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PARTICLES IN THE EARLY UNIVERSE

The understanding of equations of state of Quark-Gluon Plasma
and Hadron Gas phase allows exploration of the conditions in which
matter (protons, neutrons) formed.

We Need Preparation for Following Tasks

1) Describe in quantitative terms the chemical composition of the
Universe before hadronization and at hadronization:

T ' 160MeV t ' 30µs,

2) Understand the quark-hadron phase transformation dynamics,
baryon number distillation;

3) Describe the composition of the Universe during evolution to-
wards the condition of neutrino decoupling

T ' 1− 3MeV t ' 10 s

4) Demonstrate that the Universe can be in chemical equilibrium
during this period

5) Beyond Theory: we need experimental anchor points
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Direct Probe of the Early Universe: Heavy Ion Collisions at LHC

RECREATE THE EARLY UNIVERSE IN LABORATORY:
Recreate and understand the high energy density conditions pre-
vailing in the Universe when matter formed from elementary de-
grees of freedom (quarks, gluons) at about 30µs after big bang.

QGP-Universe hadronization led to nearly matter-antimatter symmetric state,
ensuing matter-antimatter annihilation yields 10−10 matter asymmetry, the
world around us.

STRUCTURED VACUUM (Einsteins 1920+ Aether/Field/Universe)
Quantum dogma: The global vacuum state determines the prevail-
ing state-dependent laws of nature. Demonstrate by changing from
the vacuum of hadronic matter that of quark matter, understand-
ing the changes in laws of physics.

ORIGIN OF MASS OF MATTER –DECONFINEMENT
The confining quark vacuum state is the origin of 99.9% of GRAV-
ITATING visible matter mass, the Higgs mechanism applies to the
remaining 0.1%. We need to be sure that the quantum zero-point
energy of confined quarks is the mass of matter. First step: we
‘melt’ the vacuum structure setting quarks free.
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What and where is deconfinement?
A domain of (space, time) of modified quantum vacuum much larger
than normal hadron size in which color-charged quarks and gluons
are propagating, constrained by external ‘frozen vacuum’ which ab-
hors color. Matter as we know it does not exist. This is the early
Universe strongly interacting phase of matter.

We expect a pronounced bound-
ary in temperature and density
between confined and deconfined
phases of matter: phase diagram.
Deconfinement expected at both:
high temperature and at high
matter density.

THEORY: What physics we need
Hot QCD in equilibrium (QGP from QCD-lattice) and
out of chemical equilibrium

DECONFINEMENT NOT A ‘NEW PARTICLE’,
there is no good answer to journalists question:

How many new vacuua have you produced today?
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RECREATING THE EARLY UNIVERSE: ENERGY TO MATTER

Micro-BangBig-Bang

N

Micro-Bang

N

µs −∼
−∼ −∼

−∼
   / N       10 -10
B B   / N      0.1

s-23τ     10   τ    4 10   

QGPPb Pb
Au Au

Orders of Magnitude ALICE at LHC

ENERGY density ε ' 1–50GeV/fm3 = 0.18–9 1016g/cc

Latent vacuum heat B '0.4GeV/fm3 = (234MeV)4 =0.64 1029J/cc

PRESSURE P = 1
3ε = (0.52− 26) 1030 bar

TEMPERATURE T0, Tf 500, 160 MeV; 300MeV'3.5 1012K
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Stages in the evolution of the Universe
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CERN: One lab, many opportunities

ii: Interdisciplinary Topics - Tutorials
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STUDENTS: ARE YOU PREPARED?
This is a interdisciplinary subject matter:
attempt to answer these trivia questions quantitatively:

• Relativity: is Lorentz-contraction of space or body of matter;
what is proper time, rapidity?

• Relativistic Statistical Physics: Is 3P ≥ ε or 3P ≤ ε ?

• Nuclear Physics: what is quark content of a hyperon?

• Particle Physics:
what is evidence that gluons are charged, confined particles?

• Quantum Field Theory (for pedestrians):
How strong is strong interaction αs in quark-gluon plasma?

• Cosmology:
when did quark Universe hadronizes – what fixes the time scale!

• Astrophysics: why is not every neutron star a quark star, and
conversely are any quark stars around?
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Statistical Physics Tutorial
Independent quantum (quasi)particles

Ĥ|i〉 = Ei|i〉; [b̂, Ĥ ] = 0; b̂|i, b〉 = b|i, b〉
The grand-canonical partition function, can be written as:

Z ≡
∑

i,b

〈i, b|γe−β(Ĥ−µb̂)|i, b〉 = Tr γ e−β(Ĥ−µb̂) ≡
∑

n

〈n|e−β(Ĥ−µb̂−β−1 ln γ)|n〉.

