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Purpose and Program

Twisted Geometries: The Main Problem

Twisted geometries arise as a generalization of the Regge’s geometries in a smeared
version of GR motivated by LQG. Is there a consistent dynamics for these objects?

Addressing some dynamics’ aspects

It has been argued that the dynamics naturally selects the Regge subcase. We
study a simplified hamiltonian dynamics and show that this is indeed the case.

It this is true there will be important consequences for the spin-foam formalism

Program

1 LQG: basic aspects of the phase space and its twistorial structure

2 Twistor networks and “twisted” geometries - basic ideas

3 Toy-model for the study of the secondary constraints, geometrical interpretation
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Loop Quantum Gravity
Twisted Geometries
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Two roads to loop quantum gravity

Loop Quantum Gravity

↙ ↘

Path Integral

〈qab|q
′
ab〉 =

∫
[g ]D [g ] e iSGR ([g ])

Hamiltonian

i~ ∂
∂t

Ψ(φ) = Ĥ
(
φ, δ

δφ

)
Ψ(φ)

Bianchi: Spinfoam Gravity: Progress and Perspective

Pawloski: Loop Quantum Gravity & Cosmology: a Primer

Thiemann: Foundations of Loop Quantum Gravity
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Phase space of the smeared Loop Gravity

Canonical Analysis

Thanks to the Dirac-Bergmann formalism, we can treat GR as an Hamiltonian
constrained theory, usually starting from the Holst’s action

The arising structure leads to SL(2,C) variables of the (Covariant) Loop Gravity

Conjugate Variables on the spatial hypersurface{
Πa
i (p),Aj

b(q)
}

=
{

Π̄a
i (p), Āj

b(q)
}

= δabδ
j
i δ(p, q)

Smeared variables: HF Algebra on each link

h[l ] = Pexp
[
−
∫
l A
]
∈ SL(2,C)

Π[l ] =
∫
q∈l hq→pΠqh

−1
q→p ∈ sl(2,C)

Π[l−1] = −h[l ]Π[l ]h[l ]−1 ≡ Π˜[l ] ∈ sl(2,C)

Loop Gravity’s Phase Space on each link

SL(2,C)× sl(2,C) ∼= T∗SL(2,C)

6 Fabio Anzá Twisted Geometries and Secondary Constraints



Table of Contents
LQG and Twisted Geometries

Secondary constraints in twisted geometries

Twistors and T ∗SL(2,C)

Definition: a couple of spinors

T := C2 ⊕ C̄2∗

Z ∈ T : Z =
(
ωA, π̄Ȧ

) SL(2,C) - invariant symplectic structure{
πA, ω

B
}

= δBA =
{
ω˜A, π˜B}

T2 carries a T∗SL(2,C) representation - Area-Matching symplectic reduction

C ≡ πAωA − π˜Bω˜B !
≈ 0 ⇒ T2//C ∼= T∗SL(2,C)

Finally: the twistorial representation of the HF Algebra on T∗SL(2,C)

ΠAB = − 1
2
π(AωB) Π˜AB = 1

2
π˜(Aω˜B) hAB =

ω˜AπB−π˜AωB√
πω√π˜ω˜
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The unfolding picture: Covariant Twisted Geometries

Geometrical Interpretation achieved through the closure constraint

Locally flat polyhedra define a unique discrete metric. Curvature is smeared over
the faces of the graph, dual to the edge of the triangulation

Twistor Space
↓ Area-Matching

“Open” Twisted Geometries ⇔ Loop Gravity Phase space
↓ Gauss’ closure

“Closed” Twisted Geometries ⇔ Gauge-Inv Phase space
↓ Shape Matching

Regge’s Phase space

Twisted geometries: two comments on the role of the “mismatch”

Regge geometries are “too rigid” to represent generic HF configuration.
Regge’s metric is piecewise-flat but continuous

Twisted Geometries fully represent the HF algebra. The counterpart is that
twisted geometries give a discrete and discontinuous metric
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The unfolding picture: Covariant Twisted Geometries

Fixed Graph Truncation - Physical Meaning

On a fixed graph Γ the phase space of the Covariant Loop Gravity is T∗SL(2,C)L

Speziale and Rovelli showed that fixed graph smearing is a truncation of the full GR to
a finite number of degrees of freedom - PRD 82 044018 (2010)
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The unfolding picture: Covariant Twisted Geometries

Fixed Graph Truncation - Physical Meaning

On a fixed graph Γ the phase space of the Covariant Loop Gravity is T∗SL(2,C)L

Speziale and Rovelli showed that fixed graph smearing is a truncation of the full GR to
a finite number of degrees of freedom - PRD 82 044018 (2010)

The picture

So far, we have a graph where we attached a T2 on each link. These objects are
called Twistor Networks. Imposing the area-matching we reach the phase space
of the covariant loop gravity.

