Twisted Geometries and Secondary Constraints

Fabio Anzá

Università di Pisa

June 29, 2013

Table of Contents

(1) LQG and Twisted Geometries
(2) Secondary constraints in twisted geometries

Purpose and Program

Twisted Geometries: The Main Problem

Twisted geometries arise as a generalization of the Regge's geometries in a smeared version of GR motivated by LQG. Is there a consistent dynamics for these objects?

Addressing some dynamics' aspects

- It has been argued that the dynamics naturally selects the Regge subcase. We study a simplified hamiltonian dynamics and show that this is indeed the case.
- It this is true there will be important consequences for the spin-foam formalism

Program

(1) LQG: basic aspects of the phase space and its twistorial structure
(2) Twistor networks and "twisted" geometries - basic ideas
(3) Toy-model for the study of the secondary constraints, geometrical interpretation

Loop Quantum Gravity Twisted Geometries

Two roads to loop quantum gravity

Loop Quantum Gravity

Path Integral

$$
\left\langle q_{a b} \mid q_{a b}^{\prime}\right\rangle=\int_{[g]} \mathcal{D}[g] e^{i S_{G R}([g])}
$$

Hamiltonian

$$
i \hbar \frac{\partial}{\partial t} \Psi(\phi)=\hat{H}\left(\phi, \frac{\delta}{\delta \phi}\right) \Psi(\phi)
$$

Bianchi: Spinfoam Gravity: Progress and Perspective

Pawloski: Loop Quantum Gravity \& Cosmology: a Primer

Thiemann: Foundations of Loop Quantum Gravity

Phase space of the smeared Loop Gravity

Canonical Analysis

- Thanks to the Dirac-Bergmann formalism, we can treat GR as an Hamiltonian constrained theory, usually starting from the Holst's action
- The arising structure leads to $S L(2, \mathbb{C})$ variables of the (Covariant) Loop Gravity

Conjugate Variables on the spatial hypersurface

$$
\left\{\Pi_{i}^{a}(p), A_{b}^{j}(q)\right\}=\left\{\bar{\Pi}_{i}^{a}(p), \bar{A}_{b}^{j}(q)\right\}=\delta_{b}^{a} \delta_{i}^{j} \delta(p, q)
$$

Smeared variables: HF Algebra on each link

$$
\begin{aligned}
& h[I]=\operatorname{Pexp}\left[-\int_{1} A\right] \in S L(2, \mathbb{C}) \\
& \Pi[I]=\int_{q \in I} h_{q \rightarrow p} \Pi_{q} h_{q \rightarrow p}^{-1} \in \mathfrak{s l}(2, \mathbb{C}) \\
& \Pi\left[I^{-1}\right]=-h[I] \Pi[I] h[I]^{-1} \equiv \Pi[I] \in \mathfrak{s l}(2, \mathbb{C})
\end{aligned}
$$

Loop Gravity's Phase Space on each link

$$
S L(2, \mathbb{C}) \times \mathfrak{s l}(2, \mathbb{C}) \cong T^{*} S L(2, \mathbb{C})
$$

Twistors and $T^{*} S L(2, \mathbb{C})$

Definition: a couple of spinors

$$
\begin{aligned}
& \text { - } \mathbb{T}:=\mathbb{C}^{2} \oplus \overline{\mathbb{C}}^{2 *} \\
& \text { - } Z \in \mathbb{T}: Z=\left(\omega^{A}, \bar{\pi}_{\dot{A}}\right)
\end{aligned}
$$

$S L(2, \mathbb{C})$ - invariant symplectic structure

$$
\left\{\pi_{A}, \omega^{B}\right\}=\delta_{A}^{B}=\left\{{\underset{\sim}{\omega}}_{A}, \pi^{B}\right\}
$$

\mathbb{T}^{2} carries a $T^{*} S L(2, \mathbb{C})$ representation - Area-Matching symplectic reduction

$$
C \equiv \pi_{A} \omega^{A}-\pi_{B}{\underset{\sim}{\omega}}^{B} \stackrel{\stackrel{1}{\approx}}{\approx} 0 \quad \Rightarrow \quad \mathbb{T}^{2} / / C \cong T^{*} S L(2, \mathbb{C})
$$

