

Searching for BSM physics in heavy flavor loop decays at LHCb

Tomasz Skwarnicki

Syracuse University

In this talk (BSM = Beyond Standard Model = New Physics = **NP**)

highly virtual here, thus probabilities small

Not enough time to cover entire scope of the LHCb experiment - selection of topics has been unavoidable.

• Some spectacular successes in the past:

 $\Delta E \Delta t = f/2$

- Lack of tree level FCNC, suppression of $K_{L}^{0} \rightarrow \mu^{+}\mu^{-}$ and GIM mechanism (1970):
 - prediction of charm quark 4 years before its discovery

HCh

Loops as low energy windows to high energy physics

- − CPV in $K_{L}^{0} \rightarrow \pi^{+}\pi^{-}$ decays (1964) + Kobayashi-Maskawa hypotheses (1972):
 - prediction of 3rd quark generation 5 years before its discovery
 - first glimpse of top quark 31 years before its discovery

- Large B⁰- $\overline{B^0}$ mixing at ARGUS (1987):
 - lower limit on top mass puts 5 higher energy colliders

(PETRA, PEP, TRISTRAN, SLC, LEP) out of business in quest for top discovery,

 but makes CPV measurements in B⁰ easier

 The past decade has been a golden age of 10 GeV e⁺e⁻ b-factories

7

 Super b-factories are being pursued in Japan and Italy, with luminosity upgrade by almost 2 orders of magnitude

Tremendous rate potential at hadron colliders

8

- physics reach determined by the detector capabilities not by the machine
- Collect all b-hadron species at the same time:
 - additional gain by a factor of ~10-100 in integrated B_s rates at hadronic colliders
 - time dependent CPV studies of B_s possible
 - also get Λ_b , B_c which are out of reach of the 10 GeV e⁺e⁻ factories
- Charm rates factor of 10 higher than beauty rates:
 - nuisance and great physics opportunity at the same time

- Advantages of LHCb (forward spectrometer):
 - comparable b cross-section in much smaller solid angle; smaller number of electronic channels; smaller event size; much larger trigger bandwidth to tape (~3.5 kHz)
 - b and c physics dominate the trigger bandwidth (e.g. CMS b-trigger rate ~25 Hz; 2 orders of magnitude less than LHCb)
 - large p for small p_T (in central region $p \sim p_T$); can identify muons to lower p_T values
 - large bandwidth important for triggering on purely hadronic final states (GDPs limited to dimuon trigger)
 - large bandwidth important for collecting very large charm samples
 - space for RICH detectors: K/π separation; crucial for background suppression in many channels; increased flavor tagging
- Limitation of LHCb:
 - luminosity limited by the detector readout capabilities (see next)

LHCb luminosity at its upgrade

- Maximal value of luminosity for safe LHCb operations ~ 4x10³² cm⁻²s⁻¹
- Beams are intentionally misaligned at LHCb to stay below this limit.

- The main luminosity limitation comes from 1MHz L0 bandwidth imposed by the readout speed.
- upgrade: (2018-) instantenous luminosity up to ~ 20x10³² cm⁻²s⁻¹
 - Readout all detectors at 40 MHz. Do all triggering in the computer farm. Increase output bandwidth to 20-30 kHz to cope with the increased physics rate
 - Factor of ~2 improvement in hadronic trigger efficiencies. Muon trigger efficiencies stay the same.

11

LHCb data samples

- Statistically 2010 data are insignificant (0.04 fb⁻¹), but some analyses published only on this statistics so far.
- Most of 2011 results were based on "summer" statistics (~0.4 fb⁻¹). Still being published.
- Many new results at winter conferences 2012 (~1 fb⁻¹). More to come in summer.

Zakopane, May 2012 Tomasz Skwarnicki

Expected future data samples

	Run	CM Energy	Integrate (all dat		
		[TeV]	LHCb	LHC (Atlas,CMS)	
	2011	7	1	5	
~50% higher bb	2012	8	2	20	LHCb will collect ~1fb ⁻¹ a year
	2015-17	14	5	95	until upgrade
section at 14 TeV	2019	14	50	200	LHCb upgrade

After a decade of e⁺e⁻ Bfactory experiments the KM

hypothesis is well verified

Kobayashi & Maskawa Nobel Prize 2008

The game now is looking for NP in corrections to CKM picture

Phase of $B_s - \overline{B_s}$ mixing $B_s \rightarrow J/\psi \phi$: not an eigenstate; need angular analysis

Resolving fit ambiguity (sign of $\Delta\Gamma_s$)

