Exploring Quantum Universe. A transfer matrix model of volume fluctuations in CDT.

Jakub Gizbert-Studnicki
Institute of Physics, Jagiellonian University in Kraków

JAGIELLONIAN UNIVERSITY
IN KRAKOW
Zakopane, May 26, 2012

Outline

- CDT basics
- CDT assumptions
- Numerical setup
- Summary of previous results
- Motivation
- The transfer matrix idea
- Assumptions
- Measurement
- Transfer matrix for large volumes
- The effective action
- Kinetic term
- Potential term
- Parameters of the action
- Transfer Matrix for small volumes
- Conclusions

Jakub Gizbert-Studnicki matrix model of volume fluctuations in CDT.

Motivation
The transfer matrix idea Transfer matrix for large volumes Transfer matrix for small volumes

CDT assumptions
Numerical setup
Summary of previous results

- Causal Dynamical Triangulations (CDT) is a non-perturbative approach to Quantum Gravity based on the path integral

$$
Z=\int_{G e o m} D[g] \exp \left(i S_{H E}[g]\right)
$$

- Regularization of Z is done by summing over all causal triangulations T constructed from 4-d simplices

$$
Z=\sum_{T} \frac{1}{C_{T}} \exp \left(i \tilde{S}_{R}[T]\right)
$$

- We assume a global time foliation S^{l} and fixed spatial topology $S^{3} \Rightarrow$ resulting space-time $S^{l} \times S^{3}$ can be built from two types of simplices
 matrix model of volume fluctuations in CDT.

Motivation
The transfer matrix idea Transfer matrix for large volumes Transfer matrix for small volumes

CDT assumptions
Numerical setup
Summary of previous results

- The Einstein-Hilbert action:

$$
S_{H E}=\frac{1}{16 \pi G} \int d^{4} x \sqrt{-g}(R-2 \Lambda)
$$

- G-Newton's constant
- $\quad R$ - curvature scalar
- g-metric determinant
- $\quad \Lambda$ - cosmological constant
- is regularized by the Regge action where curvature R is determined by the deficit angle „around" 2-d triangles

$$
\begin{gathered}
\tilde{S}_{R}=i\left[-k_{0} N_{0}+K_{4} N_{4}+\Delta\left(N_{4}^{(4,1)}-6 N_{0}\right)\right]=i S_{R} \\
\frac{\pi}{1 / G}
\end{gathered} \frac{\Pi}{\Lambda} \alpha\left(l_{t}^{2}=-\alpha l_{s}^{2}\right) .
$$

- N_{0} - \# of vertices - N_{4} - \# of 4-simplices व $N_{4}^{(4,1)}$ - \# of $(4,1) \&(1,4)$ simplices
- After Wick rotation: $\alpha \rightarrow-\alpha(|\alpha|>7 / 12) S_{R}$ is purely real:

$$
Z=\sum_{T} \frac{1}{C_{T}} \exp \left(i \tilde{S}_{R}[T]\right)=\sum_{T} \frac{1}{C_{T}} \exp \left(-S_{R}[T]\right) \rightarrow \text { probability distribution }
$$ matrix model of volume fluctuations in CDT. Transfer matrix for large volumes Transfer matrix for small volumes

CDT assumptions
Numerical setup
Summary of previous results

Triangulations are updated dynamically by Monte Carlo methods

- Alexander moves
- preserve global \& local topology \Leftrightarrow causality

- any triangulation is achievable by a sequence of moves \Leftrightarrow ergodicity
- ...are performed with probability determined by a detailed balance condition:

$$
P\left(T_{1}\right) P\left(T_{1} \xrightarrow{M} T_{2}\right)=P\left(T_{2}\right) P\left(T_{2} \xrightarrow{M^{*}} T_{1}\right)
$$

- Monte Carlo simulations allow to compute probability distributions (histograms) of observables:

$$
P(O)=\frac{1}{Z} \sum_{T(O)} \frac{1}{C_{T}} \exp \left(-S_{R}[T]\right)
$$

- We focus on the distribution of the spatial volumes of the universe in different time slices:

$$
O \equiv n_{t}=N_{4}^{(4,1)}(t) \propto V_{3}(t)
$$ matrix model of volume fluctuations in CDT.

CDT basics

Motivation
The transfer matrix idea Transfer matrix for large volumes Transfer matrix for small volumes

CDT assumptions
Numerical setup
Summary of previous results

$$
S_{R}=-k_{0} N_{0}+K_{4} N_{4}+\Delta\left(N_{4}^{(4,1)}-6 N_{0}\right)
$$

- Depending on the values of bare couplings k_{0} and $\Delta\left(K_{4} \approx K_{4}{ }^{\text {crit }}\right)$ three phases emerge
 matrix model of volume fluctuations in CDT.