Finally: the twistorial representation of the HF Algebra on $T^{*} S L(2, \mathbb{C})$

$$
\Pi^{A B}=-\frac{1}{2} \pi^{(A} \omega^{B)} \quad \overbrace{}^{A B}=\frac{1}{2} \pi^{(A}{\underset{\omega}{ }}^{B)} \quad h_{B}^{A}=\frac{\omega^{A} \pi_{B}-\pi^{A} \omega_{B}}{\sqrt{\pi \omega} \sqrt{\pi \omega}}
$$

The unfolding picture: Covariant Twisted Geometries

Geometrical Interpretation achieved through the closure constraint

- Locally flat polyhedra define a unique discrete metric. Curvature is smeared over the faces of the graph, dual to the edge of the triangulation

> Twistor Space
> \downarrow Area-Matching
"Open" Twisted Geometries \Leftrightarrow Loop Gravity Phase space
\downarrow Gauss' closure
"Closed" Twisted Geometries \Leftrightarrow Gauge-Inv Phase space
\downarrow Shape Matching
Regge's Phase space

Twisted geometries: two comments on the role of the "mismatch"

- Regge geometries are "too rigid" to represent generic HF configuration. Regge's metric is piecewise-flat but continuous
- Twisted Geometries fully represent the HF algebra. The counterpart is that twisted geometries give a discrete and discontinuous metric

The unfolding picture: Covariant Twisted Geometries

Fixed Graph Truncation - Physical Meaning

On a fixed graph Γ the phase space of the Covariant Loop Gravity is $T^{*} S L(2, \mathbb{C})^{L}$ Speziale and Rovelli showed that fixed graph smearing is a truncation of the full GR to a finite number of degrees of freedom - PRD 82044018 (2010)

The unfolding picture: Covariant Twisted Geometries

Fixed Graph Truncation - Physical Meaning

On a fixed graph Γ the phase space of the Covariant Loop Gravity is $T^{*} S L(2, \mathbb{C})^{L}$ Speziale and Rovelli showed that fixed graph smearing is a truncation of the full GR to a finite number of degrees of freedom - PRD 82044018 (2010)

The picture

- So far, we have a graph where we attached a \mathbb{T}^{2} on each link. These objects are called Twistor Networks. Imposing the area-matching we reach the phase space of the covariant loop gravity.

Covariant Loop Gravity's phase space

$$
\mathbb{T}^{2} / / C \simeq T^{*} S L(2, \mathbb{C})^{L}
$$

The unfolding picture: Covariant Twisted Geometries

Fixed Graph Truncation - Physical Meaning

On a fixed graph Γ the phase space of the Covariant Loop Gravity is $T^{*} S L(2, \mathbb{C})^{L}$ Speziale and Rovelli showed that fixed graph smearing is a truncation of the full GR to a finite number of degrees of freedom - PRD 82044018 (2010)

The picture

- So far, we have a graph where we attached a \mathbb{T}^{2} on each link. These objects are called Twistor Networks. Imposing the area-matching we reach the phase space of the covariant loop gravity.
- Imposing the Gauss constraint allows to bring in the geometrical interpretation as collection of polyhedra, locally flat.

The unfolding picture: Covariant Twisted Geometries

Fixed Graph Truncation - Physical Meaning

On a fixed graph 「 the phase space of the Covariant Loop Gravity is $T^{*} S L(2, \mathbb{C})^{L}$ Speziale and Rovelli showed that fixed graph smearing is a truncation of the full GR to a finite number of degrees of freedom - PRD 82044018 (2010)

The picture

- So far, we have a graph where we attached a \mathbb{T}^{2} on each link. These objects are called Twistor Networks. Imposing the area-matching we reach the phase space of the covariant loop gravity.
- Imposing the Gauss constraint allows to bring in the geometrical interpretation as collection of polyhedra, locally flat.
- The geometries arising from this picture are quite different from the Regge geometries: they lack of the gluing conditions

The point: twistor networks and covariant twisted geometries

Twistorial formalism perfectly suit the LG structure

Twisted geometries are a generalization of the Regge geometries, they lack of the gluing conditions. In a finite d.o.f. truncation of covariant loop gravity, they completely represent the phase-space of the theory.