HCh

To resolve the ambiguity look at interference of the ϕ resonance (P-wave) and small S-wave component

Expected for the right solution:

Solution I chosen (4.5 σ away from flat)

Phase of $B_s - \overline{B}_s$ mixing

• Profile likelihood contour in $\Delta\Gamma_s - \phi_s$ plane:

Result, LHCb 1 fb⁻¹(Preliminary)

Γ <u>s</u>	=	0.6580	\pm	0.0054(stat.)	\pm	0.0066(syst.)	ps ⁻¹
$\Delta \Gamma_s$	=	0.116	±	0.018(stat.)	±	0.006(syst.)	ps ⁻¹
$\phi_{\sf S}$	=	-0.001	±	0.101(stat.)	±	0.027(syst.)	rad

Simultaneous fit to both
$$B_s^0 \rightarrow J/\psi \pi^+\pi^-$$
, $B_s^0 \rightarrow J/\psi \phi$:

 $\phi_{s} = -0.002 \pm 0.083(\text{stat.}) \pm 0.027(\text{syst.})$ rad

HCb

Phase of Bs-Bs mixing

- First significant observation of $\Delta\Gamma_{\rm s}$, sign determined
- SM not challenged yet.
- Plenty of room for improved NP searches: SM uncertainty on φ_s~0.003
- LHCb will measure ϕ_s to ±0.02 with 5 fb⁻¹.
- Upgraded LHCb will measure ϕ_s to ± 0.006 with 50 fb⁻¹.

If necessary, we can control penguin pollution in $B_s \to J/\psi \phi$ with measurement of direct-CPV in $B_s \to J/\psi K^{*0}$

Also plan to study indirect CPV in
$$B_s \rightarrow [\psi(2S), \eta_c, \chi_{c1}]\phi$$
, $J/\psi\eta^{(i)}$, $D_s D_s \rightarrow 10\%$ of $J/\psi\phi$ $^{-1500}$ events in 1 fb⁻¹
Why is LHCb with 1/10th of CDF luminosity doing a factor of 4 better than CDF?
Higher bb-cross section at LHC helps, but only by a factor of sqrt(3)=1.7

<i>LHCb</i>	Zakopane,N	lay 2012 Tomasz Skwarnicki	23				
тнср	B trio	Iger happy!	CDF	LHCb			
_		Bunch crossing rate	2 350 kHz	20 000 kHz			
		Bunch spacing	396 ns	50 ns			
NB		Interactions / crossing	(at 3 10 ³²) 10.0	(at 3.5 10 ³²) 2.4			
5		Stage 1	L1	LO			
		Output rate	30 kHz	1 000 kHz			
		Latency	5.5 μs	4.0 μs			
		Туре	Hardware (tracks,mu,ecal)	Hardware (hcal,mu,ecal)			
		Single μ	Pt>4 GeV	Pt>1.3 GeV			
		Dimoun	Pt1>2.0 & Pt2>2.0 GeV	Pt1+Pt2>1.3 GeV			
		Stage 2	L2	HLT1			
		Output rate	1 kHz	30 kHz			
		Execution time	20 µs	~5 000 μs			
		Туре	Hardware (tracks, IP)	Computer Farm (tracks,IP)			
		Stage 3	L3	HLT2			
		Output rate	150 Hz	3 500 Hz			
		Event size	250 kB	45 kB			
	Туре		Computer farm	Computer Farm (full event reco)			
		Fraction of bandwidth for heavy flavors	small	B hunting all			

• LHCb is the first dedicated hadron collider b-experiment

No SM phase in the lowest and second order: small V_{ts} phase cancels between the mixing and decay diagrams.

NP can enter also through the penguin diagram.

 Purely hadronic final states – at LHC only LHCb can trigger on them

- Look for interference of these SM diagrams. NP diagrams can contribute.
- Need to eliminate effect of form-factors various observables related to angular correlations. Most famous A_{FB}

$$A_{FB}\left(q^{2}\right) = \frac{N_{F} - N_{B}}{N_{F} + N_{B}}$$

 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

2

Before summer 2011:

Babar, Belle and CDF

- Babar 60 events with B/S=0.3
- Belle 247 0.25
- CDF 100 (4.4 fb⁻¹) 0.4

New results:

- CDF 164 (6.8 fb-1) 0.4 - LHCb 900 (1.0 fb-1) 0.25
- So far no challenge to SM
- LHCb already has the most sensitive measurement:
 - 5 times more data by 2018
 - 50 times more data with upgrade
- LHCb upgrade will have better sensitivity than super e⁺e⁻ factories in this exclusive channel (e⁺e⁻ can also do inclusive measurement)

