Spinfoam gravity: progress and perspectives - Lecture 2

Eugenio Bianchi

Perimeter Institute - Canada PI

53. Cracow School of Theoretical Physics

Outline

Lecture I:

Path integral and the Spinfoam amplitude

Lecture 2: Quantum geometry in Spinfoams

Lecture 3:

- gravitons
- quantum cosmology
- black hole entropy

Edge vectors (triads)

 \vec{e}_a a = 1, 2, 3

Metric $q_{ab} = \vec{e}_a \cdot \vec{e}_b$

Volume

$$V = \frac{1}{3!}\sqrt{\det q} = \frac{1}{3!}|\vec{e_1} \cdot (\vec{e_2} \times \vec{e_3})|$$

Area vectors (Ashtekar electric field)

$$\vec{E}^a = \frac{1}{2} \epsilon^{abc} \vec{e}_b \times \vec{e}_c$$
 e.g.: $\vec{E}_3 = \frac{1}{2} \vec{e}_1 \times \vec{e}_2 = A_3 \vec{n}_3$

Metric (inverse, densitized)

$$\vec{E}^a \cdot \vec{E}^b = (\det q) \, q^{ab}$$

* Area vectors can be used as fundamental variables: tetrahedron specified by four vectors \vec{E}_a a = 1, 2, 3, 4+ closure $\vec{E}_1 + \vec{E}_2 + \vec{E}_3 + \vec{E}_4 = 0$

Area vectors \vec{E}_a a = 1, 2, 3, 4Closure $\vec{E}_1 + \vec{E}_2 + \vec{E}_3 + \vec{E}_4 = 0$

- area of a face $A_a = |\vec{E}_a|$

- angle between two faces

$$\vec{E}_a \cdot \vec{E}_b = A_a A_b \cos \theta_{ab}$$

- volume of the tetrahedron

$$V = \frac{\sqrt{2}}{3}\sqrt{|\vec{E}_1 \cdot (\vec{E}_2 \times \vec{E}_3)|}$$

The phase space of a tetrahedron

$$\vec{E}_a = A_a \,\vec{n}_a \qquad \qquad a = 1, 2, 3, 4$$

 $\label{eq:Fuction} \mbox{Fuction} \quad f: \; S^2 \times S^2 \times S^2 \times S^2 \; \rightarrow \mathbb{R}$

Poisson brackets

$$\{f(\vec{E}_a), g(\vec{E}_a)\} = \sum_{a=1}^{4} \vec{E}_a \cdot \left(\frac{\partial f}{\partial \vec{E}_a} \times \frac{\partial g}{\partial \vec{E}_a}\right)$$

Fuctions invariant under rotations

$$\begin{array}{rcl} q & = \text{ angle between } \vec{E_1} \times \vec{E_2} & \text{ and } & \vec{E_3} \times \vec{E_4} \\ \\ p & = |\vec{E_1} + \vec{E_2}| \end{array} \end{array}$$

Canonical variables $\{q, p\} = 1$

Volume as a function of q and p

$$V = \frac{\sqrt{2}}{3}\sqrt{|\vec{E}_1 \cdot (\vec{E}_2 \times \vec{E}_3)|} = \frac{1}{3\sqrt{2}}\sqrt{p(p^2 - 4A^2)|\sin q|}$$

(equal areas)

Quantization condition:

orbits of constant volume enclose an integer number

of phase-space cells of area $2\pi\hbar$

Quantization condition:

orbits of constant volume enclose an integer number

of phase-space cells of area $2\pi\hbar$

$\overline{j_1 \ j_2 \ j_3 \ j_4}$	Loop gravity	Bohr-Sommerfeld	Accuracy
$\frac{1}{2} \ \frac{1}{2} \ \frac{1}{2} \ \frac{1}{2} \ \frac{1}{2}$	0.310	0.252	19%
$\frac{1}{2}$ $\frac{1}{2}$ 1 1	0.396	0.344	13%
$\frac{1}{2} \ \frac{1}{2} \ \frac{3}{2} \ \frac{3}{2}$	0.464	0.406	12%
$\frac{1}{2}$ 1 1 $\frac{3}{2}$	0.498	0.458	8%
1111	0	0	exact
	0.620	0.566	9%
$\frac{1}{2}$ $\frac{1}{2}$ 2 2	0.522	0.458	12%
$\frac{1}{2}$ 1 $\frac{3}{2}$ 2	0.577	0.535	7%
1 1 1 2	0.620	0.598	4%
$\frac{1}{2} \ \frac{3}{2} \ \frac{3}{2} \ \frac{3}{2} \ \frac{3}{2}$	0.620	0.598	4%
$1 \ 1 \ \frac{3}{2} \ \frac{3}{2}$	0	0	exact
	0.753	0.707	6%
		• • •	
6667	1.828	1.795	1.8%
	3.204	3.162	1.3%
	4.225	4.190	0.8%
	5.133	5.105	0.5%
	5.989	5.967	0.4%
	6.817	6.799	0.3%

Bohr-Sommerfeld quantization of the Volume

Spin: irreps of SU(2)