Secondary constraints and Twisted geometries

Twistors and classical loop gravity

Twistors' space

Loop Gravity's phase-space

$S L(2, \mathbb{C})$	\rightarrow	Constraints	\rightarrow	$A B$ variables
\Downarrow		Smearing		\Downarrow
$T^{*} S L(2, \mathbb{C})$	\rightarrow	Constraints	\rightarrow	$T^{*} S U(2)$

Constraints in the continuum

- Uniqueness of the metric structure, simple bi-vectors
- Torsionless constraint providing the embedding in the covariant space, $\Gamma=\Gamma(g)$

Smeared theory - opening the problem

- Primary: "simple" twistors, unique locally flat metric: (twisted) geometries
- Consistency conditions are an open question: discrete torsion? embedding of $T^{*} S U(2)$ in $T^{*} S L(2, \mathbb{C})$? discrete $\Gamma=\Gamma(E)$?

ArXiv:1207.6348 - Wieland, Speziale 2012 Class. Quantum Grav. 29 - Wieland

An issue: torsionless condition and secondary constraints in the discrete

The main question

Covariant twisted geometries represent the phase space of a truncation of LG:
(1) Is there a consistent dynamics for these objects?
(2) What is its relation with the Regge case? Role of the "mismatch"?

The idea by Dittrich and Ryan

- Matching conditions as secondary constraints. Mismatch could encode torsion and dynamics is Regge-type. ArXiv: 1209.4892 - Dittrich, Ryan
- They derive them through the discretization of the continuum theory, rather then from the study of a discrete Hamiltonian

A counterargument from Marseille

- The torsionless equation is about the connection, which in principle has nothing to do with the geometry or with the matching conditions
- Mismatch \neq Torsion: twisted Levi-Civita connection PRD 87024038 (2013) Haggard, Rovelli, Wieland, Vidotto

An issue: torsionless condition and secondary constraints in the discrete

A conundrum arise

Do the twisted geometries have a consistent dynamics, or it is just a "kinematical" parametrization and the dynamics deal just with Regge geometries?

Is it so hard to solve it?

- Pseudo-constraints arise after the smearing of the theory Dittrich and Bahr (2009)
- Only the dynamics will have the last word

Our strategy

- Even in the discrete, if there is no curvature, the evolution is given by a constraint
- Search for secondary constraints in a toy-model imposing flatness

The model: ingredients

The model - Smearing over a graph with triangular faces

The model: ingredients

The model - Smearing over a graph with triangular faces

$$
\mathcal{H}=\underbrace{\sum_{l} a_{l} C_{l}}_{\text {Area Matching }}+\underbrace{\sum_{l} \lambda_{l} D_{l}+b_{l} F_{l}^{(2)}+{\underset{\sim}{b}}_{l} F_{l}^{(2)}}_{\text {Simplicity }}+\underbrace{\sum_{k} g_{k} \overrightarrow{\mathcal{G}}_{k}}_{\text {Gauss }}+\underbrace{\sum_{f} N_{f} H_{f}}_{\text {Hamiltonian }}
$$

Primary Constraints

- Area-Matching

Physical meaning

- $\mathbb{T}^{2} \rightarrow T^{*} S L(2, \mathbb{C})$

The model: ingredients

The model - Smearing over a graph with triangular faces

Primary Constraints

- Area-Matching
- Simplicity Constraints

Physical meaning

- $\mathbb{T}^{2} \rightarrow T^{*} S L(2, \mathbb{C})$
- "Simple" Twistors - Bivectors

The model: ingredients

The model - Smearing over a graph with triangular faces

Primary Constraints

- Area-Matching
- Simplicity Constraints
- Gauss Law - Closure

Physical meaning

- $\mathbb{T}^{2} \rightarrow T^{*} S L(2, \mathbb{C})$
- "Simple" Twistors - Bivectors
- Polyhedra - Gauge Invariance

