The effective action in 4-dim CDT

Jakub Gizbert-Studnicki

(IFUJ, Kraków)
in collaboration with
Jan Ambjørn, Andrzej Görlich and Jerzy Jurkiewicz

LIII Cracow School of Theoretical Physics

Zakopane, 5th July 2013

IN KRAKOW

Outline

- Revision of CDT basics
- The transfer matrix idea and measurement
- Transfer matrix in 'C' (de Sitter) phase
- Transfer matrix in ' A ' (uncorrelated) phase
- Transfer matrix in ‘B’ (collapsed) phase
- Conclusions and prospects

The transfer matrix idea and measurement
Transfer matrix in 'C' (de Sitter) phase

Transfer matrix in ' A ' (uncorrelated) phase
Transfer matrix in ' B ' (collapsed) phase
Conclusions and prospects

- Causal Dynamical Triangulations (CDT) is a non-perturbative approach to Quantum Gravity based on the path integral

$$
Z=\int_{\text {Geom }} D[g] \exp \left(i S_{H E}[g]\right)
$$

- Regularization of Z is done by summing over all causal triangulations T constructed from 4-d simplices

$$
Z=\sum_{T} \frac{1}{C_{T}} \exp \left(i \tilde{S}_{R}[T]\right)
$$

- We assume a global time foliation S^{l} and fixed spatial topology $S^{3} \Rightarrow$ resulting space-time $S^{l} \times S^{3}$ can be built from two types of simplices

The transfer matrix idea and measurement Transfer matrix in 'C' (de Sitter) phase

Transfer matrix in ' A ' (uncorrelated) phase
Transfer matrix in ' B ' (collapsed) phase
Conclusions and prospects

- The Einstein-Hilbert action:

$$
S_{H E}=\frac{1}{16 \pi G} \int d t \int d^{3} x \sqrt{-g}(R-2 \Lambda)
$$

- G - Newton's constant
- R - curvature scalar
- g-metric determinant
- \quad - cosmological constant
- is regularized by the Regge action where curvature R is determined by the deficit angle „around" 2-d triangles

$$
\tilde{S}_{R}=i\left[\begin{array}{c}
-K_{0} N_{0} \\
\frac{\text { I }}{1 / G} \\
\left.\frac{\text { K }}{4} N_{4}+\Delta\left(N_{4}^{(4,1)}-6 N_{0}\right)\right] \\
\Lambda
\end{array}\right.
$$

- $\quad N_{0}$ - \# of vertices
- N_{4} - \# of 4-simplices
- $\quad N_{4}^{(4,1)}-\#$ of $(4,1) \&(1,4)$ simplices
- After Wick rotation: $\alpha \rightarrow-\alpha(|\alpha|>7 / 12) S_{R}$ is purely real:

$$
Z=\sum_{T} \frac{1}{C_{T}} \exp \left(i \tilde{S}_{R}[T]\right)=\sum_{T} \frac{1}{C_{T}} \exp \left(-S_{R}[T]\right) \rightarrow \text { random geometry system }
$$

Revision of CDT basics

The transfer matrix idea and measurement Transfer matrix in ' C ' (de Sitter) phase

Transfer matrix in ' A ' (uncorrelated) phase
Transfer matrix in ' B ' (collapsed) phase Conclusions and prospects

$$
S_{R}=-K_{0} N_{0}+K_{4} N_{4}+\Delta\left(N_{4}^{(4,1)}-6 N_{0}\right)
$$

- Depending on the values of bare couplings K_{0} and $\Delta\left(K_{4} \approx K_{4}^{\text {crit }}\right)$ three phases emerge

Phase B $\begin{aligned} & n_{t} \\ & 20000 \\ & 2000 \\ &\end{aligned}$

κ_{0}

Phase A

Revision of CDT basics
The transfer matrix idea and measurement Transfer matrix in 'C’ (de Sitter) phase

Transfer matrix in ' A ' (uncorrelated) phase
Transfer matrix in 'B' (collapsed) phase
Conclusions and prospects

