The Early Universe III: From Quark-Gluon Plasma to Neutrino Decoupling – pion +lepton Yield equilibration of mesons and leptons

Jan Rafelski, prepared with **Inga Kuznetsova** Department of Physics, Univ. of Arizona

Work supported by a grant from: the U.S. Department of Energy DE-FG02-04ER41318

Outline.

We study kinetic equations for reactions:

$$1 + 2 \rightarrow 3 \rightarrow 1 + 2$$

We established* speed of chemical equilibration of resonances;

- We show how the medium can affect particle decay rate;
- We consider reactions $\pi^0 \leftrightarrow \gamma + \gamma$, $(\rho \leftrightarrow \pi + \pi, \phi \leftrightarrow K + K)$

$$\pi^{\pm} \leftrightarrow \mu^{\pm} + \nu_{\mu}(\overline{\nu}_{\mu}) \quad \text{and} \quad \mu^{\pm} \leftrightarrow e^{\pm} + \nu_{e}(\overline{\nu}_{e}) + \overline{\nu}_{\mu}(\nu_{\mu})$$

- Investigate freeze-out from chemical equilibrium of decaying particles with universe expansion.
- * I. Kuznetsova and J. Rafelski, Phys. Rev. C 79, 014903 (2009) [arXiv:0811.1409 [nucl-th]]
 - I. Kuznetsova and J. Rafelski, Phys.Lett. B 668, 105 (2008)

Time evolution equation

 $boson_3 \leftrightarrow boson_1 + boson_2$

 $boson_3 \leftrightarrow fermion_1 + fermion_2$ fermion₃ \leftrightarrow fermion₁ + boson₂

$$\frac{1}{V}\frac{dN_3}{dt} = \sum_i \frac{dW_{1+2\rightarrow 3}^i}{dtdV} - \sum_j \frac{dW_{3\rightarrow 1+2}^j}{dtdV}$$

Particle 3 yield change = Particle 3 formation –Particle 3 decay

$$m_3 > m_1 + m_2$$

Quantum reaction rates

Lorentz invariant rates are:

$$\frac{dW_{3\to1+2}^{i}}{dtdV} = \frac{1}{8(2\pi)^{5}} \int \frac{d^{3}p_{3}}{E_{3}} \int \frac{d^{3}p_{2}}{E_{2}} \int \frac{d^{3}p_{1}}{E_{1}} \delta(p_{1}+p_{2}-p_{3}) \sum_{spin} \left| \left\langle p_{3} | M | p_{1}p_{2} \right\rangle \right|^{2} \times \\ \times (f_{1} \pm 1)(f_{2} \pm 1) f_{3}$$

$$\frac{dW_{1+2\to3}^{i}}{dtdV} = \frac{1}{(2\pi)^{5}} \int \frac{d^{3}p_{3}}{E_{3}} \int \frac{d^{3}p_{2}}{E_{2}} \int \frac{d^{3}p_{1}}{E_{1}} f_{1}f_{2}\delta(p_{1}+p_{2}-p_{3}) \sum_{spin} \left| \left\langle p_{1}p_{2} | M | p_{3} \right\rangle \right|^{2} \times \\ \times (f_{3} \pm 1) f_{2} f_{1}$$

Fugacity definition

$$f_{j} = \frac{1}{Y_{j}^{-1}(t) \exp((u \cdot p_{j})\beta(t)) - 1}, \text{ meson (bose);}$$
$$f_{i} = \frac{1}{Y_{i}^{-1}(t) \exp((u \cdot p_{i})\beta(t)) + 1}, \text{ baryons (fermi);}$$

 $u \cdot p_i = E_i$ for u = (1,0) in the rest frame of heat bath We assume chemical potential μ =0, particle-antiparticle symmetry

Detailed balance condition

$$\mathbf{Y}_{1}\mathbf{Y}_{2} \frac{dW_{3 \to 1+2}}{dtdV} = \mathbf{Y}_{3} \frac{dW_{1+2 \to 3}}{dtdV} \equiv R$$

Equilibrium condition:

$$Y_3 = Y_1 Y_2 (= 1)$$

Detailed balance conditions

$$\frac{1}{Y_3Y_4} \frac{dW_{43\to 12}}{dtdV} = \frac{1}{Y_1Y_2} \frac{dW_{12\to 34}}{dtdV} \equiv R$$

and
$$\frac{1}{Y_3} \frac{dW_{3\to 1+2}}{dtdV} = \frac{1}{Y_1Y_2} \frac{dW_{1+2\to 3}}{dtdV} \equiv R$$