First measurement of A_{FB} zero-crossing point

28

• The SM predicts $A_{\rm FB}$ to change sign at a well defined point in q^2

Zakopane, May 2012 Tomasz Skwarnicki

нсь

- This zero-crossing point q_0^2 is largely free from form-factor uncertainties
- Extracted through a 2D fit to the foward- and backward-going $m_{\rm B^0}$ and q^2 distributions

The worlds first measurement of q₀², at q₀² = 4.9^{+1.1}_{-1.3} GeV²/c⁴ [preliminary]
 This is consistent with SM predictions which range from 4 - 4.3 GeV²/c⁴

HCb

 $BR(B_S \rightarrow \mu^+\mu^-)$ and $BR(B^0 \rightarrow \mu^+\mu^-)$

30

Together more sensitive probe for NP

New results in 2012 [Moriond E.W.]		CDF	CMS	ATLAS	LHCb	SM
	Luminosity (fb ⁻¹)	10	4.9	2.4	1	
$\mathrm{BR}(\mathrm{B}^{0} \to \mu^{+}\mu^{-})$	95% CL upper limit (10 ⁻⁹)	4.6	1.8		1.03	0.10 ± 0.01
$BR(B_s \rightarrow \mu^+\mu^-)$	95% CL upper limit (10 ⁻⁹) Value (10 ⁻⁹)	31 13 ⁺⁹ _7	7.7	22	4.5 0.8 ^{+1.8} -1.3	3.2 ± 0.2

(status after CDF 7 fb⁻¹ results) (now LHCb 1 fb⁻¹) 2.0 2.0 HCb 95% C.I 5 CDF 95% MSSM-LL MSSM-LL 1.5 1.5 $10^9 \times \mathrm{BR}(B_d \to \mu^+\mu^-)$ $10^9 imes {\sf BR}(B_d o \mu^+\mu^-)$ SM4 MSSM-RVV2 MSSM-RW2 1.0 1.0 MSSN-AKM 0.5 0.5 SM-AC MSSM-AC 0.0 0.0 10 20 30 40 50 10 20 30 50 40 $10^9 \times BR(B_s \rightarrow \mu^+\mu^-)$ $10^9 \times BR(B_s \rightarrow \mu^+ \mu^-)$ Grey⁻area excluded

SM has survived an order of magnitude improvement in experimental senitivity room left for NP (in some models negative interference with the SM)

Future LHC samples and $B_s \rightarrow \mu^+\mu^-$ prospects

32

Charm mixing

s,d: GIM-cancellations:

HCb

 $(m_s^2 - m_d^2)/m_c^2 \sim 10^{-5}$ phase is CKM-suppressed: $A^2 \lambda^5 i \eta$

 SM CPV phase is strongly CKMsuppressed. Expect indirect CPV to be tiny ~10⁻⁸ («10⁻³); good place to look for NP.

Many intermediate states can contribute:

Κπ, ΚΚ, ππ, πππ,...

with difficult to predict magnitudes & phases. Mixing with |x|<1%, |y|<1% in SM possible.

HCb

Charm mixing and CPV via effective lifetimes

Measure effective lifetimes (effective = fit simple exponential decay) for $D^0 \rightarrow K^-\pi^+$ and $D^0 \rightarrow K^+K^-$

HCb

Charm mixing and CPV via effective lifetimes

Measure effective lifetimes (effective = fit simple exponential decay)

$$\begin{split} y_{CP} &= \frac{\tau_{K\pi}}{\tau_{KK}} - 1 \\ y_{CP} &\approx (1 + \frac{1}{8}A_m^{-2})y\cos\phi - \frac{1}{2}A_mx\sin\phi \\ A_m &\approx \left(\frac{q}{p}\right)^2 - 1 \begin{array}{c} D_{1,2} &> = p + D^0 > \pm q + \overline{D}^0 > \\ CPV \text{ in mixing itself} \\ (\text{``indirect CPV'')} \\ \phi &= \arg\left(\frac{q}{p}A_{\overline{D}^0 \to K^+K^-}\right) \\ \phi &= \arg\left(\frac{q}{p}A_{\overline{D}^0 \to K^+K^-}\right) \\ A_m &\to 0, \phi \to 0 \\ y_{CP} &\to y = \frac{\Gamma_1 - \Gamma_2}{2\Gamma} \\ \end{split} \qquad \begin{aligned} A_{\Gamma} &\approx \left(\frac{\pi}{D^0 \to K^+K^-} - \tau_{D^0 \to K^+K^-}}{\tau_{D^0 \to K^+K^-}}\right) \\ A_{\Gamma} &\approx \left(\frac{\pi}{2}A_m + A_d\right)y\cos\phi - x\sin\phi \\ A_{\Gamma} &\approx \left(\frac{A_{\overline{D}^0 \to K^+K^-}}{A_{D^0 \to K^+K^-}}\right)^2 - 1 \\ CPV \text{ in interference} \\ \text{of mixing and decay} \\ \text{(``indirect CPV'')} \\ A_m &\to 0, \phi \to 0 \\ y_{CP} &\to y = \frac{\Gamma_1 - \Gamma_2}{2\Gamma} \\ \end{aligned}$$

