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Introduction

Non-relativistic (quantum) fermionic particles in interaction.
Inspired by superfluid 3He.

Our goal: To analyze the low-energy excitations of the system
(suitably defined) to check if they can be consistently
described by a relativistic field theory, as it is suggested by the
work of Grigori Volovik in 3He.

Techniques which lead to good descriptions of complex
condensed matter systems.

Warm-up to a more complex situation: gravitational
interaction.
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The model

Non-relativistic system composed by two different families of
massless fermions in interaction:

ψ̂α(t, x), α = 1, 2

Finite temperature T (Sec. 5): Euclidean time in an interval
[0, β] := [0, h̄/kBT ].



Hamiltonian of the system in the second-quantization formalism in
momentum representation:

Ĥ−µN̂ := ∑
p,α

(
p2

2m
− µ

)
a+pαâpα +

1

2

g

p2F
∑

p,p′,α,β

(p ·p′)â+−p′βâ
+
p′αâpαâ−pβ

Annihilation and creation operators:

ψ̂α = ∑
p

âpαe
ip·x ; âp,α, â+p,α

Chemical potential µ as independent variable instead of the
number of particles N by practical convenience.

Symmetry group: U(1)× SO(3)× SU(2).



The second term represents the interaction between fermions.
Inspired by 3He, with a repulsive hard core and an attractive
tail.

A general interaction invariant under SO(3) is written in
terms of Legendre polynomials:

V (|p − p′|) = ∑
l

Vl (p, p′)Pl (p̂ · p̂′)

We have taken Vl 6=1 = 0.



The ground state of the free theory, g = 0, is the so-called Fermi
sea:

Filling up the one-particle energy levels:

Fermi momentum: pF :=
√

2mµ.
Excitations: Particle-hole pairs.



Interacting theory: g 6= 0.

Cooper’s problem: in we put two fermions over the Fermi sea,
any small attractive interaction permits the formation of
bound states. Compare with the situation in free space.

Condensation of these bound states. When condensation
occurs the system will exhibit anomalous mean values of pairs
of fermionic operators such this one:〈

∑
p

pâpαâ−pβ

〉
6= 0

This quantity contains the information about the condensed
part of the system. By the relevance of this condensation in
what follows, we are going to devote the following section to
study it.



Order parameter

The occurrence of a condensed phase implies a spontaneous
symmetry breaking of the original symmetry of the Hamiltonian.
Order parameter:

Ψi
αβ :=

g

pF

〈
∑
p

pi âpαâ−pβ

〉

This quantity is symmetric in the internal indices, so it can be
written without loss of generality in terms of Pauli matrices,
and a quantity with two indices dai ,

Ψi
αβ = i(σaσ2)αβd

ai

dai is a complex vector in both internal and position space.

The possible structures of the order parameter can be found
by a minimization principle.



The order parameter for these two phases is given by the following
expressions:

dai
planar(T ) := ∆(T )(ŝam̂i + ŝ ′an̂i )

dai
ABM(T ) := ∆(T )ŝa(m̂i + i n̂i )

m̂, n̂, ŝ and ŝ ′ are unit vectors in position and spin space.
Orthogonality conditions:

m̂ · n̂ = 0, ŝ∗ · ŝ ′ = 0

The scalar function ∆(T ) is the gap parameter which contains
the temperature dependence of the order parameter. At zero
temperature its value is approximately:

∆0 := ∆(0) ' kBTC



Quasiparticle excitations

Heisenberg equations of motion of annihilation-creation operators
under the influence of the condensed phase under a mean-field
ansatz.

Mean field:

1

2

g

p2F
∑

p,p′,α,β

(p ·p′)â+−p′βâ
+
p′αâpαâ−pβ '

1

2 ∑
p′,α,β

Ψi
αβp
′
i â

+
−p′βâ

+
p′α +H.c.

g

pF
∑
p

pi âpαâ−pβ ' Ψi
αβ



Under this simplification the equations of motion are linear:

i h̄ȧp,α =

(
p2

2m
− µ

)
ap,α +

1

pF

p ·Ψ β
α a+−p,β

i h̄ȧ+−p,α = −
(

p2

2m
− µ

)
a+−p,α +

1

pF

p · (Ψ β
α )∗ap,β

Notice the notation:

p ·Ψαβ := piΨi
αβ

In this section we are going to analyze these equations for
both planar and ABM states.