The trace of a quantum operator is representation-independent; that is, any
complete set of microscopic basis states |n〉 may be used to find the (quantum)
canonical or grand-canonical partition function. This allows us to obtain the
physical properties of quantum gases in the, often useful, approximation that
they consist of independent (quasi)particles, and, eventually, to incorporate any
remaining interactions by means of a perturbative expansion.

Z =
∑

n

e−
∑∞

i=1 niβ(εi−µbi−β−1 ln γ) =
∑

n

∏
i

e−niβ(εi−µbi−β−1 ln γ) =
∏

i

∑
ni=0,1...

e−niβ(εi−µbi−β−1 ln γ).

To show last equality, one considers whether all the terms on the left-hand
side are included on the right hand side, where the sum is not over all the
sets of occupation numbers n, but over all the allowed values of occupation
numbers ni.For fermions (F,) we can have only ni = 0, 1,whereas for bosons (Bs)
ni = 0, 1, . . .,∞. The resulting sums are easily carried out analytically:

lnZF/B = ln
∏

i

(
1± γe−β(εi−µbi)

)±1

= ±
∑

i

ln(1± γλb
ie
−βεi).
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• For antiparticles, the eigenvalue of b̂ is the negative of the particle value, the
fugacity λf̄ for antiparticles λf̄ = λ−1

f . This implies µf = −µf̄.

• level sum
∑

i: If energy is the only controlling factor then we carry out
this summation in terms of the single particle level density σ1(ε, V ). Taking
quantum levels in a box in the limit of infinite volume of the system we find
the phase-space integral: ∑

i

→ g

∫
d3x d3p

(2π)3
.

• Independent particle energy εi =
√

m2
i + ~p 2.



Jan Rafelski, Arizona QGP to Neutrino Zakopane, May 20/21/22, 2012, page 11

lnZF/B(V, β, λ, γ) = ±gV

∫
d3p

(2π)3
[ ln(1± γλe−β

√
p2+m2

) + ln(1± γλ−1e−β
√

p2+m2
)];

Boltzmann limit:

lnZcl(V, β, λ, γ) = gV

∫
d3p

(2π)3
γ(λ + λ−1)e−β

√
p2+m2

. for Fermi and Bose

Single particle phase space occupancy:

wi ≡ n̄i

N
=

e−βEi

∑
j e−βEj

= − 1

β

∂

∂Ei


ln

∑
j

γe−βEj


 = − 1

β

∂

∂Ei
ln Z → 1

γ−1λ−1eβEi ± 1

= ±
∞∑

n=1

(±γλe−βEi
)n → γλe−βEi,

we recognize FERMI, BOSE, BOLTZMANN distributions.
To evaluate a statistical physics property weight a distribution with suitable
factor, for example, energy density results using as the weight single particle
energy; particle density has weight 1 (integral of distribution).
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Classical relativistic gas
Relativistic Boltzmann gas – a useful integral, for ε =

√
m2 + p2 :

W (βm) ≡ β3

∫
e−βεp2 dp = (βm)2K2(βm), → 2, for m→ 0, →

√
πm3

2T 3
e−m/T , for mÀ T

lnZcl ≡ Z(1) =
∑

i

γi(λi + λ−1
i )Z

(1)
i ,

Z
(1)
i = gfV

∫
d3p

(2π)3
e−βε(p)

= gi
β−3V

2π2
W (βmi).
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Statistical and thermal physics relations

βP =
∂ lnZ(V, β, µ)

∂V
, E = −∂ lnZ(V, β, µ)

∂β
,

F(V, T, µ) ≡ EI(S, b)− ST − µb = −P (T, µ)V,

S = − d

dT
F(V, T, µ) =

d

dT
T ln Z̃(V, T, µ) =

dP

dT
|µ

Statistical physics Gibbs–Duham relation

P = Tσ + µν − ε, σ =
S

V
, ν =

b

V
, ε =

E

V
,

is more powerful than the 1st law of thermodynamics:

dE(V, S, b) = −P dV + T dS + µ db, dF = −P dV − S dT − b dµ,
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Quark gas
Fermi gas, with phase space occupancy γ = 1

lnZF = gFV

∫
d3p

(2π)3
[ln(1 + e−β(ε−µ)) + ln(1 + e−β(ε+µ))],

d3p→ 4πp2dp; integrate by parts:

3
T

V
lnZF = gF

β

3

∫
d3p

(2π)3
~p 2

ε

(
1

eβ(ε−µ) + 1
+

1

eβ(ε+µ) + 1

)
.