The "toy" part: scalar constraint

$H_{f}=\Re\left[\operatorname{Tr}\left\{h_{f}-\mathbb{I}\right\}\right]$

The model: ingredients

The model - Smearing over a graph with triangular faces

Primary Constraints

- Area-Matching
- Simplicity Constraints
- Gauss Law - Closure

The "toy" part: scalar constraint
$H_{f}=\Re\left[\operatorname{Tr}\left\{h_{f}-\mathbb{I}\right\}\right]$

Physical meaning

- $\mathbb{T}^{2} \rightarrow T^{*} S L(2, \mathbb{C})$
- "Simple" Twistors - Bivectors
- Polyhedra - Gauge Invariance

We ask for zero (discrete) scalar curvature
$h_{f}=h_{\alpha_{a b}} \approx \mathbb{I}+\frac{1}{2} \epsilon^{2} F_{a b}^{i} \tau_{i}+\mathcal{O}\left(\epsilon^{4}\right)$

Canonical analysis - Poisson Algebra

Dirac-Bergmann stability procedure: the logic

- Constraints' equations must hold through the evolution: consistency conditions

First-Class - Gauge generators

- $\overrightarrow{\mathcal{G}}_{k}$-Internal Gauge
- C_{I} - Conformal transformation

Second-Class

- $D_{l} \Leftrightarrow\left\{D_{l}, H_{f}\right\} \not \approx 0$
- $H_{f} \Leftrightarrow\left\{D_{l}, H_{f}\right\} \not \approx 0$
- $F_{l}^{(2)} \Leftrightarrow\left\{F_{l}^{(2)}, \bar{F}_{l}^{(2)}\right\} \not \approx 0$

Consistency conditions
Some constraints are second class. They may not be preserved under evolution

Canonical Analysis - Secondary constraints

Secondary constraints and simplicity constraints

Interesting secondary constraints arise from the consistency conditions of the diagonal part of the simplicity constraints, that is $\dot{D}_{l} \stackrel{!}{\approx} 0$

Secondary constraints: the standard guess

Often they are overlooked. One hope that imposing the primary constraints in some consistent way will assure they are preserved through the evolution.

Evolution

Secondary constraints

$$
\dot{D}_{l}=\left\{\mathcal{H}, D_{l}\right\} \approx \sum_{f} N_{f}\left\{H_{f}, D_{l}\right\} \stackrel{!}{\approx} 0 \quad \forall I, f \quad\left\{H_{f}, D_{l}\right\} \stackrel{!}{\approx} 0
$$

Secondary Constraints - Solution

Strategy

(1) Fix the graph for the smearing. We picked up the simplest: a 4-Simplex

Secondary Constraints - Solution

Strategy

(1) Fix the graph for the smearing. We picked up the simplest: a 4-Simplex
(2) It has 10 triangular independent faces. On each face there is a system of three equation coming from $\left\{H_{f}, D_{l}\right\}$ where $I=1,2,3 \in \partial f$

Secondary Constraints - Solution

Strategy

(1) Fix the graph for the smearing. We picked up the simplest: a 4-Simplex
(2) It has 10 triangular independent faces. On each face there is a system of three equation coming from $\left\{H_{f}, D_{l}\right\}$ where $I=1,2,3 \in \partial f$
(3) The systems can be solved for the three $\equiv_{/}$involved, as function of the $3 D$ and $2 D$ geometric data

Secondary Constraints - Solution

Strategy

(1) Fix the graph for the smearing. We picked up the simplest: a 4-Simplex
(2) It has 10 triangular independent faces. On each face there is a system of three equation coming from $\left\{H_{f}, D_{l}\right\}$ where $I=1,2,3 \in \partial f$
(3) The systems can be solved for the three $\bar{\Xi}_{\text {/ involved, as function of the } 3 D \text { and }}$ $2 D$ geometric data

Here the solution for Ξ_{1}, arising from the secondary constraints on the face $1-2-3$

$$
\Xi_{1}=A \cosh \left[\frac{\cosh \theta_{23}+\cosh \theta_{31} \cosh \theta_{12}}{\sinh \theta_{31} \sinh \theta_{12}}\right] \quad \text { Reconstruction formula }
$$