For the planar state, the evolution of the two fermionic families is
decoupled. So let us take one of the indices first to perform the
analysis of the equations:

i h̄ȧp,1 =

(
p2

2m
− µ

)
ap,1 − c⊥p · (m̂− i n̂)a+−p,1

i h̄ȧ+−p,1 = −
(

p2

2m
− µ

)
a+−p,1 − c⊥p(m̂+ i n̂)ap,1

We have defined the orthogonal velocity c⊥ = ∆0/pF.

These equations can be written in compact form in terms of
Pauli matrices:

i h̄∂t

(
ap,1
a+−p,1

)
=

=

(
p2

2m
− µ

)
σ3

(
ap,1
a+−p,1

)
− c⊥p

1σ1

(
ap,1
a+−p,1

)
− c⊥p

2σ2

(
ap,1
a+−p,1

)



Dispersion relation of plane-wave quasiparticles:

E 2(p) =

(
p2

2m
− µ

)2

+ c⊥[(p1)
2 + (p2)

2] =

=

(
p2

2m
− µ

)2

+ c⊥(p × l̂)2

Two Fermi points:

p± := ±pF l̂ l̂ := m̂× n̂



No matter how low is the energy, there will be always excited
quasiparticles near the Fermi points. We want to describe these
low-energy excitations, whose momentum can be written in terms
of the deviations from the Fermi points:

±pF l̂ + p

The corresponding creation and annihilation operators are:

αp,1,+ := apF l̂+p αp,1,− := a−pF l̂+p

Linearization around Fermi points:

p2

2m
− µ ' c‖ l̂ · (p − pF l̂) c‖ :=

pF

m



With the definitions:

χp,1 :=
(

αp,1,+
α+−p,1,−

)
, Hp,1 := c‖p

3σ3 − c⊥p
2σ2 − c⊥p

1σ1

the linearized equations of motion are written as:

Ep,1χp,1 = Hp,1χp,1

For the other index α = 2 the situation is similar. The two indices
can be combined in a composite field,

χ :=
(

χ1

χ2

)
such that the equations of motion can be written as:

Epχp = eabM
bχp



Epχp = eabM
bpaχp

The only nonzero components of the tetrad are in the
diagonal:

e11 := c⊥ e22 := c⊥ e33 := c‖

The evolution equation contains 4× 4 matrices which are
written in terms of Pauli matrices:

M1 =
( −σ1 0

0 σ1

)
, M2 =

( −σ2 0
0 −σ2

)
, M3 =

(
σ3 0
0 σ3

)



Now it is easy to find a matrix X such that the set

{X ,XM1,XM2,XM3}

is a representation of the Dirac matrices.

A particular solution is given by:

X :=
(

0 σ1
σ1 0

)

Then the low-energy evolution equations are equivalent a Dirac
equation:

e
µ
I γ

Ipµχp = 0

We have defined:

p0 := Ep e00 := 1



To summarize the content of this section:

In the planar state the occurrence of Fermi points imply that
the low-energy excitations (those which are near the Fermi
points) are described by a free, massless Dirac equation.

e
µ
I γ

Ipµχp = 0

The components of the tetrad are constant so the
corresponding spatiotemporal metric is flat.

By performing a similar analysis, it can be shown that, in the
ABM state, the situation is completely equivalent. Differences
arise in the inhomogeneous situation.



Low-energy emergent properties

Lorentz invariance:
This emergent property is obtained when linearizing the
equations of motion. The linearization

p2

2m
− µ ' c‖ l̂ · (p − pF l̂)

is a good approximation well below the following energy scale:

E � EL := mc2⊥



Chirality:
In the representation of the Dirac matrices which has been
obtained, the chirality operator is given by

γ5 := iγ0γ1γ2γ3 =

(
I2 0
0 −I2

)
One only needs to remember the definition of the Fermi field,

χ :=
(

χ1

χ2

)
to realize that the two chiralities in the low-energy theory are
nothing but the two families of fermions considered in the
original theory.