- In phase ' C ' the dynamically generated semi-classical background ...
spatial volume at time $t: \quad n_{t} \equiv N_{4}^{(4,1)}(t)$ $\left\langle n_{t}\right\rangle=\frac{3}{4} \tilde{V}_{4} \frac{1}{\tilde{A} \tilde{V}_{4}^{1 / 4}} \cos ^{3}\left(\frac{t-t_{0}}{\tilde{A} \tilde{V}_{4}^{1 / 4}}\right)$

$\sqrt{g_{t t}} V_{3}(t)=\frac{3}{4} V_{4} \frac{1}{A V_{4}^{1 / 4}} \cos ^{3}\left(\frac{t-t_{0}}{A V_{4}^{1 / 4}}\right)$

- The solution (in the 'blob') is consistent with the Euclidean (Wick's rotation) de Sitter Universe (no matter, positive cosmological const.)

Revision of CDT basics
The transfer matrix idea and measurement
Transfer matrix in 'C' (de Sitter) phase

Transfer matrix in ' A ' (uncorrelated) phase
Transfer matrix in 'B' (collapsed) phase
Conclusions and prospects

- ... and quantum fluctuations are governed by the action:

$$
\begin{aligned}
S= & \frac{1}{24 \pi G} \int d t \sqrt{g_{t t}}\left(\frac{g^{t} \dot{V}_{3}(t)^{2}}{V_{3}(t)}+\mu V_{3}(t)^{1 / 3}-\lambda V_{3}(t)\right) \\
& \text { व } \mu=9\left(\frac{3}{4}\right)^{2 / 3} A^{-8 / 3} \quad \text { व } \lambda=9 V_{4}^{-1 / 2} A^{-2}
\end{aligned}
$$

- This is the (Euclidean) minisupespace (MS) action obtained from $S_{H E}$ for the maximally symmetric metric: $d s^{2}=g_{t} d t^{2}+a^{2}(t) d \Omega_{3}{ }^{2} \Rightarrow V_{3}(t) \propto a^{3}(t)$
- Analysis of the effective propagator (vol-vol correlations) \Rightarrow effective action in the phase ' C ' is a discretization of the MS action:

$$
S_{d i s}=\frac{1}{\Gamma} \sum_{t}\left(\frac{\left(n_{t+1}-n_{t}\right)^{2}}{n_{t+1}+n_{t}}+\tilde{\mu} n_{t}^{1 / 3}-\tilde{\lambda} n_{t}+\mathrm{O}\left(n_{t}^{-1 / 3}\right)\right)
$$

Revision of CDT basics
The transfer matrix idea and measurement Transfer matrix in 'C’ (de Sitter) phase

Transfer matrix in ' A ' (uncorrelated) phase
Transfer matrix in 'B' (collapsed) phase
Conclusions and prospects

Transfer Matrix Motivation:

- The large vol. range in phase ' C ' is described by the MS effective action:
- How good is this description?
- Can we measure the effective action directly (not only vol-vol correlations)?
- How to describe the behavior of the small volume range?
- Relatively large quantum fluctuations
- Small volume discretization effects
- 'Cleaning' of discretization artifacts might lead to discovery of some non-trivial corrections
- Can we analyze the effective action in other phases ?
- Can we say something more about the dynamics of phase transitions?

The transfer matrix idea and measurement
Transfer matrix in 'C’ (de Sitter) phase

Transfer matrix in ' A ' (uncorrelated) phase
Transfer matrix in 'B' (collapsed) phase
Conclusions and prospects

$$
\begin{gathered}
S_{b l o b}=\sum_{t} \frac{1}{\Gamma}\left(\frac{\left(n_{t+1}-n_{t}\right)^{2}}{n_{t+1}+n_{t}}+\tilde{\mu} n_{t}^{1 / 3}-\tilde{\lambda} n_{t}\right)=\sum_{t} L_{b l o b}\left[n_{t}, n_{t+1}\right] \\
\left\langle n_{t}\right| M_{b l o b}\left|n_{t+1}\right\rangle=\exp \left(-L_{b l o b}\left[n_{t}, n_{t+1}\right]\right) \\
Z_{b l o b}=\sum_{n_{1} \ldots n_{t} \ldots n_{T}} \exp \left(-S_{b l o b}\right)=\operatorname{Tr}\left(M_{b l o b}^{T}\right)
\end{gathered}
$$

