Georg G. Raffelt, Max-Planck-Institut für Physik, München

Motivation, Cosmological Role and Experimental Searches

Zakopane, Tatra Mountains, Poland, 19–27 May 2012 52n^d Cracow School on Theoretical Physics

Axion Physics in a Nut Shell

Georg Raffelt, MPI Physics, Munich 52n^d Cracow School on Theoretical Physics, Zakopane, 19–27 May 2012

CP Violation in Particle Physics

Discrete symmetries in particle physics

- C Charge conjugation, transforms particles to antiparticles violated by weak interactions
- P Parity, changes left-handedness to right-handedness violated by weak interactions
- T Time reversal, changes direction of motion (forward to backward)
- CPT exactly conserved in quantum field theory
- CP conserved by all gauge interactions violated by three-flavor quark mixing matrix

Physics Nobel Prize 2008

- ◆ All measured CP-violating effects derive from a single phase in the quark mass matrix (Kobayashi-Maskawa phase), i.e. from complex Yukawa couplings
- ❖ Cosmic matter-antimatter asymmetry requires new ingredients

The CP Problem of Strong Interactions

Real quark Phase from
mass

$$
\mathcal{L}_{QCD} = \sum_{q} \bar{\psi}_q (iD - m_q e^{i\theta_q}) \psi_q - \frac{1}{4} G_{\mu\nu a} G_a^{\mu\nu} - \Theta \frac{\alpha_s}{8\pi} G_{\mu\nu a} \tilde{G}_a^{\mu\nu}
$$

Remove phase of mass term by chiral transformation of quark fields

$$
\psi_q \to e^{-i\gamma_5 \theta_q/2} \psi_q
$$

$$
\mathcal{L}_{\text{QCD}} = \sum_q \overline{\psi}_q (iD - m_q) \psi_q - \frac{1}{4} G G - \underbrace{(\Theta - \arg \det M_q)}_{-\pi \leq \overline{\Theta} \leq +\pi} \overline{G} \overline{\widetilde{\Theta}}
$$

 \bullet $\overline{\Theta}$ can be traded between quark phases and $G\tilde{G}$ term

◆ No physical impact if at least one $m_q = 0$

Experimental limits: $|\overline{\Theta}| < 10^{-11}$ Why so small?

Neutron Electric Dipole Moment

Violates time reversal (T) and space reflection (P) symmetries

Natural scale $\frac{e}{2m_N}$ = 1.06 × 10⁻¹⁴e cm

Experimental limit $|d|$ < 0.63 \times 10⁻²⁵e cm

Limit on coefficient

$$
\overline{\Theta} \frac{m_q}{m_N} \lesssim 10^{-11}
$$

Strong CP Problem

- CP conserving vacuum has $\Theta = 0$ (Vafa and Witten 1984)
- QCD could have any $-\pi \leq \Theta \leq +\pi$, is "constant of nature"
- Energy can not be minimized: Θ not dynamical **Peccei-Quinn solution:** Make Θ dynamical, let system relax to lowest energy

Dynamical Solution

Peccei & Quinn 1977, Wilczek 1978, Weinberg 1978

• Re-interpret $\overline{\Theta}$ as a dynamical variable (scalar field)

$$
\mathcal{L}_{\text{CP}} = -\frac{\alpha_{\text{s}}}{8\pi} \overline{\Theta} \operatorname{Tr}(G\tilde{G}) \rightarrow -\frac{\alpha_{\text{s}}}{8\pi} \frac{a(x)}{f_a} \operatorname{Tr}(G\tilde{G})
$$

 $a(x)$ is pseudoscalar axion field, f_a axion decay constant (Peccei-Quinn scale)

• Axions generically couple to two gluons and mix with, π^0 , η , η' mesons, inducing a mass (potential) for $a(x)$

$$
m_a f_a = \frac{\sqrt{m_u m_d}}{m_u + m_d} m_{\pi} f_{\pi}
$$
 (Axion mass) \sim (Récouplings) \sim (Récouplings) $\times \frac{f_{\pi}}{f_a}$

• Potential (mass term) induced by \mathcal{L}_{CP} drives $a(x)$ to CP-conserving minimum