Substitute the arguments of f and f̄ with x = β(ε± µ):

3
T

V
lnZF =

gF

2π2
T 4

(∫ ∞

β(m−µ)

dx
[(x + µ/T )2 − (m/T )2]3/2

ex + 1
+ (µ→ −µ)

)
.

For m→ 0 [(x± µ/T )2 − (m/T )2]3/2 → (|x± βµ|)3, integrals split to be from ±βµ→ 0

and from 0→∞. The finite-range terms:
∫ 0

−βµ

dx
|x + βµ|3

1 + ex
−

∫ βµ

0

dx
(x− βµ)3

1 + ex
=

∫ βµ

0

dx
(βµ− x)3

1 + e−x
+

∫ βµ

0

dx
(βµ− x)3

1 + ex

=

∫ βµ

0

dx (βµ− x)3 =
(βµ)4

4
,

The reminder evaluated expanding (ex + 1)−1 =
∑∞

n=1 e−nx.

lnZF|m=0 =
7
4gFV β−3π2

90

(
1 +

30

7π2
ln2 λ +

15

7π4
ln4 λ

)
.

Degeneracy: gF = nf2s3c: for each flavor of quarks (u, d, s, c, b, t) we have 2-spins,

3-colors, so gu,d,s = 6, keep in mind the doubling due to particle-antiparticle

symmetry and factor 7/8 compared to Bosons which produces coefficient 7/4.
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Relativistic Boson Gas
Relativistic Bose gas, e.g. photon, gluons, pions: We expand:

f (ε) =
1

γ−1eβε − 1
=

∞∑
n=1

γne−nβε, γ < eβm.

or for the partition function

lnZ = −gV

∫
dp3

(2π)3
ln(1− γe−βε) =

gV

2π2

∫ ∞

0

dpp2
∞∑

n=1

γn

n
e−nβε, γ < eβm,ε≥m.

Exchange integral and sum! As we see, each term in the sum differs by β → nβ

and all we have to do it so make sure that we have the right power of 1/n in the

final expression from substitution:

lnZ =
gV T 3

2π2

∞∑
n=1

γn

n4

∫ ∞

0

dx x2e−
√

(nm/T )2+x2
=

gV T 3

2π2

∞∑
n=1

γn

n4
(nβm)2K2(nβm)→ gT 4

π2

∞∑
n=1

1

n4

For last limit recall Riemann zeta function to recognize the Stefan-Boltzmann

law:

ζ(k) =

∞∑
n=1

1

nk
, ζ(2) =

π2

6
, ζ(3) ' 1.202, ζ(4) =

π4

90
. /→ gT 4π2

90
.

For a Fermi occupation function, the signs of the terms in the sums are alter-

nating, which leads to the eta function, and the factor 7/8 reduction in Fermi

degrees of freedom compared to Bosons

η(k) =

∞∑
n=1

(−1)n−1 1

nk
= (1− 21−k)ζ(k), η(3) =

3

4
ζ(3) = 0.901 5, η(4) =

7

8
ζ(4) =

7

720
π4.
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QCD PERTURBATIVE EFFECTS
An essential pre-requirement for the perturbative QCD theory to be applicable
in ‘soft’ quark domain of interest to us, is the relatively small experimental value
αs(MZ) ' 0.118. that is αs(MZ)/π = 0.0376 (note that here µ is scale of energy NOT
chemical potential)

α
(4)
s (µ) as function of energy scale µ for a variety of initial conditions. Solid line:

αs(MZ) = 0.1182 (experimental point, includes the error bar at µ = MZ). Result of
integration of renormalization group equation (RGE).

µ
∂αs

∂µ
= −b0α

2
s − b1α

3
s + . . . ≡ βpert

2 , b0 =
11− 2nf/3

2π
, b1 =

51− 19nf/3

4π2
.

Λ0: integration constant when solving the lowest order RGE:

1

−b0αs
=

∫
dµ

µ
, αs =

1

b0 ln(µ/Λ0)
fixed by Λ0|µ = µ exp

(
− 1

b0αs(µ)

)
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.