- we consider only effective aggregate 'states' $\left|n_{t}\right\rangle$
- the effective interaction is only between neighboring time slices
a description by the transfer matrix is also viable in other phases
- time translation symmetry $\Rightarrow M(\mathbb{K})$
- time reflection symmetry $\Rightarrow\left\langle n_{t}\right| M\left|n_{t+1}\right\rangle=\left\langle n_{t+1}\right| M\left|n_{t}\right\rangle$

Revision of CDT basics
The transfer matrix idea and measurement Transfer matrix in 'C' (de Sitter) phase

Transfer matrix in ' A ' (uncorrelated) phase Transfer matrix in ' B ' (collapsed) phase Conclusions and prospects

$$
Z=\sum_{n_{1} \ldots n_{t} \ldots n_{T}} \prod_{t=1}^{T}\left\langle n_{t}\right| M\left|n_{t+1}\right\rangle=\operatorname{Tr}\left(M^{T}\right)
$$

- We use measured 2-point probability distribution in systems with $T=2$ time slices...

$$
P_{2}\left(n_{1}, n_{2}\right)=\frac{1}{Z}\left\langle n_{1}\right| M\left|n_{2}\right\rangle^{2}
$$

- ...to determine transfer matrix elements:

$$
\langle n| M|m\rangle=N \sqrt{P_{2}\left(n_{1}=n, n_{2}=m\right)}
$$

- We explicitly symmetrize: $\langle n| M|m\rangle=\langle m| M|n\rangle$

Revision of CDT basics	Transfer matrix in 'A' (uncorrelated) phase
The transfer matrix idea and measurement	Transfer matrix in 'B' (collapsed) phase
Transfer matrix in ' C ' (de Sitter) phase	Conclusions and prospects

'C' ('de Sitter') phase

Revision of CDT basics	Transfer matrix in 'A' (uncorrelated) phase
The transfer matrix idea and measurement	Transfer matrix in 'B' (collapsed) phase
Transfer matrix in 'C' (de Sitter) phase	Conclusions and prospects

- The transfer matrix in phase ' C ' is measured and fitted with MS action:

$$
\begin{gathered}
\langle n| M|m\rangle=N e^{-L_{e f f}[n, m]} \\
L_{e f f}[n, m]=\frac{1}{\Gamma}\left\{\frac{(n-m)^{2}}{n+m-2 n_{o}}+\mu\left(\frac{n+m}{2}\right)^{1 / 3}-\lambda\left(\frac{n+m}{2}\right)\right\}
\end{gathered}
$$

Revision of CDT basics	Transfer matrix in 'A' (uncorrelated) phase
The transfer matrix idea and measurement	Transfer matrix in 'B' (collapsed) phase
Transfer matrix in ' C ' (de Sitter) phase	Conclusions and prospects

- The kinetic term ...

$$
\langle n| M|m\rangle=\underset{k[n+m]=\Gamma\left(n+m-2 n_{0}\right)}{\operatorname{erm} \ldots} \underset{\left.e^{-\frac{1}{\Gamma} \left\lvert\, \frac{(n-m)^{2}}{n+m-2 n_{0}}\right.}+\mu\left(\frac{n+m}{2}\right)^{1 / 3}-\lambda\left(\frac{n+m}{2}\right)\right\}}{ }\langle
$$

- Gaussian bahaviour for $n+m=s: \quad\langle n| M|s-n\rangle=\tilde{N}[s] \exp \left\{-\frac{(2 n-s)^{2}}{k[s]}\right\}$

Revision of CDT basics	Transfer matrix in 'A' (uncorrelated) phase
The transfer matrix idea and measurement	Transfer matrix in 'B' (collapsed) phase
Transfer matrix in 'C' (de Sitter) phase	Conclusions and prospects

- ... and the potential term can be analyzed in detail

$$
\langle n| M|m\rangle=N e^{-\frac{1}{\Gamma}\left\{\frac{(n-m)^{2}}{n+m-2 n_{0}}+\mu\left(\frac{n+m}{2}\right)^{1 / 3}-\lambda\left(\frac{n+m}{2}\right)\right\}}
$$