35 Years of Axions

VOLUME 40, NUMBER 4 PHYSICAL REVIEW LETTERS 23 JANUARY 1978 A New Light Boson? Steven Weinberg Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138 (Received 6 December 1977) It is pointed out that a global $U(1)$ symmetry, that has been introduced in order to preserve the parity and time-reversal invariance of strong interactions despite the effects of instantons, would lead to a neutral pseudoscalar boson, the "axion," with mass roughly of order 100 keV to 1 MeV. Experimental implications are discussed. VOLUME 40, NUMBER 5 PHYSICAL REVIEW LETTERS **30 JANUARY 1978** Problem of Strong P and T Invariance in the Presence of Instantons $F.$ Wilczek^(a) Columbia University, New York, New York 10027, and The Institute for Advanced Studies, Princeton, New Jersey $08540^{(b)}$ (Received 29 November 1977) The requirement that P and T be approximately conserved in the color gauge theory of strong interactions without arbitrary adjustment of parameters is analyzed. Several possibilities are identified, including one which would give a remarkable new kind of very light, long-lived pseudoscalar boson. a certain class of theories^{4,5,7} the parameter θ is One of the main advantages of the color gauge physically meaningless,^{4,5} or dynamically detertheory of strong interactions is that so many of

the observed symmetries of strong interactions seem to follow automatically as a consequence of the gauge principle and renormalizability- $-P$, T , C, flavor conservation, the $3 \oplus 3^*$ structure of chi-

mined.⁷ In this case, if the strong interaction conserves P and T , we shall say the conservation is *automatic*.

I regard a theory of type (i) as very unattrac-

The Cleansing Axion

"I named them after a laundry detergent, since they clean up a problem with an axial current." (Nobel lecture 2004)

Frank Wilczek

Axion Bounds and Searches

Searching for Axion-Like Particles

Searching for Solar Axions

Georg Raffelt, MPI Physics, Munich 52n^d Cracow School on Theoretical Physics, Zakopane, 19–27 May 2012

Experimental Tests of the "Invisible" Axion

P. Sikivie

Physics Department, University of Florida, Gainesville, Florida 32611 (Received 13 July 1983)

Experiments are proposed which address the question of the existence of the "invisible" axion for the whole allowed range of the axion decay constant. These experiments exploit the coupling of the axion to the electromagnetic field, axion emission by the sun, and/or the cosmological abundance and presumed clustering of axions in the halo of our galaxy.

Primakoff effect:

Axion-photon transition in external static E or B field (Originally discussed for π^0 by Henri Primakoff 1951)

Pierre Sikivie:

Macroscopic B-field can provide a large coherent transition rate over a big volume (low-mass axions)

• Axion helioscope: Look at the Sun through a dipole magnet

• Axion haloscope: Look for dark-matter axions withA microwave resonant cavity

Parameter Space for Axion-Like Particles (ALPs)

Search for Solar Axions

Axion Helioscope (Sikivie 1983)

Axion-Photon-Oscillation

N

ναναναντικ

- ¾ Tokyo Axion Helioscope ("Sumico") (Results since 1998, up again 2008)
- ¾ CERN Axion Solar Telescope (CAST) (Data since 2003)

Alternative technique: Bragg conversion in crystal Experimental limits on solar axion flux from dark-matter experiments (SOLAX, COSME, DAMA, CDMS ...)

 \overline{c}

4

 \mathbf{z}

 Ω

 Ω

Tokyo Axion Helioscope ("Sumico")

Moriyama, Minowa, Namba, Inoue, Takasu & Yamamoto PLB 434 (1998) 147

Inoue, Akimoto, Ohta, Mizumoto, Yamamoto & Minowa PLB 668 (2008) 93

CAST at CERN

Helioscope Limits

Photon Regeneration Experiments

Ehret et al. (ALPS Collaboration), arXiv:1004.1313

Recent "shining-light-through-a-wall" or vacuum birefringence experiments:

- ALPS(DESY, using HERA dipole magnet)
- BMV (Laboratoire National des Champs Magnétiques Intens, Toulouse)
- BFRT(Brookhaven, 1993)
- GammeV (Fermilab)
- LIPPS (Jefferson Lab)
- OSQAR (CERN, using LHC dipole magnets)
- PVLAS(INFN Trieste)

Parameter Space for Axion-Like Particles

Shining TeV Gamma Rays through the Universe

Figure from a talk by Manuel Meyer (Univ. Hamburg)

Shining TeV Gamma Rays through the Universe

Figure from a talk by Manuel Meyer (Univ. Hamburg)

Parameter Space for Axion-Like Particles

Perspectives for ALPS-II (DESY)

Photon regeneration experiment with 12+12 HERA dipoles

• May reach 10^{-11} GeV⁻¹ level

Challenges

- Optical system
- Getting dipoles straight
- Detectors
- Running a 260 m long system (decision 2015)

(Axel Lindner and Andreas Ringwalc Pls at DESY)

Next Generation Axion Helioscope (IAXO)

Irastorza et al., "Towards a new generation axion helioscope", arXiv:1103.5334

Axions as Cold Dark Matter of the Universe

Dark Energy 73% (Cosmological Constant)

Ordinary Matter 4% (of this only about 10% luminous)

 Dark Matter 23%

Georg Raffelt, MPI Physics, Munich 52n^d Cracow School on Theoretical Physics, Zakopane, 19–27 May 2012