The transfer matrix idea Transfer matrix for large volumes Transfer matrix for small volumes

CDT assumptions
Numerical setup
Summary of previous results

- In phase ' C ' the dynamically generated semi-classical background ...

$$
\left\langle n_{t}\right\rangle=\frac{3}{4} \tilde{V}_{4} \frac{1}{\tilde{A} \tilde{V}_{4}^{1 / 4}} \cos ^{3}\left(\frac{t-t_{0}}{\tilde{A} \tilde{V}_{4}^{1 / 4}}\right) \underbrace{\left\langle n_{t}\right\rangle}_{t t} V_{3}(t)=\frac{3}{4} V_{4} \frac{1}{A V_{4}^{1 / 4}} \cos ^{3}\left(\frac{t-t_{0}}{A V_{4}^{1 / 4}}\right) \underbrace{20000}_{\text {the 'stalk' }} \underbrace{\substack{0.000}}_{\text {the 'blob' }} \underbrace{\text { Fit: B } \cos ^{3}\left(\frac{t-\text { to }}{C}\right)}_{\text {Measured data }}
$$

- The solution (in the 'blob') is consistent with the Euclidean (Wick's rotation) de Sitter Universe (no matter, positive cosmological constant) matrix model of volume fluctuations in CDT.

Transfer matrix for large volumes Transfer matrix for small volumes

CDT assumptions
Numerical setup
Summary of previous results

- ... and quantum fluctuations are governed by the action:

$$
\begin{aligned}
S= & \frac{1}{24 \pi G} \int d t \sqrt{g_{t t}}\left(\frac{g^{t t} \dot{V}_{3}(t)^{2}}{V_{3}(t)}+\mu V_{3}(t)^{1 / 3}-\lambda V_{3}(t)\right) \\
& \quad \text { व } \mu=9\left(\frac{3}{4}\right)^{2 / 3} A^{-8 / 3} \quad \text { - } \lambda=9 V_{4}^{-1 / 2} A^{-2}
\end{aligned}
$$

- This is the (Euclidean) minisupespace (MS) action obtained from $S_{H E}$ for the maximally symmetric metric: $d s^{2}=g_{t t} d t^{2}+a^{2}(t) d \Omega_{3}{ }^{2}$
- CDT conjecture: the effective action in the phase ' C ' is a discretization of the minisuperspace action:

$$
S_{d i s}=\frac{1}{\Gamma} \sum_{t}\left(\frac{\left(n_{t+1}-n_{t}\right)^{2}}{n_{t+1}+n_{t}}+\tilde{\mu} n_{t}^{1 / 3}-\tilde{\lambda} n_{t}+\mathrm{O}\left(n_{t}^{-1 / 3}\right)\right)
$$ matrix model of volume fluctuations in CDT.

CDT basics
 Motivation

The transfer matrix idea Transfer matrix for large volumes Transfer matrix for small volumes

CDT assumptions
Numerical setup
Summary of previous results

$$
S_{d i s}=\sum_{t} \frac{1}{\Gamma} \underbrace{\left(\frac{\left(n_{t+1}-n_{t}\right)^{2}}{n_{t+1}+n_{t}}\right.}_{\text {kinetic part }}+\underbrace{\left.\tilde{\mu} n_{t}^{1 / 3}-\tilde{\lambda} n_{t}\right)}_{\text {potential part }}
$$

- Second order expansion of $S_{d i s}$ around semi-classical solution \bar{n}

$$
S_{d i s}[\bar{n}+\delta n]=S_{d i s}[\bar{n}]+\frac{1}{2} \sum_{t, t^{\prime}} \delta n_{t} P_{t t^{\prime}} \delta n_{t^{\prime}}+O\left(\delta n^{3}\right)
$$

can be compared with the covariance of volume fluctuations: $C\left(\delta n_{t}, \delta n_{t}\right)$

$$
\begin{aligned}
P= & P_{k i n}+P_{p o t}=C^{-1} \\
&
\end{aligned}
$$ matrix model of volume fluctuations in CDT.