 $y_{CP} \neq y$ is a sign of indirect CPV

 $A_{\Gamma} \neq 0$ is a sign of indirect or direct CPV

- Charge of the (strong interactions) transition π tags the D⁰ flavor
- D*+ detection also helps the background suppression

 $\Delta m = M(D^0\pi^{\pm}) - m(D^0)$

 $y_{CP} \approx y$ No evidence for CPV in mixing $A_{\Gamma} \approx 0$

- First measurements at hadron collider.
- Not yet competitive with e⁺e⁻. With 2011 data (1.1 fb⁻¹) statistical errors will be 1x10⁻³. Need to improve background systematics. Most sensitive measurements expected.
- Expected statistical errors on A_{Γ} with 5 fb⁻¹ (upgraded LHCb 50 fb⁻¹) ~4x10⁻⁴ (1x10⁻⁴)

Here in the Era of 3-Sigma Results, we tend to get excited about hints of new physics that eventually end up going away. That's okay — excitement is cheap, and eventually one of these results is going to stick and end up changing physics in a dramatic way. Remember that "3 sigma" is the minimum standard required for physicists to take a new result at all seriously; if you want to

EXAMPLE 1 Zakopane.May 2012 Tomasz Skwarnicki
Direct CPV in charm decays via time integrated rates
LHCb 0.62 fb⁻¹ LHCB-PAPER-2011-023; PRL 108, 111602 (2012)

$$A_{CP}(f) = \frac{\Gamma_{D^0 \to f} - \Gamma_{\overline{D}^0 \to f}}{\Gamma_{D^0 \to f} + \Gamma_{\overline{D}^0 \to f}} \qquad f - CP \text{ eigenstate} \\ \Gamma \sim \# \text{ of events} \qquad f - CP \text{ eigenstate} \\ \Gamma \sim \# \text{ of events} \qquad f - CP \text{ eigenstate} \\ \Gamma \sim \# \text{ of events} \qquad f - CP \text{ eigenstate} \\ R_{CP}(f) = \frac{|A_{D^0 \to f}|^2 - |A_{\overline{D}^0 \to f}|^2}{|A_{D^0 \to f}|^2 + |A_{\overline{D}^0 \to f}|^2} \approx -\frac{1}{2}A_d \qquad t > - \text{ average decay time} \\ A_{CP}(f) \approx a_{CP}^{dir}(f) - A_{\Gamma}(f) \stackrel{\leq t >}{\tau} \qquad t > - \text{ average decay time} \\ of candidates after cuts \qquad for experimental reasons (see next) we measure: \qquad \Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) \qquad D^0 \to \pi^+\pi^- \text{ also SCS, similar BR} \\ \text{In case of U-spin symmetry: } A_{CP}(K^+K^-) = -A_{CP}(\pi^+\pi^-) \qquad universal \qquad assumed \\ \Delta A_{CP} \approx \Delta a_{CP}^{dir} - \Delta \left(A_{\Gamma} \stackrel{\leq t >}{\tau} \right) \qquad a_{CP}^{ind} = -\frac{1}{2}A_{m}y \cos \phi + x \sin \phi \\ \Delta A_{CP} \approx \Delta a_{CP}^{dir} + a_{CP}^{ind} \stackrel{\Delta < t >}{\tau} \qquad \Delta < t > \\ \Delta A_{CP} \approx \Delta a_{CP}^{dir} = 0.098 \pm 0.002 \pm 0.001 \\ \text{(LHCb specific)} \qquad (LHCb specific)$$

Detection asymmetry of soft pion

For a two-body decay of a spin-0 particle to a self-conjugate final state, no D⁰ detector efficiency asymmetry, i.e.