- For $n=m$:
$\log \langle n| M|n\rangle=-\frac{1}{\Gamma}\left(\mu n^{1 / 3}-\lambda n\right)+\alpha$

Revision of CDT basics
The transfer matrix idea and measurement Transfer matrix in 'C' (de Sitter) phase

Transfer matrix in ' A ' (uncorrelated) phase
Transfer matrix in 'B' (collapsed) phase
Conclusions and prospects

- The fits agree with the previous method based on the covariance matrix *

$$
\langle n| M|m\rangle=N e^{-\frac{1}{\Gamma}\left\{\frac{(n-m)^{2}}{n+m-2 n_{0}}+\mu\left(\frac{n+m}{2}\right)^{1 / 3}-\lambda\left(\frac{n+m}{2}\right)\right\}}
$$

Method	Γ	n_{0}	μ	λ
Cross-diagonals	26.07 ± 0.02	-3 ± 1	-	-
Diagonal	(26.07)	-	16.5 ± 0.2	0.049 ± 0.001
Full fit	26.17 ± 0.01	7 ± 1	15.0 ± 0.1	0.046 ± 0.001
Previous method*	23 ± 1	-	13.9 ± 0.7	0.027 ± 0.003

*J. Ambjørn, A. Görlich, J. Jurkiewicz, R. Loll, JGS, T.Trześniewski
Nucl. Phys. B 849 (2011) 144

Revision of CDT basics
The transfer matrix idea and measurement
Transfer matrix in 'C' (de Sitter) phase

Transfer matrix in ' A ' (uncorrelated) phase
Transfer matrix in 'B' (collapsed) phase
Conclusions and prospects

The transfer matrix gives access to the effective action in the 'stalk' (small volumes) range:

$$
\langle n| M|m\rangle=N e^{-L_{e f f}[n, m]}
$$

- Discretization effects (split into three families of states) makes analytical modeling difficult

- If we average over these three families M becomes smooth

Revision of CDT basics	Transfer matrix in 'A' (uncorrelated) phase
The transfer matrix idea and measurement	Transfer matrix in 'B' (collapsed) phase
Transfer matrix in 'C' (de Sitter) phase	Conclusions and prospects

- The effective action for the stalk is basically the same as for the 'blob' *

$$
S_{e f f}^{\text {stalk }}=\sum_{t} \frac{1}{\Gamma}\left\{\frac{\left(n_{t}-n_{t+1}\right)^{2}}{n_{t}+n_{t+1}-2 n_{0}}+\mu\left(\frac{n_{t}+n_{t+1}}{2}\right)^{1 / 3}-\lambda\left(\frac{n_{t}+n_{t+1}}{2}\right)^{1 / 3}+\delta\left(\frac{n_{t}+n_{t+1}}{2}\right)^{-p}\right\}
$$

Revision of CDT basics	Transfer matrix in 'A' (uncorrelated) phase
The transfer matrix idea and measurement	Transfer matrix in 'B' (collapsed) phase
Transfer matrix in 'C' (de Sitter) phase	Conclusions and prospects

'A' ('uncorrelated') phase

Revision of CDT basics
The transfer matrix idea and measurement Transfer matrix in 'C’ (de Sitter) phase

Transfer matrix in ' A ' (uncorrelated) phase
Transfer matrix in 'B' (collapsed) phase Conclusions and prospects

- The kinetic term $\langle n| M|s-n\rangle$ looks anti-gaussian on the first sight ... Is it possible that we observe a signature change in large Γ regime?
$L_{C}[n, m]=\frac{1}{\Gamma} \frac{(n-m)^{2}}{n+m}+v_{C}[n+m]$ \square $L_{A}[n, m]=-\frac{1}{\Gamma} \frac{(n-m)^{2}}{k[n+m]}+v_{A}[n+m]$

- It looks that $k[n+m]$ is no longer linear, it fits well to:

$$
k[n+m]=k_{0}(n+m)^{2-\alpha}
$$

Revision of CDT basics
The transfer matrix idea and measurement Transfer matrix in 'C' (de Sitter) phase