Covariant Loop Gravity’s phase space

T2//C w T∗SL(2,C)L
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The unfolding picture: Covariant Twisted Geometries

Fixed Graph Truncation - Physical Meaning

On a fixed graph Γ the phase space of the Covariant Loop Gravity is T∗SL(2,C)L

Speziale and Rovelli showed that fixed graph smearing is a truncation of the full GR to
a finite number of degrees of freedom - PRD 82 044018 (2010)

The picture

So far, we have a graph where we attached a T2 on each link. These objects are
called Twistor Networks. Imposing the area-matching we reach the phase space
of the covariant loop gravity.

Imposing the Gauss constraint allows to bring in the geometrical interpretation as
collection of polyhedra, locally flat.
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The unfolding picture: Covariant Twisted Geometries

Fixed Graph Truncation - Physical Meaning

On a fixed graph Γ the phase space of the Covariant Loop Gravity is T∗SL(2,C)L

Speziale and Rovelli showed that fixed graph smearing is a truncation of the full GR to
a finite number of degrees of freedom - PRD 82 044018 (2010)

The picture

So far, we have a graph where we attached a T2 on each link. These objects are
called Twistor Networks. Imposing the area-matching we reach the phase space
of the covariant loop gravity.

Imposing the Gauss constraint allows to bring in the geometrical interpretation as
collection of polyhedra, locally flat.

The geometries arising from this picture are quite different from the Regge
geometries: they lack of the gluing conditions
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The point: twistor networks and covariant twisted geometries

Twistorial formalism perfectly suit the LG structure

Twisted geometries are a generalization of the Regge geometries, they lack of the
gluing conditions. In a finite d.o.f. truncation of covariant loop gravity, they
completely represent the phase-space of the theory.
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Secondary constraints

and
Twisted geometries
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Twistors and classical loop gravity

Twistors’ space

T2

↓
C− Area Matching

↓
T∗SL(2,C)

Loop Gravity’s phase-space

SL(2,C) → Constraints → AB variables

⇓ Smearing ⇓

T∗SL(2,C) → Constraints → T∗SU(2)

Constraints in the continuum

Uniqueness of the metric structure, simple bi-vectors

Torsionless constraint providing the embedding in the covariant space, Γ = Γ(g)

Smeared theory - opening the problem

Primary: “simple” twistors, unique locally flat metric: (twisted) geometries

Consistency conditions are an open question: discrete torsion? embedding of
T∗SU(2) in T∗SL(2,C)? discrete Γ = Γ(E)?

ArXiv:1207.6348 - Wieland, Speziale 2012 Class. Quantum Grav. 29 - Wieland
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An issue: torsionless condition and secondary constraints in the discrete

The main question

Covariant twisted geometries represent the phase space of a truncation of LG:

1 Is there a consistent dynamics for these objects?

2 What is its relation with the Regge case? Role of the “mismatch”?

The idea by Dittrich and Ryan

Matching conditions as secondary constraints. Mismatch could encode torsion
and dynamics is Regge-type. ArXiv: 1209.4892 - Dittrich, Ryan

They derive them through the discretization of the continuum theory, rather then
from the study of a discrete Hamiltonian

A counterargument from Marseille

The torsionless equation is about the connection, which in principle has nothing
to do with the geometry or with the matching conditions

Mismatch 6= Torsion: twisted Levi-Civita connection
PRD 87 024038 (2013) Haggard, Rovelli, Wieland, Vidotto
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An issue: torsionless condition and secondary constraints in the discrete

A conundrum arise

Do the twisted geometries have a consistent dynamics, or it is just a “kinematical”
parametrization and the dynamics deal just with Regge geometries?

Is it so hard to solve it?

Pseudo-constraints arise after the smearing of the theory
Dittrich and Bahr (2009)

Only the dynamics will have the last word

Our strategy

Even in the discrete, if there is no curvature, the evolution is given by a constraint

Search for secondary constraints in a toy-model imposing flatness
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The model: ingredients

The model - Smearing over a graph with triangular faces

H =
∑
l

alCl︸ ︷︷ ︸
Area Matching

+
∑
l

λlDl + blF
(2)
l + b˜lF˜(2)

l︸ ︷︷ ︸
Simplicity

+
∑
k

gk ~Gk︸ ︷︷ ︸
Gauss

+
∑
f

Nf Hf︸ ︷︷ ︸
Hamiltonian

Primary Constraints

Area-Matching

Simplicity Constraints

Gauss Law - Closure

The “toy” part: scalar constraint

Hf = < [Tr {hf − I}]

Physical meaning

T2 → T∗SL(2,C)

“Simple” Twistors - Bivectors

Polyhedra - Gauge Invariance

We ask for zero (discrete) scalar curvature

hf = hαab ≈ I + 1
2
ε2F i

abτi +O(ε4)
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Canonical analysis - Poisson Algebra

Dirac-Bergmann stability procedure: the logic

Constraints’ equations must hold through the evolution: consistency conditions

First-Class - Gauge generators

~Gk−Internal Gauge

Cl - Conformal transformation

Second-Class

Dl ⇔ {Dl ,Hf } 6≈ 0

Hf ⇔ {Dl ,Hf } 6≈ 0

F
(2)
l ⇔

{
F

(2)
l , F̄

(2)
l

}
6≈ 0

Consistency conditions

Some constraints are second class. They may not be preserved under evolution
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Canonical Analysis - Secondary constraints

Secondary constraints and simplicity constraints

Interesting secondary constraints arise from the consistency conditions of the diagonal

part of the simplicity constraints, that is Ḋl
!
≈ 0

Secondary constraints: the standard guess

Often they are overlooked. One hope that
imposing the primary constraints in some
consistent way will assure they are
preserved through the evolution.