Means that in $Y_1Y_2 = Y_3Y_4(=1)$ and $Y_3 = Y_1Y_2(=1)$ Equilibrium:

Reactions: $3 \leftrightarrow 1+2$

 $boson_{3} \leftrightarrow fermion_{1} + fermion_{2}$ $fermion_{3} \leftrightarrow fermion_{1} + boson_{2}$ $\frac{1}{V} \frac{dN_{3}}{dt} = \sum_{i} \frac{dW_{1+2\rightarrow3}^{i}}{dtdV} - \sum_{i} \frac{dW_{3\rightarrow1+2}^{j}}{dtdV}$

Particle 3 yield change = Particle 3 formation –Particle 3 decay

 $m_3 > m_1 + m_2$

Time evolution equation

 $boson_3 \leftrightarrow boson_1 + boson_2$

Calculation of particle 3 decay / production rate

 τ'_3 is particle 3 lifespan in its rest frame in medium of particles 1 and 2

$$Y_1 Y_2 \frac{dW_{3 \to 1+2}}{dt dV} = Y_3 \frac{dW_{1+2 \to 3}}{dt dV} \equiv R$$

Calculation of particle 3 decay / production rate

Particle 3 decay / production rate in a medium can be calculated, using particle 3 decay time in the this particle rest frame.

$$\frac{dW_{3\leftrightarrow 1+2}}{dtdV} = \frac{g_3}{(2\pi)^3} \int d^3 p_3 f_{b,f}(Y_3, p_3) \frac{m_3}{E_3} \frac{1}{\tau'_3} \qquad \frac{1}{\tau'_3} = \frac{1}{\tau'_3} \frac{\exp(E_3/T)}{2} \Phi_3(p_3)$$

 au_3' is particle 3 decay time in its rest frame in medium of particles 1 and 2

$$\Phi_{3}(p_{3}) = \int_{-1}^{1} d\zeta \frac{Y_{1}^{-1}}{Y_{1}^{-1} \exp(a_{1} - b\zeta) \pm 1} \frac{Y_{2}^{-1}}{Y_{2}^{-1} \exp(a_{2} + b\zeta) \pm 1} = \frac{1}{e^{a_{1} + a_{2}} \pm Y_{1}Y_{2}} \ln \frac{(e^{-a_{2}} \pm Y_{2}e^{b})(e^{a_{1}} \pm Y_{1}e^{-b})}{(e^{-a_{2}} \pm Y_{2}e^{-b})(e^{a_{1}} \pm Y_{1}e^{b})}$$

 au_3^0 is particle 3 decay time in this particle rest frame in vacuum

$$a_{1} = \frac{E_{1}E_{3}}{m_{3}T}, \quad a_{2} = \frac{E_{2}E_{3}}{m_{3}T}, \quad b = \frac{pp_{3}}{m_{3}T}, \quad \zeta = \cos(p \wedge p_{3})$$
$$E_{1,2} = \frac{m_{3}^{2} \pm (m_{1}^{2} - m_{2}^{2})}{2m_{3}}, \quad p = E_{1,2}^{2} - m_{1,2}^{2} \quad \text{are in particle 3 rest frame}$$

Fugacity Y(t) computation

Relaxation time:
$$\tau_3^i = \frac{1}{V} \frac{dN_3}{dY_3} Y_3 / \frac{dW_{3 \to 1+2}^i}{dtdV}$$

 $\frac{dY_3}{d\tau} = \sum_i Y_1^i Y_2^i \frac{1}{\tau_3^i} + Y_3 \left(\frac{1}{\tau_T} + \frac{1}{\tau_S} - \sum_j \frac{1}{\tau_3^j}\right)$
 τ is time in fluid element co-moving frame.
 $\frac{1}{\tau_T} = \frac{d \ln(x_{\Delta}^2 K_2(x_{\Delta}))}{dT} \frac{dT}{d\tau}, \quad \frac{1}{\tau_S} = \frac{d \ln(VT^3)}{d\tau} \approx 0$ the entropy is conserved

The relaxation times for the decay and backward reactions are the same.