Charge:
This is the conserved charge associated to global U(1)
transformations of the fermionic fields. The concrete
expression for the charge operator is given by

Q̂ := N̂+ − N̂−

N̂±:= number operator of particles near the Fermi point ±pF l̂

The notion of charge is a combination of the symmetries of
the original theory and the nontrivial topology of its vacuum
(Fermi points).



The inhomogeneous situation

Up to now we have been working in situations in which the order
parameter is homogeneous. However, one can consider local
variations of the order parameter, as long as these variations
develop over a scale which is large compared to the effective size of
a Cooper pair, or healing length.

ξ0 :=
h̄pF

πmkBTC



Quasiparticle evolution equations in the inhomogeneous situation.
Differential equation in position space:

i h̄∂tχ1 = H1χ1

H1 := c‖σ3 l̂ · (−i h̄∇−pF l̂)− c⊥σ1m̂ · (−i h̄∇)− c⊥σ2n̂ · (−i h̄∇)

In this expression, the vectors m̂(x), n̂(x), l̂(x) are
perturbations with respect to an homogeneous vacuum state
m̂0, n̂0, l̂0. The perturbation satisfies an orthogonality
condition

δl̂ := l̂ − l̂0 ; δl̂ · l̂0 ' 0; δl̂ · l̂ ' 0

The same applies to δm̂ and δn̂.

Also pF varies from p0F , which can be interpreted as
fluctuations of the local density (sound waves).



Let us define a spinor field such that it contains only
wavelengths associated to the deviations of momentum with
respect to the Fermi points:

χ̃↑ =: χ↑ exp[−ip0F l̂0 · x ]

If we introduce this spinor in the evolution equation and keep
only the first order in the perturbations and the deviations
from the Fermi momentum, the only change in the equations
of motion is the apparition of the covariant derivative

−i h̄∇+ νA

where we have defined the vector field

A =
1

ν
pF(δm̂ · l̂0)m̂0 +

1

ν
pF(δn̂ · l̂0)n̂0 −

1

ν
δpF l̂0



One can perform exactly the same exercise with the other internal
index, α = 2, and again combine the two components into a
massless Dirac equation but, now, in presence of a gauge vector
field Aµ:

i h̄e
µ
I γ

I ∂µχ̃− νe
µ
I γ

IAµχ̃ = 0, A0 = 0

In this way we see that the first effect of inhomogeneities in
the low energy excitations is equivalent to the introduction of
a gauge field.



For the ABM state one has a similar result, but the coupling
is now axial:

i h̄e
µ
I γ

I ∂µχ̃− νe
µ
I γ

I γ5Bµχ̃ = 0, B0 = 0

Now we should study the dynamics of these inhomogeneities.
Usually this is the delicate point in condensed-matter
analogies. The natural candidate in the relativistic low-energy
theory is the mechanism of induction of dynamics of
Sakharov, which leads to standard electrodynamics as was
discussed by Zel’dovich. Work in progress.



Conclusions

We started with a non-relativistic theory of interacting
fermions. We analyzed it in the regime in which condensation
occurs by using usual techniques in condensed matter physics.

The low-energy fermionic quasiparticles have a relativistic
dispersion relation. The original fermionic degrees of freedom
are rearranged in the form of a Dirac spinor, and the evolution
equations in presence of inhomogeneities are written as a
Dirac equation in presence of a vector potential. In this model
relativistic invariance, chirality and gauge invariance are
low-energy properties associated to the presence of Fermi
points.



The mechanism of induction of dynamics proposed by
Sakharov points that the low-energy effective theory should ve
equivalent to a relativistic theory of fermionic fields in
interaction with gauge fields, in both planar and ABM states.
The fermionic degrees of freedom are given by the
quasiparticles, while the gauge fields are the Goldstone modes
produced in the spontaneous symmetry breaking associated to
the condensation.

Additional work is needed to show that this picture is
consistent. Specially, to justify that the mechanism proposed
by Sakharov captures the relevant dynamics of the system in
some regime.



Thank you for your attention.
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