Transfer matrix in ' A ' (uncorrelated) phase
Transfer matrix in ' B ' (collapsed) phase
Conclusions and prospects

- ... but if the kinetic term vanishes as expected and we expand L_{A} in $s=n+m$ \& $d=n-m$ we recover the effective anti-gaussian behaviour if $\alpha<1$
- L_{A} fits very well to measured potential (diagonal) term $\langle n| M|n\rangle$

$$
L_{A}[n, m]=\mu\left(n^{\alpha}+m^{\alpha}\right)+\lambda(n+m)
$$

Revision of CDT basics	Transfer matrix in 'A' (uncorrelated) phase
The transfer matrix idea and measurement	Transfer matrix in ' B ' (collapsed) phase
Transfer matrix in ' C ' (de Sitter) phase	Conclusions and prospects

'B' ('collapsed') phase

Revision of CDT basics
The transfer matrix idea and measurement Transfer matrix in 'C’ (de Sitter) phase

Transfer matrix in ' A ' (uncorrelated) phase
Transfer matrix in 'B' (collapsed) phase
Conclusions and prospects

- The kinetic term $\langle n| M|s-n\rangle$ depends strongly on $s=n+m$:

- for $s<s_{b}$ it fits well to the single gaussian (as in the phase ' C ')
$\langle n| M|s-n\rangle=N[s]\left\{\exp \left(-\frac{\left((m-n-c[s])^{2}\right.}{k[s]}\right)+\exp \left(-\frac{\left((m-n+c[s])^{2}\right.}{k[s]}\right)\right\}$

Revision of CDT basics
The transfer matrix idea and measurement Transfer matrix in 'C' (de Sitter) phase

Transfer matrix in ' A ' (uncorrelated) phase
Transfer matrix in 'B' (collapsed) phase Conclusions and prospects

$$
\langle n| M|s-n\rangle=N[s]\left\{\exp \left(-\frac{\left((m-n-c[s])^{2}\right.}{k[s]}\right)+\exp \left(-\frac{\left((m-n+c[s])^{2}\right.}{k[s]}\right)\right\}
$$

$\mathrm{c}[\mathrm{s}]$ is well fitted by:

$$
c[s] \approx \max \left[0, c_{0}\left(s-s_{b}\right)\right]
$$

- $\mathrm{k}[\mathrm{s}]$ is linear (as in the phase ' C '):

$$
k[s]=\Gamma\left(s-2 n_{0}\right)
$$

Revision of CDT basics
The transfer matrix idea and measurement
Transfer matrix in 'C’ (de Sitter) phase

Transfer matrix in ' A ' (uncorrelated) phase
Transfer matrix in 'B' (collapsed) phase
Conclusions and prospects

$$
\langle n| M|m\rangle=N[n+m]\left[\exp \left(-\frac{\left(\left(m-n-\left[c_{0}\left(n+m-s_{b}\right)\right]_{+}\right)^{2}\right.}{\Gamma\left(n+m-2 n_{0}\right)}\right)+\exp \left(-\frac{\left(\left(m-n+\left[c_{0}\left(n+m-s_{b}\right)\right]_{+}\right)^{2}\right.}{\Gamma\left(n+m-2 n_{0}\right)}\right]\right]
$$

This is measured in a given point in the bare coupling constants space (K_{0}, Δ, K_{4})

- But inside the phase ' B ': $\mathrm{K}_{4}{ }^{\text {crit }}$ is volume dependent...

$$
K_{4}^{c r i t}=K_{4}^{\infty}-K \cdot s^{-\gamma}
$$

- ...and we are interested in large volume behaviour (where K_{4} 仓):

$$
S_{b}=\text { const }, c_{0} \uparrow
$$

Revision of CDT basics
The transfer matrix idea and measurement Transfer matrix in 'C’ (de Sitter) phase