Λ0|µ = µ exp
(
− 1

b0αs(µ)

)
Λ0|µ = µ exp

(
− 1

b0αs(µ)

)

µ
∂α

∂µ
≡ β(αs) βpert = −α2

s

[
b0 + b1αs + b2α

2
s + · · · ]

− µ

m

∂m

∂µ
≡ γ(αs), γpert

m = αs

[
w0 + w1αs + w2α

2
s + · · · ]
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QCD perturbative interaction
Evaluation in thermal field theory of the Feynman diagrams in order αs shows

that on average QCD perturbative interaction reduce is ATTRACTIVE and

some of the many degrees of freedom ‘freeze’. This result is upheld in all orders

when this study is done on the lattice. Feynman diagrams contributing are of

the type:

1

2
-

1

2
-

12
+

1

8

1

Wavy lines represent gluons, solid lines represent quarks, and dashed lines denote

the ghost subtractions of non-physical degrees of freedom. Full discussion beyond

scope of this lecture.
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Perturbative QCD and QGP

T

V
lnZQGP =−B+

8

45π2
c1(πT )4 +

∑

i=u,d,s

ni

15π2

[
7

4
c2(πT )4 +

15

2
c3

(
µ2

i (πT )2 +
1

2
µ4

i

)]

c1 = 1− 15αs

4π
, c2 = 1− 50αs

21π
, c3 = 1− 2αs

π
.

We recall that µb = 3µq and λq = eµq/T . The temperature dependence αs(T ) is

estimated to be µ = 2πT that is use αs(2πT ) with lowest order perturbative

correction, which works well. At finite chemical potential µ = 2
√

(πT )2 + µ2
q =

2πT
√

1 + 1
π2 ln2 λq . A convenient way to obtain entropy and baryon density uses

the thermodynamic potential F :

F(T, µq, V )

V
= −T

V
lnZ(β, λq, V )QGP = −PQGP .

The entropy density is:

sQGP = − dF
V dT

=
32π2

45
c1T

3 +
nf7π

2

15
c2T

3 + nfc3µ
2
qT + A

π2T

π2T 2 + µ2
q

.

Noting that baryon density is 1/3 of quark density, we have:

ρB = −1

3

dF
V dµq

=
nf

3
c3

{
µqT

2 +
1

π2
µ3

q

}
+

1

3
A

µq

π2T 2 + µ2
q

.

A = Ag + Aq + As; Ag = (b0α
2
s + b1α

3
s)

2π

3
T 4

Ai=q,s = (b0α
2
s + b1α

3
s)

[
ni5π

18
T 4 +

ni

π

{
µ2

i T
2 +

1

2π2
µ4

i

}]
.
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Other way: massive quasi-particles

Thermal masses fitted to reproduce Lattice-QCD results
Thick solid line for quarks, and thick dashed line for gluons. Thin
lines, perturbative QCD masses for αs(µ = 2πT ).

(mT
q )2 =

4π

3
αsT

2 , (mT
g ) 2 = 2παsT

2
(
1 +

nf

6

)
,

The thermal masses required to describe the reduction of the num-
ber of degrees of freedom for T > 2Tc are outside of the range of the
vacuum structure influence (B) the perturbative QCD result. This
means that thermal masses express, in a different way, the effect of
perturbative QCD
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Next: Hadron Gas Phase
We can use the methods we proposed for quarks and gluons to

describe the gas of pions, nucleons and the rest – to be precise –

many thousand hadronic particles. Hadron Gas phase. A topic in

itself, so I will just glance at it and its properties.

bla

This was research area of intense interest before we understood

the world of quarks, gluons and confinement.

Hadron gas is a phase of hot matter in which we have not only a

few degrees of freedom but many particles, following Hagedorn we

must take all including resonances.

Abundance of particles decreases as e−m/T but how many parti-

cles are there at mass m? Hagedorn: exponentially many so that

ρ(m)e−m/T controlled by power law.

Theoretical models were developed to evaluate ρ but it seems

more appropriate to simply work with what we “see”.
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Hot Hadron Tutorial: Limiting Hagedorn Temperature
A gas of hadrons with exponentially rising mass spectrum:

lnZcl
HG = cV

(
T

2π

)3/2∫ ∞

M

maem/THm3/2e−m/T dm + D(T, M),

Cutoff M > ma > TH is arbitrary, its role is to separate off D(T, M) <∞. Because

of the exponential factor, the first integral can be divergent for T > TH, and the

partition function is singular for T → TH for a range of a:

P (T )→





(
1

T
− 1

TH

)−(a+5/2)

, for a > −5
2,

ln

(
1

T
− 1

TH

)
, for a = −5

2,

constant, for a < −5
2;

ε→





(
1

T
− 1

TH

)−(a+7/2)

, for a > −7
2,

ln

(
1

T
− 1

TH

)
, for a = −7

2,

constant, for a < −7
2.