Evolution

surface
Primary constraints

Secondary constraints

Ḋl = {H,Dl} ≈
∑

f Nf {Hf ,Dl}
!
≈ 0 ⇐⇒ ∀ l , f {Hf ,Dl}

!
≈ 0
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Secondary Constraints - Solution

Strategy

1 Fix the graph for the smearing. We picked up the simplest: a 4-Simplex

2 It has 10 triangular independent faces. On each face there is a system of three
equation coming from {Hf ,Dl} where l = 1, 2, 3 ∈ ∂f

3 The systems can be solved for the three Ξl involved, as function of the 3D and
2D geometric data

i1

i2

i3i4

i5

1

1̃ 2

2̃

3

3̃

44̃

5

5̃

6

6̃

7

7̃

8
8̃

9

9̃
10

1̃0
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Secondary Constraints - Solution

Strategy

1 Fix the graph for the smearing. We picked up the simplest: a 4-Simplex

2 It has 10 triangular independent faces. On each face there is a system of three
equation coming from {Hf ,Dl} where l = 1, 2, 3 ∈ ∂f

3 The systems can be solved for the three Ξl involved, as function of the 3D and
2D geometric data

Here the solution for Ξ1, arising from the secondary constraints on the face 1− 2− 3

Ξ1 = Acosh

[
cosh θ23˜+cosh θ31˜ cosh θ12˜

sinh θ31˜ sinh θ12˜
]

Reconstruction formula
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Secondary Constraints - Solution

Strategy

1 Fix the graph for the smearing. We picked up the simplest: a 4-Simplex

2 It has 10 triangular independent faces. On each face there is a system of three
equation coming from {Hf ,Dl} where l = 1, 2, 3 ∈ ∂f

3 The systems can be solved for the three Ξl involved, as function of the 3D and
2D geometric data

Each link l is in the boundary of tree independent faces

Ξ
(A)
l = Ξ

(B)
l = Ξ

(C)
l =⇒ Shape−matching conditions
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Final remarks

Twistor networks: summary

1 Gauge inv. phase space ←→ Twisted geometries

2 Piecewise-flat and discontinuous 3D geometries

3 Is there a dynamics, different from the Regge’s one?
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Final statement

In a flatness toy-model, the twisted geometries correctly parametrize LQG phase-space
BUT the dynamics select the Regge solutions through the secondary constraints

Resonance with Eugenio’s lectures: EPRL and Spinfoam
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Final remarks

Twistor networks: summary

1 Gauge inv. phase space ←→ Twisted geometries

2 Piecewise-flat and discontinuous 3D geometries

3 Is there a dynamics, different from the Regge’s one?

Final statement

In a flatness toy-model, the twisted geometries correctly parametrize LQG phase-space
BUT the dynamics select the Regge solutions through the secondary constraints

Resonance with Eugenio’s lectures: EPRL and Spinfoam

These are just preliminary results

1 Quantum theory

2 Improve the model

19 Fabio Anzá Twisted Geometries and Secondary Constraints



Table of Contents
LQG and Twisted Geometries

Secondary constraints in twisted geometries

Thanks

Thank you!
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Secondary Constraints - Geometry from twistors

Equations: just a taste, for the sake of understanding

{H123,D1} = Tr
[
h3h2ĥ1

]
+ γ+i
γ−i

Tr
[
h3h2ĥ1

]
!
≈ 0 ĥ1 ≡ {h1,D1}

Geometry from twistors variables

We need to extract the geometrical information from an algebraic expression. This
information will be used as an hint for solving the secondary constraints

4D Geometry - Ξl angles

hl

∣∣∣
F=0

=
e
− (1+iγ)

2
Ξ|z˜l〉〈zl |+e

(1+iγ)
2

Ξ|z˜l ][zl |√
〈zl |zl 〉

√
〈z˜l |z˜l〉

2D and 3D Geometry - αi
j and θij angles

[
zi |zj

〉
=
√
〈zi |zi 〉

〈
zj |zj

〉
sin

θij
2
e

i
2

(
αi
j+α

j
i

)
[
zi |zj

]
=
√
〈zi |zi 〉

〈
zj |zj

〉
cos

θij
2
e

i
2

(
αi
j−α

j
i

)

ArXiv: 1305.3326 - Freidel, Hnybida
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