 $A_{D}(K^{-}K^{+}) = A_{D}(\pi^{-}\pi^{+}) = 0$ Then: $A_{RAW}(K^{-}K^{+})^{*} = A_{CP}(K^{-}K^{+}) + A_{D}(\pi_{s}) + A_{P}(D^{*+})$ $A_{RAW}(\pi^{-}\pi^{+})^{*} = A_{CP}(\pi^{-}\pi^{+}) + A_{D}(\pi_{s}) + A_{P}(D^{*+})$ $\Rightarrow A_{RAW}(K^{-}K^{+})^{*} - A_{RAW}(\pi^{-}\pi^{+})^{*} = A_{CP}(K^{-}K^{+}) - A_{CP}(\pi^{-}\pi^{+})$ HCh

40

Δa_{CP} previous measurements

• Different measurements are sensitive to different combinations of direct and indirect asymmetries

Based on 60% of 2011 data

нсь

Zakopane,May 2012 Tomasz Skwarnicki ΔA_{CP} : LHCb data

HFAG averages including LHCb:
Δa_{CP}^{dir}=(-0.65±0.18)%
3.6σ away from zero

 $a_{CP}^{ind} = (-0.02 \pm 0.23)\%$

HCb

 ΔA_{CP} recent developments: CDF 9.6 fb⁻¹

• CDF Public Note 10784, 2/28/12, similar analysis to LHCb

 $\Delta A_{CP} = A_{CP} (K^+ K^-) - A_{CP} (\pi^+ \pi^-) = (0.62 \pm 0.21 \pm 0.10)\%$ $= a_{CP}^{dir} (K^+ K^-) - a_{CP}^{dir} (\pi^+ \pi^-) + (0.26 \pm 0.01) a_{CP}^{ind}$

 $\begin{array}{c} \text{CDF} \\ \text{2.7}\sigma \text{ from no-CPV} \end{array}$

HFAG averages including new CDF: $\Delta a_{CP}^{dir} = (-0.66 \pm 0.15)\%$ 4.4\sigma away from zero $a_{CP}^{ind} = (-0.03 \pm 0.23)\%$

ΔA_{CP} recent developments: theory

- Before the LHCb results:
 - ΔA_{CP} ~O(1%) would be a sign of NP
- A large number of theoretical papers has been published since then
- Now:
 - it may be possible to accommodate such asymmetry within the SM via interference of decays mediated by tree and penguin diagrams; see e.g.
 - T.Feldman, S.Nandi, A.Soni arXiV: 1202.3795,
 - J. Brod, Y. Grossman, A.L. Kagan, J.Zupan arXiv: 1203.6659
- More measurements of direct and indirect CPV in charm decays are needed to distinguish between SM and NP scenarios

 ΔA_{CP} : future prospects in LHCb

- The present LHCb result is based on 0.6 fb⁻¹; update to 1 fb⁻¹ in preparation
- Further future:
 - LHCb 5 fb⁻¹: ΔA_{CP} to ±0.04%
 - LHCb upgrade 50 fb⁻¹: to \pm 0.005%
- Related measurements:
 - Measure ΔA_{CP} with D⁰ from B semileptonic decays
 - Look for direct CPV in other SCS modes, especially 3 body ones

LHCb upgrade – opportunity to contribute

- The collaboration is of BaBar size:
 - 800 Physicists
 - 54 Institutes
 - 15 Countries
- Upgrade work is still in early stages:
 - R&D on various technologies -2012
 - TDR in 2013, prototypes
 - Production 2013-17
 - Installation 2018

- On-going and future physics
 program are very broad (many topics not covered in this talk)
- Cutting edge in sensitivity in many beauty and charm topics
 – NP discovery potential
- Opportunity for significant scientific impact

Conclusions

- LHC is a beauty and charm factory for foreseeable future:
 - Unique reach in B_s physics. Best sensitivity in many $B_{d,u}$ measurements.
- LHCb is the first hadron collider experiment dedicated to heavy flavor physics
 - The recent results have proven that a broad beauty and charm physics program at a hadronic collider is possible with quality of results matching the e⁺e⁻ factories.
 - Reaching new levels of sensitivity (i.e. higher energy scales) in many key measurements:
 - No indication of NP in beauty decays yet. Plenty of room left for NP before theoretical limitations are reached. Probing smaller deviations from SM means probing high energy scales.
 - More data to be collected in next few years
 - Channels with many neutrals, neutrino(s) and inclusive processes will remain exclusive domain of the e⁺e⁻ factories.
- Have we just seen a glimpse of NP in charm decays?
 - More data and more measurements in charm sector soon
- Physics reach limited by the detector capabilities not the collider:
 - LHCb upgrade in 2018. Opportunity to get involved.