Transfer matrix in ' A ' (uncorrelated) phase
Transfer matrix in 'B' (collapsed) phase
Conclusions and prospects
$\langle n| M|m\rangle=N[n+m]\left[\exp \left(-\frac{\left(\left(m-n-\left[c_{0}\left(n+m-s_{b}\right)\right]_{+}\right)^{2}\right.}{\Gamma\left(n+m-2 n_{0}\right)}\right)+\exp \left(-\frac{\left(\left(m-n+\left[c_{0}\left(n+m-s_{b}\right)\right]_{+}\right)^{2}\right.}{\Gamma\left(n+m-2 n_{0}\right)}\right)\right]$

- The limiting behaviour of the system may differ depending on $c_{0}\left(K_{4}{ }^{\infty}\right)$

- If $c_{0}\left(K_{4}^{\infty}\right)>\sqrt{2} / 2$ the effective kinetic term for large vol. looks like "anti-gaussian" and we get generic 'B' phase configuration

- If $c_{0}\left(K_{4}^{\infty}\right)<\sqrt{2} / 2$ "double gaussian" behaviour persists even for large vol. and typical configuration may mimic 'C' phase blob structure

Revision of CDT basics
The transfer matrix idea and measurement Transfer matrix in 'C’ (de Sitter) phase

Transfer matrix in ' A ' (uncorrelated) phase
Transfer matrix in 'B' (collapsed) phase
Conclusions and prospects

$$
\langle n| M|m\rangle=N[n+m]\left[\exp \left(-\frac{\left(\left(m-n-\left[c_{0}\left(n+m-s_{b}\right]_{+}\right)^{2}\right.\right.}{\Gamma\left(n+m-2 n_{0}\right)}\right)+\exp \left(-\frac{\left(\left(m-n+\left[c_{0}\left(n+m-s_{b}\right)\right]_{+}\right)^{2}\right.}{\Gamma\left(n+m-2 n_{0}\right)}\right]\right]
$$

- After crossing B-C phase transition we should regain MS action ($\left.s_{b} \rightarrow \infty\right)$

- But it happens for Δ much bigger then suggested by previous phase transitions studies !!!

- It indicates that a newly discovered "bifurcation" phase may exist in CDT

Revision of CDT basics
The transfer matrix idea and measurement Transfer matrix in 'C’ (de Sitter) phase

Transfer matrix in ' A ' (uncorrelated) phase
Transfer matrix in 'B' (collapsed) phase
Conclusions and prospects

$$
\langle n| M|m\rangle=N[n+m]\left[\exp \left(-\frac{\left(\left(m-n-\left[c_{0}\left(n+m-s_{b}\right]_{+}\right]^{2}\right.\right.}{\Gamma\left(n+m-2 n_{0}\right)}\right)+\exp \left(-\frac{\left(\left(m-n+\left[c_{0}\left(n+m-s_{b}\right)\right]_{+}\right)^{2}\right.}{\Gamma\left(n+m-2 n_{0}\right)}\right]\right]
$$

- Generic configurations in the "bifurcation phase" may resemble ' C ' phase structure but they should have different scaling properties

- Typical scaling inside the 'C' phase with Hausdorf dimension 4 ...

- ... is different that inside the newly discovered "bifurcation phase".

Revision of CDT basics	Transfer matrix in 'A' (uncorrelated) phase
The transfer matrix idea and measurement	Transfer matrix in 'B' (collapsed) phase
Transfer matrix in 'C' (de Sitter) phase	Conclusions and prospects

- The transfer matrix approach allows to measure the effective action directly
- The effective action inside phase ' C ' is well described by the MS model
- The transfer matrix method gives access to effective action in other phases
- Inside 'A' (uncorrelated) phase the kinetic term vanishes as expected \Rightarrow possible relation to asymptotic silence ???
- Inside 'B' (collapsed) phase the structure of the transfer matrix is very nontrivial ("double-gaussian" kinetic term)
- "Double-gaussian" structure continues after crossing previously measured $B-C$ phase transition line \Rightarrow possible existence of new "bifurcation phase" with different scaling properties (will it survive in infinite volume limit ???)
- Open questions:
- "bifurcation" mechanism in B-C phase transition \Rightarrow possible signature change ??
a scaling properties / critical exponents in A-C and B-C phase transitions

Thank You for attention !!!

NATIONALSCIENCE CENTRE
Research financed by the National Science Centre grant DEC-2012/05/N/ST2/02698