Example: $\gamma + \gamma \rightarrow \pi_0$

In relativistic Boltzmann limit (no medium effects) in rest of heat bath frame:

$$\tau_{\pi^{0}} \approx \frac{\tau_{\pi^{0}}^{0}}{\langle 1/\gamma \rangle} = \tau_{\pi^{0}}^{0} \frac{K_{2}(m_{\pi^{0}}/T)}{K_{1}(m_{\pi^{0}}/T)} \qquad \tau_{\pi^{0}}^{0} \approx 8.4 \cdot 10^{-17} \text{ s}$$

Early Universe

 π^{0} stay in chemical equilibrium; $n_{\pi} > n_{N}$ until T on the order few MeV

 π^0 can intensively participate in reaction with nucleons

Effective degeneracy in the Universe

Lepton equilibration

$$\pi^{\pm} \leftrightarrow \mu^{\pm} + V_{\mu} (\overline{V}_{\mu})$$

$$\tau_{0} = 2.6 \ 10^{-8} \ s$$

$$\tau_{\pi} \sim \tau_{0} \ n_{\nu}/n_{\pi}$$

$$e^{+} + e^{-} = V_{e,\mu} + \overline{V}_{e,\mu}$$

$$\tau_{v_{e}} = (0.1G_{F}^{2}T^{5})^{-1}; \ \tau_{v_{\mu}} = (0.6G_{F}^{2}T^{5})^{-1}$$

$$G_{F} = 1.166 \cdot 10^{-5} \ \text{GeV}^{-2}$$

 π^{\pm} has dominant influence on neutrino equilibration between 7-100 MeV

This can be important if $\mu_v > 0$, neutrinos freeze out earlier.

Muon equilibration

- $\blacksquare \quad \gamma + \gamma \iff \mu^+ + \mu^-$
- $e^+ + e^- \leftrightarrow \mu^+ + \mu^-$

Muon lifespan is 2.197·10⁻⁶ s $\mu^{\pm} \leftrightarrow e^{\pm} + v_e(\overline{v}_e) + \overline{v}_{\mu}(v_{\mu})$

$$\mathbf{Y}_{\mu}^{-2} \frac{dW_{\mu^{+}\mu^{-} \to \gamma\gamma(e^{+}e^{-})}}{dtdV} = \mathbf{Y}_{\gamma(e)}^{-2} \frac{dW_{\gamma\gamma(e^{+}e^{-}) \to \mu^{+}\mu^{-}}}{dtdV} \equiv R_{\gamma\gamma(e^{+}e^{-}) \leftrightarrow \mu^{+}\mu^{-}}$$

Rate for muon production

Equation for $R_{\gamma\gamma(e^+e^-)\leftrightarrow\mu^+\mu^-}$ is similar to that for strangeness production in QGP, see review *Koch et al*, *Physics Reports*, 142, 4 (1986) and *I. Kuznetsova and J. Rafelski, Phys.Lett. B* 668, 105 (2008)

$$R_{\gamma\gamma(e^+e^-)\leftrightarrow\mu^+\mu^-} = \frac{Y_{\gamma(e)}^{-2}Y_{\mu}^{-2}}{8(2\pi)^6(1+I)} \int \frac{d^3p_{\mu^+}}{2E_{\mu^+}} f_{\mu^+} \int \frac{d^3p_{\mu^-}}{2E_{\mu^-}} f_{\mu^-} \int \frac{d^3p_1}{2E_1(2\pi)^3} f_1 \int \frac{d^3p_2}{2E_2(2\pi)^3} f_2 \times (2\pi)^4 \delta(p_1 + p_2 - p_{\mu^+} - p_{\mu^-}) \sum_{spin} \left| \langle p_1 p_2 | M | p_{\mu^+} p_{\mu^-} \rangle \right|^2 e^{\frac{u \cdot (p_1 + p_2)}{T}}$$

Matrix elements for muons production near threshold

$$\gamma + \gamma \rightarrow \mu^+ + \mu^-$$
:
 $e^+ + e^- \rightarrow \mu^+ + \mu^-$

Near threshold we find:

$$\left| \left\langle p_{1\gamma} p_{2\gamma} | M | p_{\mu^{+}} p_{\mu^{-}} \right\rangle \right|^{2} = 64\pi^{2} \alpha^{2}; \quad \left| \left\langle p_{e^{+}} p_{e^{-}} | M | p_{\mu^{+}} p_{\mu^{-}} \right\rangle \right|^{2} = 32\pi^{2} \alpha^{2}$$

The reaction $e^+ + e^- \rightarrow \mu^+ + \mu^-$ involves a single photon, and thus it is more constrained (by factor 2) compared to the photon fusion, which is governed by two Compton type Feynman diagrams. Indistinguishability of the two photons introduces an additional factor 1/2, so that both reactions differ only by the difference in the quantum Bose and Fermi distributions:

$$R_{\gamma\gamma \to \mu^+\mu^-} \approx R_{e^+e^- \to \mu^+\mu^-}, \text{ for } T << m_\mu$$

