight (acceptance probability) W (A → B) of a move
from configuration A to B is determined (not uniquely) by the
detailed balance condition:

P(A)W (A → B) = P(B)W (B → A)

The Monte Carlo algorithm ensures that we probe the
configurations with the probability P(A).

After sufficiently long time, the configurations are
independent.

All we need, is the probability functional for configurations
P(A).
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