Neutrinos 0.1−**2%**

Axion as a Nambu-Goldstone Boson

$$
\mathcal{L}_{\text{CP}} = \frac{\alpha_s}{8\pi} \overline{\Theta} G_a \tilde{G}_a \rightarrow \frac{\alpha_s}{8\pi} \left(\overline{\Theta} - \frac{a(x)}{f_a} \right) G_a \tilde{G}_a
$$

Periodic variable (angle)

$$
\Phi = \frac{f_a + \rho(x)}{\sqrt{2}} e^{\frac{i a(x)}{f_a}}
$$

$$
\bigotimes
$$

- New U(1) symmetry, spontaneously broken at a large scale f_a
- Axion is "phase" of new Higgs field: angular variable $a(x)/f_a$
- By construction couples to $G\tilde{G}$ term with strength $\alpha_s/8\pi$, e.g. triangle loop with new heavy quark (KSVZ model)
- Mixes with π^0 - η - η' mesons
- $m_a = \frac{\sqrt{m_u m_d}}{m_u + m_d} \frac{m_\pi}{f_\pi f_a}$ • Axion mass (vanishes if m_u or $m_d = 0$)

Creation of Cosmological Axions

$T \sim f_a$ (very early universe)

- $U_{PO}(1)$ spontaneously broken
- Higgs field settles in "Mexican hat"
- Axion field sits fixed at $a_i = \Theta_i fa$

$T \sim 1$ GeV ($H \sim 10^{-9}$ eV)

- Axion mass turns on quickly by thermal instanton gas
- Field starts oscillating when $m_a \gtrsim 3H$
- Classical field oscillations (axions at rest)

Axions are born as nonrelativistic, classical field oscillations Very small mass, yet cold dark matter

Axion Cosmology in PLB 120 (1983)

THE NOT-SO-HARMLESS AXION

Michael DINE

The Institute for Advanced Study, Princeton, NJ 08540, USA

Cosmic Axion Density

Modern values for QCD parameters and temperature-dependent axion mass imply (Bae, Huh & Kim, arXiv:0806.0497)

$$
\Omega_a h^2 = 0.195 \,\Theta_i^2 \left(\frac{f_a}{10^{12} \text{GeV}}\right)^{1.184} = 0.105 \,\Theta_i^2 \left(\frac{10 \,\mu\text{eV}}{m_a}\right)^{1.184}
$$

If axions provide the cold dark matter: $\Omega_a h^2 = 0.11$

$$
\Theta_{\rm i} = 0.75 \left(\frac{10^{12} \text{GeV}}{f_a} \right)^{0.592} = 1.0 \left(\frac{m_a}{10 \text{ }\mu\text{eV}} \right)^{0.592}
$$

• $\Theta_i \sim 1$ implies $f_a \sim 10^{12}$ GeV and $m_a \sim 10$ µeV ("classic window")

• $f_a \sim 10^{16}$ GeV (GUT scale) or larger (string inspired) requires $\Theta_i \lesssim 0.003$ ("anthropic window")

Lee-Weinberg Curve for Neutrinos and Axions

Cold Axion Populations

Case 1Inflation after PQ symmetry breaking

Homogeneous mode oscillates after $T \leq \Lambda_{\text{OCD}}$ Dependence on initial misalignment $\Omega_a \propto \Theta_i^2$ angle

Dark matter density a cosmic random number ("environmental parameter")

- Isocurvature fluctuations from large quantum fluctuations of massless axion field created during inflation
- Strong CMB bounds on isocurvature fluctuations
- Scale of inflation required to be small

Case 2Reheating restores PQ symmetry

- Cosmic strings of broken $U_{pQ}(1)$ form by Kibble mechanism
- Radiate long-wavelength axions
- Ω_a independent of initial conditions
- $N = 1$ or else domain wall problem

Inhomogeneities of axion field large, self-couplings lead to formation of mini-clusters

Typical properties

- Mass $\sim 10^{-12} M_{sun}$
- Radius $\sim 10^{10}$ cm
- Mass fraction up to several 10%

Axion Production by Domain Wall and String Decay

Recent numerical studies of collapse of string-domain wall system

$$
\Omega_a h^2 = (16 \pm 6) \left(\frac{f_a}{10^{12} \text{GeV}} \right)^{1.19}
$$

$$
\times \left(\frac{g_{*,1}}{70} \right)^{-0.41} \left(\frac{\Lambda}{400 \text{ MeV}} \right)
$$

Implies a CDM axion mass of

 $m_a \sim 1$ meV

Hiramatsu, Kawasaki, Saikawa, Sekiguchi, arXiv:1202.5851 (2012)

Remains to be confirmed, interpretation of numerical studies not entirely straightforward