Motivation:

- The 'blob' range in phase ' C ' is described by the MS effective action:
- How good is this description?
- Can we measure the effective action directly (not only its $2^{\text {nd }}$ derivative around $\overline{\mathrm{n}}$)?
- How to describe the behaviour of the 'stalk' range ?
- Average spatial volume in the 'stalk' does not scale with total 4 -volume
- Small volume discretization effects
- Relatively large quantum fluctuations
- 'Cleaning' of discretization artifacts might lead to discovery of some nontrivial physical effects in the 'tail' (small volume) region
- $P_{k i n} \sim n^{-1}$
- $P_{p o t} \sim n^{-5 / 3}$

```
CDT basics Assumptions
Motivation Measurement
```

The transfer matrix idea
Transfer matrix for large volumes Transfer matrix for small volumes

$$
\begin{gathered}
S_{\text {blob }}=\sum_{t} \frac{1}{\Gamma}\left(\frac{\left(n_{t+1}-n_{t}\right)^{2}}{n_{t+1}+n_{t}}+\tilde{\mu} n_{t}^{1 / 3}-\tilde{\lambda} n_{t}\right)=\sum_{t} L_{b l o b}\left(n_{t}, n_{t+1}\right) \\
\left\langle n_{t}\right| M_{b l o b}\left|n_{t+1}\right\rangle=\exp \left[-L_{b l o b}\left(n_{t}, n_{t+1}\right)\right] \\
Z_{b l o b}=\sum_{n_{1} \ldots n_{t}, \ldots n_{T}} \exp \left(-S_{b l o b}\right)=\operatorname{Tr}\left(M_{b l o b}^{T}\right)
\end{gathered}
$$

- Assumptions:
- we consider only effective aggregate 'states' $\left|n_{t}\right\rangle$
- description by the transfer matrix is also viable in the 'stalk' range
- identical probability distributions for all slices in 'stalk' range $\Rightarrow M$ (次
- time reflection symmetry $\Rightarrow\left\langle n_{t}\right| M\left|n_{t+1}\right\rangle=\left\langle n_{t+1}\right| M\left|n_{t}\right\rangle$

CDT basics	Assumptions Motivation Measurement

The transfer matrix idea
Transfer matrix for large volumes Transfer matrix for small volumes

$$
Z=\sum_{n_{1} \ldots n_{t} \ldots n_{T}} \prod_{t=1}^{T}\left\langle n_{t}\right| M\left|n_{t+1}\right\rangle=\operatorname{Tr}\left(M^{T}\right)
$$

1-point probability distribution: $\quad P_{1}^{(T)}(n)=\frac{1}{Z}\langle n| M^{T}|n\rangle$
2-point probability distribution: $\quad P_{2}^{(T, \Delta t)}(n, m)=\frac{1}{Z}\langle n| M^{\Delta t}|m\rangle\langle m| M^{T-\Delta t}|n\rangle$

- Measured probabilities:

ㅁ $\quad T=3, \Delta t=1$

- $\quad T=4, \Delta t=2$
- can be used to determine M :

$$
\begin{gathered}
P_{2}^{(3,1)}(n, m) \propto\langle n| M|m| m\left|M^{2}\right| n \mid \\
P_{2}^{(4,2)}(n, m) \propto|n| M^{2} \mid m^{2} \\
\langle n| M|m\rangle=N \frac{P_{2}^{(3,1)}(n, m)}{\sqrt{P_{2}^{(4,2)}(n, m)}}
\end{gathered}
$$ matrix model of volume fluctuations in CDT.

CDT basics
Motivation
The transfer matrix idea
Transfer matrix for large volumes Transfer matrix for small volumes

The effective action
Kinetic term
Potential term
Parameters of the action

- The effective action for large volumes (in the 'blob') is measured:

$$
\begin{gathered}
\langle n| M|m\rangle=N e^{-L_{e f f}(n, m)} \\
L_{e f f}(n, m)=\frac{1}{\Gamma}\left[\frac{(n-m)^{2}}{n+m-2 n_{o}}+\mu\left(\frac{n+m}{2}\right)^{1 / 3}-\lambda\left(\frac{n+m}{2}\right)\right]
\end{gathered}
$$ matrix model of volume fluctuations in CDT.

CDT basics
 Motivation

The transfer matrix idea
Transfer matrix for large volumes Transfer matrix for small volumes

The effective action
Kinetic term
Potential term
Parameters of the action

- The kinetic term ...

$$
\langle n| M|m\rangle=N e^{\left.-\frac{1\left[(n-m)^{2}\right.}{\bar{\Gamma}}+\mu\left(\frac{n+m}{2}\right)^{1 / 3}-\lambda\left(\frac{n+m}{2}\right)\right]}
$$

$k(n, m)=\Gamma(n+m-2 n 0)$

- Gaussian bahaviour for $n+m=c$:

$$
\langle n| M|c-n\rangle=\tilde{N}(c) \exp \left[-\frac{(2 n-c)^{2}}{k(c)}\right]
$$

 matrix model of volume fluctuations in CDT.