Time evolution of μ^{\pm}

$$\frac{1}{V}\frac{dN_{\mu}}{dt} = \left(Y_{\gamma}^{2} - Y_{\mu}^{2}\right)R_{\gamma\gamma \to \mu^{+}\mu^{-}} + \left(Y_{e}^{2} - Y_{\mu}^{2}\right)R_{e^{+}e^{-} \to \mu^{+}\mu^{-}}$$

 $Y_{\mu} = Y_{e} = Y_{\nu}$ (=1) is chemical equilibrium

Muon production relaxation time is:

$$\tau_{\mu} = \frac{1}{2} \frac{dn_{\mu} / dY_{\mu}}{(R_{\gamma\gamma \leftrightarrow \mu^{+}\mu^{-}} + R_{e^{+}e^{-} \leftrightarrow \mu^{+}\mu^{-}})}$$

π^{\pm} equilibration

- $\pi^{0} + \pi^{0} \leftrightarrow \pi^{+} + \pi^{-} \qquad \pi^{\pm} \text{ lifespan is } 2.6 \cdot 10^{-8} \text{ s}$

Production rate, using cross section for two to two body processes:

$$R_{12\to\pi^{+}\pi^{-}} = \frac{g_{1}g_{2}}{32\pi^{4}} \frac{T}{1+I} \int_{S_{th}}^{\infty} ds \,\sigma(s) \frac{\lambda_{2}(s)}{\sqrt{s}} K_{1}(\sqrt{s}/T),$$

where $s=(p_1 + p_2)^2$, $\lambda_2(s) = (s-(m_1+m_2)^2)(s-(m_1-m_2)^2)$, m_1 and m_2 , g_1 and g_2 , Y_1 and Y_2 are masses, degeneracy and fugacities of initial interacting particles.

π^{\pm} evolution equation

$$\frac{1}{V}\frac{dN_{\pi^{\pm}}}{dt} = \left(\mathbf{Y}_{\pi^{0}}^{2} - \mathbf{Y}_{\pi^{\pm}}^{2}\right)R_{\pi^{0}\pi^{0}\leftrightarrow\pi^{+}\pi^{-}} + \left(\mathbf{Y}_{\gamma}^{2} - \mathbf{Y}_{\pi^{\pm}}^{2}\right)R_{\gamma\gamma\leftrightarrow\pi^{+}\pi^{-}} + \left(\mathbf{Y}_{e}^{2} - \mathbf{Y}_{\pi^{\pm}}^{2}\right)R_{e^{+}e^{-}\leftrightarrow\pi^{+}\pi^{-}} + \left(\mathbf{Y}_{\mu^{\pm}}^{2}\mathbf{Y}_{\nu} - \mathbf{Y}_{\pi^{\pm}}^{2}\right)R_{\pi^{\pm}\leftrightarrow\mu^{\pm}+\nu(\bar{\nu})}$$

Relaxation times are:
$$\tau_{12 \to \pi^+ \pi^-} = \frac{1}{2} \frac{dn_{\pi^\pm} / dY_{\pi^\pm}}{R_{12 \leftrightarrow \pi^+ \pi^-}}$$

$$\tau_{\pi^{\pm} \leftrightarrow \mu^{\pm} + \nu(\overline{\nu})} = \frac{dn_{\pi^{\pm}} / dY_{\pi^{\pm}}}{R_{\pi^{\pm} \leftrightarrow \mu^{\pm} + \nu(\overline{\nu})}}$$

Relaxation times and cross sections for charged pions production

Cross sections for pions production are from:

R.Kaminski, *et al*, *arXiv*:0710.1150 [hep-ph];

H.Terazawa, Phys. Rev. D, 954 (1995); G.J.Gounaris and J.J.Sakurai, Phys. Rev. Lett. 21, 244 (1968); G.~Mennessier et al, arXiv:0707.4511 [hep-ph]

Equilibration times for pions and muons in different reactions

Conclusions

- We studied here kinetic equations for 1 to 2 particle and backward reactions and derived how reaction rate in medium and in frame of radiation is connected to the reaction rate in the frame of decaying particle in vacuum.
- We showed how thermal medium influences the particle decay time and the backward reaction relaxation time.
- We showed that in expanded universe the pions, the muons and other hadrons (except n and p) stay in chemical equilibrium with radiation up to the few MeV. Until these temperatures their densities are larger than nucleon density and they can actively participate in the reactions with nucleons.
 - We showed that reaction $\pi^{\pm} \leftrightarrow \mu^{\pm} + \nu_{\mu}(\overline{\nu}_{\mu})$ can be important for the neutrinos equilibration at T > 7 MeV.