Georg Raffelt, MPI Physics, Munich 52n^d Cracow School on Theoretical Physics, Zakopane, 19–27 May 2012

Axion Bounds and Searches

Searching for Axion Dark Matter

Searching for Axion Dark Matters

Georg Raffelt, MPI Physics, Munich 52n^d Cracow School on Theoretical Physics, Zakopane, 19–27 May 2012

Experimental Tests of the "Invisible" Axion

P. Sikivie

Physics Department, University of Florida, Gainesville, Florida 32611 (Received 13 July 1983)

Experiments are proposed which address the question of the existence of the "invisible" axion for the whole allowed range of the axion decay constant. These experiments exploit the coupling of the axion to the electromagnetic field, axion emission by the sun, and/or the cosmological abundance and presumed clustering of axions in the halo of our galaxy.

Primakoff effect:

Axion-photon transition in external static E or B field

$$
\sum_{x}^{\infty}
$$

Search for Galactic Axions (Cold Dark Matter)

Axion Dark Matter Searches

Limits assuming axions are the galactic dark matter with standard halo

ADMX Hardware

SQUID Microwave Amplifiers in ADMX

Presently the noise temperature of our HFET amps is \sim 1.5K But the quantum limit at 1 GHz is \sim 50 mK

*Prof. John Clark and Dr. Darin Kinion (UC Berkeley)

Our latest SQUIDs are now within 15% of the Standard Quantum Limit

ADMX phase I: First-year science data (2009)

FIG. 5 (color online). Axion-photon coupling excluded at the 90% confidence level assuming a local dark-matter density of 0.45 GeV/cm^3 for two dark-matter distribution models. The shaded region corresponds to the range of the axion-photon coupling models discussed in [28].

Georg Raffelt, MPI Physics, Munich 52n^d Cracow School on Theoretical Physics, Zakopane, 19–27 May 2012

ADMX Comes to UW

August 2010: ADMX Moves to UW

May 2011: Main Magnet Installed in Experiment Area (CENPA)

Gray Rybka – Patras 2011 – Mykonos, Greece – June 27, 2011 **School on Theoretical Physics** 9/13

Schedule -2010 Winter 2010 **Spring 2011** Summer 2011 – Funding Clears 2011-2012 Construct new insert small axion search here 2012-2013 Commission new insert, order dilution refrigerator 2013-2014 Install dilution refrigerator, commission 2015+ Definitive Axion search

Gray Rybka – Patras 2011 – Mykonos, Greece – June 27, 2011 1520 May 2012

Axion Dark Matter Searches

Limits assuming axions are the galactic dark matter with standard halo

ADMX-HF at Yale (Steve Lamoreaux Group)

ADMX-HF will also be a test-bed for innovative concepts, e.g. thin-film superconducting cavities

Georg Raffelt, MPI Physics, Munich 52n^d Cracow School on Theoretical Physics, Zakopane, 19–27 May 2012 Adapted from Karl van Bibber

For the long term, ADMX needs concurrent R&D

To get to 10 GHz (40 μ*eV), and ultimately 100 GHz (0.4 meV), we need to:*

- Develop new RF cavity geometries
- Develop new SQUID geometries

1 GHz

Prospects for Searching Axion-like Particle Dark Matter with Dipole, Toroidal and Wiggler Magnets

Oliver K. Baker¹, Michael Betz², Fritz Caspers², Joerg Jaeckel³, Axel Lindner⁴, Andreas Ringwald⁴, Yannis Semertzidis⁵, Pierre Sikivie⁶, Konstantin Zioutas⁷.

arXiv:1110.2180v1 (10 Oct 2011)

 $Log_{10} m_a [eV]$

Georg Raffelt, MPI Physics, Munich 52n^d Cracow School on Theoretical Physics, Zakopane, 19–27 May 2012

What if the axion is found?

And should the axion posses fine-structure, it would constitute a "movie" of the formation of our Milky Way galaxy

1D Infall and the Folding of Phase Space

Fine Structure in the Axion Spectrum

- Axion distribution on a 3-dim sheet in 6-dim phase space
- Is "folded up" by galaxy formation
- Velocity distribution shows narrow peaks that can be resolved
- More detectable information than local dark matter density

Dark Energy 73% (Cosmological Constant)

WITH LIRA CLEANING POWER

R Prilled enzymes **R** Grease and oil dissolvers **B** Fabric whitener and brightener

NET. WT. 38 07

Pier Chart of Dark Universe

Georg Raffelt, MPI Physics, Munich 52n^d Cracow School on Theoretical Physics, Zakopane, 19–27 May 2012

Ordinary Matter 4% (of this only about 10% luminous)

 Dark Matter 23%

Neutrinos 0.1−**2%**