CDT basics
 Motivation

The transfer matrix idea
Transfer matrix for large volumes Transfer matrix for small volumes

The effective action
Kinetic term
Potential term
Parameters of the action

- ... and the potential term can be analyzed in detail

$$
\langle n| M|m\rangle=N e^{-\frac{1}{\Gamma}\left[\frac{(n-m)^{2}}{\left.n+m-2 n_{0}+\mu\left(\frac{n+m}{2}\right)^{1 / 3}-\lambda\left(\frac{n+m}{2}\right)\right]}\right.}
$$

$\log \langle n| M|n\rangle=-\frac{1}{\Gamma}\left(\mu n^{1 / 3}-\lambda n\right)+\alpha$

Exploring Quantum Universe. A transfer matrix model of volume fluctuations in CDT.

The transfer matrix idea
Transfer matrix for large volumes Transfer matrix for small volumes

The effective action
Kinetic term
Potential term
Parameters of the action

- The fits agree with the previous method based on the covariance matrix

$$
\langle n| M|m\rangle=N e^{-\frac{1}{\Gamma}\left(\frac{(n-m)^{2}}{n+m-2 n_{0}}+\mu\left(\frac{n+m}{2}\right)^{1 / 3}-\lambda\left(\frac{n+m}{2}\right)\right]}
$$

Method	Γ	n_{0}	μ	λ
Cross-diagonals	26.07 ± 0.02	-3 ± 1	-	-
Diagonal	(26.07)	-	16.5 ± 0.2	0.049 ± 0.001
Full fit	26.17 ± 0.01	7 ± 1	15.0 ± 0.1	0.046 ± 0.001
Previous method*	23 ± 1	-	13.9 ± 0.7	0.027 ± 0.003

The transfer matrix idea
Transfer matrix for large volumes
Transfer matrix for small volumes

- The transfer matrix gives access to the effective action in the 'stalk' range

$$
\langle n| M|m\rangle=N e^{-L_{e f f}(n, m)}
$$

- Discretization effects (split into three families of states) makes analytical modeling difficult
- If we average over these three families M becomes smooth

Exploring Quantum Universe. A transfer matrix model of volume fluctuations in CDT.

CDT basics
 Motivation

The transfer matrix idea
Transfer matrix for large volumes
Transfer matrix for small volumes

- The effective action for the stalk is basically the same as for the 'blob'

$$
S_{\text {eff }}^{\text {stalk }}=\sum_{t} \frac{1}{\Gamma}\left[\frac{\left(n_{t}-n_{t+1}\right)^{2}}{n_{t}+n_{t+1}-2 n_{0}}+\mu\left(\frac{n_{t}+n_{t+1}}{2}\right)^{1 / 3}-\lambda\left(\frac{n_{t}+n_{t+1}}{2}\right)^{1 / 3}+\delta\left(\frac{n_{t}+n_{t+1}}{2}\right)^{-\rho}\right]
$$

Parameter	Stalk	Blob
Γ	27.2 ± 0.1	$25.7-26.2$
n_{0}	5 ± 1	$-3-+7$
μ	34 ± 2	$13-30$
λ	0.12 ± 0.02	$0.04-0.07$
δ	$(4 \pm 7) \times 10^{4}$	-
ρ	3 ± 1	-

Conclusions

- The transfer matrix model allows to measure the effective action directly
- The effective action in phase 'C' of CDT is very well described by the minisuperspace model
- Despite the nature of the stalk seems quite different from the blob on the first sight it is well explained by the same effective action when discretization effects are "cleared"
- We observe some correction of the potential term in the small volume range, however it is small and cannot be determined with high precision (it may be as well the effect of discretization artifacts)
- Our new method of measurement based on the transfer matrix model has a lot of advantages:
- the effective action is measured directly \Rightarrow higher precision of the fits
- the method is much faster (small systems \Rightarrow fast termalization) and allows high statistics of the measurements

Thank You for attention !!!

The results presented here were obtained in collaboration with:

- Jan Ambjørn, The Niels Bohr Institute, Copenhagen University
- Andrzej Görlich, The Niels Bohr Institute, Copenhagen University Institute of Physics, Jagellonian University
- Jerzy Jurkiewicz, Institute of Physics, Jagellonian University

> The transfer matrix in four-dimensional CDT, arXiv:1205.3791v1 [hep-th] matrix model of volume fluctuations in CDT.