Intertwiner: invariant tensor

$$|i\rangle \in \operatorname{Inv}_{SU(2)}\left(\mathcal{H}_{j_1}\otimes\mathcal{H}_{j_2}\otimes\mathcal{H}_{j_3}\otimes\mathcal{H}_{j_4}\right)$$

$$|i\rangle = \sum_{m_1m_2m_3m_4} i_{m_1m_2m_3m_4} |j_1, m_1\rangle |j_2, m_2\rangle |j_3, m_3\rangle |j_4, m_4\rangle$$

 $|j,m\rangle \in \mathcal{H}_j$

Rovelli-Smolin '95 Ashtekar-Lewandowski '95

Quantum Geometry

- area normals
$$\vec{E}_a = 8\pi G\hbar \gamma \vec{L}_a$$
 $a = 1, 2, 3, 4$
- area operator $A_a = |\vec{E}_a|$
spectrum $A_a |i\rangle = 8\pi G\hbar \gamma \sqrt{j_a(j_a + 1)} |i\rangle$
- angle operator $\vec{E}_a \cdot \vec{E}_b$
(Penrose metric)

- Volume operator
$$V = \frac{\sqrt{2}}{3} \sqrt{|\vec{E_1} \cdot (\vec{E_2} \times \vec{E_3})|}$$

Exercise: Volume spectrum in $\frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2}$

Basis of intertwiner space |0
angle , |1
angle

Matrix elements of $Q = \vec{L}_1 \cdot (\vec{L}_2 \times \vec{L}_3)$

$$Q_i{}^j = \langle i | \vec{L}_1 \cdot (\vec{L}_2 \times \vec{L}_3) | j \rangle = \begin{pmatrix} 0 & i\frac{\sqrt{3}}{4} \\ -i\frac{\sqrt{3}}{4} & 0 \end{pmatrix}$$

Eigenvectors and Eigenvalues

$$Q|q_{\pm}\rangle = q_{\pm}|q_{\pm}\rangle$$
 $|q_{\pm}\rangle = \frac{|0\rangle \pm i|0\rangle}{\sqrt{2}}$ $q_{\pm} = \pm \frac{\sqrt{3}}{4}$

Volume spectrum

$$V = (8\pi G\hbar\gamma)^{3/2} \frac{\sqrt{2}}{3}\sqrt{|Q|}$$

 $V|q_{\pm}\rangle = v_{\pm}|q_{\pm}\rangle$

$$v_{\pm} = (8\pi G\hbar \gamma)^{3/2} \frac{\sqrt{2}}{3} \sqrt{\frac{\sqrt{3}}{4}}$$
$$\approx (8\pi G\hbar \gamma)^{3/2} \times 0.310$$

Table: Volume spectrum				
$j_1\ j_2\ j_3\ j_4$	Loop gravity	Bohr-Sommerfeld	Accuracy	
$\frac{1}{2} \ \frac{1}{2} \ \frac{1}{2} \ \frac{1}{2} \ \frac{1}{2}$	0.310	0.252	19%	
$\frac{1}{2}$ $\frac{1}{2}$ 1 1	0.396	0.344	13%	
$\frac{1}{2} \ \frac{1}{2} \ \frac{3}{2} \ \frac{3}{2}$	0.464	0.406	12%	
$\frac{1}{2}$ 1 1 $\frac{3}{2}$	0.498	0.458	8%	
1111	0	0	exact	
	0.620	0.566	9%	
$\frac{1}{2}$ $\frac{1}{2}$ 2 2	0.522	0.458	12%	
$\frac{1}{2} \ 1 \ \frac{3}{2} \ 2$	0.577	0.535	7%	
1 1 1 2	0.620	0.598	4%	
$\frac{1}{2} \ \frac{3}{2} \ \frac{3}{2} \ \frac{3}{2} \ \frac{3}{2}$	0.620	0.598	4%	
$1 \ 1 \ \frac{3}{2} \ \frac{3}{2}$	0	0	exact	
	0.753	0.707	6%	
		•••		
6667	1.828	1.795	1.8%	
	3.204	3.162	1.3%	
	4.225	4.190	0.8%	
	5.133	5.105	0.5%	
	5.989	5.967	0.4%	
	6.817	6.799	0.3%	

Minkowski theorem [1897]

 A_a = areas

 \vec{n}_a = unit vectors

up to rotations, there is a unique convex polyhedron in 3d Euclidean space having faces with normals $\vec{E}_a = A_a \, \vec{n}_a$

 $\mathcal{P}_N = \left\{ \vec{E}_a, \, a = 1 \dots N \, | \, \sum_a \vec{E}_a \, = 0 \, , \, \|\vec{E}_a\| = A_a \right\} / SO(3)$

 $\sum A_a \vec{n}_a = 0$

Kapovich-Millson theorem [1996]

 \mathcal{P}_N has naturally the structure of a phase space

Poisson brackets
$$\{f(\vec{E}_a), g(\vec{E}_a)\} = \sum_{a=1}^{N} \vec{E}_a \cdot \left(\frac{\partial f}{\partial \vec{E}_a} \times \frac{\partial g}{\partial \vec{E}_a}\right)$$

Convex Euclidean polyhedra form a phase space

Quantization \implies Hilbert space of intertwiners = nodes of a spin-network graph

Volume spectrum with Quantum Chaos behavior

Haggard PRD'13 ColemanSmith-Muller PRD'13

Outline

Lecture I:

Path integral and the Spinfoam amplitude

Lecture 2: Quantum geometry in Spinfoams

Lecture 3:

- gravitons
- quantum cosmology
- black hole entropy