Secondary Constraints - Solution

Strategy

(1) Fix the graph for the smearing. We picked up the simplest: a 4-Simplex
(2) It has 10 triangular independent faces. On each face there is a system of three equation coming from $\left\{H_{f}, D_{l}\right\}$ where $I=1,2,3 \in \partial f$
(3) The systems can be solved for the three $\Xi_{/}$involved, as function of the $3 D$ and $2 D$ geometric data

Each link / is in the boundary of tree independent faces

$$
\Xi_{l}^{(A)}=\Xi_{l}^{(B)}=\Xi_{l}^{(C)} \quad \Longrightarrow \quad \underline{\text { Shape }- \text { matching conditions }}
$$

Final remarks

Twistor networks: summary
(1) Gauge inv. phase space \longleftrightarrow Twisted geometries
(2) Piecewise-flat and discontinuous $3 D$ geometries
(3) Is there a dynamics, different from the Regge's one?

Final remarks

Twistor networks: summary

(1) Gauge inv. phase space \longleftrightarrow Twisted geometries
(2) Piecewise-flat and discontinuous $3 D$ geometries
(3) Is there a dynamics, different from the Regge's one?

Final statement

In a flatness toy-model, the twisted geometries correctly parametrize LQG phase-space BUT the dynamics select the Regge solutions through the secondary constraints

Resonance with Eugenio's lectures: EPRL and Spinfoam

Final remarks

Twistor networks: summary

(1) Gauge inv. phase space \longleftrightarrow Twisted geometries
(2) Piecewise-flat and discontinuous $3 D$ geometries
(3) Is there a dynamics, different from the Regge's one?

Final statement

In a flatness toy-model, the twisted geometries correctly parametrize LQG phase-space BUT the dynamics select the Regge solutions through the secondary constraints

Resonance with Eugenio's lectures: EPRL and Spinfoam

These are just preliminary results

(1) Quantum theory
(2) Improve the model

Thank you!

Secondary Constraints - Geometry from twistors

Equations: just a taste, for the sake of understanding

$$
\left\{H_{123}, D_{1}\right\}=\operatorname{Tr}\left[h_{3} h_{2} \widehat{h}_{1}\right]+\frac{\gamma+i}{\gamma-i} \overline{\operatorname{Tr}\left[h_{3} h_{2} \widehat{h}_{1}\right]} \stackrel{!}{\approx} 0 \quad \widehat{h}_{1} \equiv\left\{h_{1}, D_{1}\right\}
$$

Geometry from twistors variables

We need to extract the geometrical information from an algebraic expression. This information will be used as an hint for solving the secondary constraints

4D Geometry - 三/ angles

$$
\left.h_{l}\right|_{F=0}=\frac{e^{-\frac{(1+i \gamma)}{2}} \Xi_{\left|z_{l}\right\rangle\left\langle z_{l}\right|+e^{\frac{(1+i \gamma)}{2}} \equiv}^{\left.\sqrt{\left\langle z_{l} \mid z_{l}\right\rangle}\right]\left[z_{l} \mid\right.} \sqrt{\left\langle z_{l} \mid z_{l}\right\rangle}}{}
$$

$2 D$ and $3 D$ Geometry $-\alpha_{j}^{i}$ and $\theta_{i j}$ angles

$$
\begin{aligned}
{\left[z_{i}\left|z_{j}\right\rangle\right.} & =\sqrt{\left\langle z_{i} \mid z_{i}\right\rangle\left\langle z_{j} \mid z_{j}\right\rangle} \sin \frac{\theta_{i j}}{2} e^{\frac{i}{2}\left(\alpha_{j}^{i}+\alpha_{i}^{j}\right)} \\
{\left[z_{i} \mid z_{j}\right] } & =\sqrt{\left\langle z_{i} \mid z_{i}\right\rangle\left\langle z_{j} \mid z_{j}\right\rangle} \cos \frac{\theta_{i j}}{2} e^{\frac{i}{2}\left(\alpha_{j}^{i}-\alpha_{i}^{j}\right)}
\end{aligned}
$$

ArXiv: 1305.3326 - Freidel, Hnybida