The energy density ε goes to infinity for a ≥ −7
2, when T → TH.

Mass spectrum slope TH appears as the limiting Hagedorn temperature beyond

which we cannot heat a system which can have an infinite energy density. The

partition function can be singular even when V <∞.
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Exponential Hadron Mass Spectrum
RH discovered that the exponential growth of the hadronic mass spectrum could

lead to an understanding of the limiting hadron temperature TH ' 160 MeV,

The solid line is the fit:

ρ(m) ≈ c(m2
a + m2)a/2 exp(m/TH)

with a = −3, ma = 0.66 GeV, TH = 0.158 GeV.
Long-dashed line: 1411 states of 1967.
Short-dashed line: 4627 states of 1996.

Experimental lines include Gaussian smoothing:

ρ(m) =
∑

m∗=mπ,mρ,...

gm∗√
2πσm∗

exp

(
−(m−m∗)2

2σ2
m∗

)
.

σ = Γ/2, Γ = O(200) MeV is the assumed width of the

resonance, excluding the ‘stable’ pion, a special case.

Note the missing resonances at m > 1.4GeV .
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Equilibrium – Phase Transition Tutorial

V 1 V 2

1P   = P
2

2

V

QGP

HG

b = const.

T = const.P

1

The P–V diagram for the QGP–HG sys-
tem, shown at fixed temperature and baryon
number; dashed lines indicate unstable
domains of overheated and undercooled
phases. Darkened area: Maxwell construc-
tion, connecting the volumes V1 = b/ρ1 and
V2 = b/ρ2, such that work done along the
metastable branches vanishes:

∫ V2

V1

(P − P12) dV = 0.

Construction can be repeated for different
values of b and T , the set of resulting points 1
and 2 forms then two phase-boundary lines.

Between V1 and V2 is the mixed phase comprising a mixture of
hadrons and drops of QGP. Was such a phase formed in early Uni-
verse?
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Hagedorn Temperature is:

1. The intrinsic temperature at which hadronic particles are formed, in pp in-
teractions seen as the inverse slope of hadron spectra.

2. This boiling point of hadrons which is the (inverse) slope of exponentially
rising hadron mass spectrum.

3. The boundary value of temperature at which finite size hadrons coalesces
into one cluster consisting of a new phase comprising hadron constituents.

Statistical Bootstrap Model is:

1. A connection between hadronic particle momentum distribution and prop-
erties of hadronic interactions dominated by resonant scattering, and expo-
nentially rising mass spectrum.

2. A theoretical framework for study of the properties of the equations of state
of dense and hot baryonic matter (nuclear matter at finite temperature).

3. It is not a fundamental dynamical theory, in fact Statistical Bootstrap Model
(SBM) is to be motivated today in terms of properties of the fundamental
dynamical approach (QCD).
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Finite Volume Hadron Gas Model
The gas of finite size hadrons with exponential mass spectrum has nearly the
same properties as a gas of point hadrons with today experimentally observed
mass spectrum. That is why ‘statistical hadronization works’.

Point hadron gas in free available volume ∆ to have the properties of
finite size hadron gas in total mean volume 〈V 〉 (RH/JR 1978+)

lnZpt(T, ∆, λ) ≡ lnZ(T, 〈V 〉, λ)

Proper particle volume in the rest frame
is assumed to be proportional to mass.
For a gas of moving hadrons, in gas rest
frame: 〈V 〉 = ∆ + 〈E〉/4B.

〈E〉 = 〈V 〉ε(β, λ) = − ∂

∂β
lnZ(β, 〈V 〉, λ) =

=− ∂

∂β
lnZpt(β, ∆, λ) = ∆εpt(β, λ)

〈V 〉 = ∆
(
1 + εpt(β, λ)/4B)

,

〈E〉
〈V 〉 ≡ ε(β, λ) =

εpt(β, λ)

1 + εpt(β, λ)/(4B)
,

P =
Ppt(β, λ)

1 + εpt(β, λ)/4B .
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Inertia to Force Ratio
For study of flow of matter one of most relevant quantities is the
rigidity of the matter. Hadrons are heavy thus their pressure is
less, hence unlike for relativistic matter, ε/P > 3 But there is a
‘soft’ point.

The energy density
over pressure for a
hadronic gas with
statistical parameters
λs = 1.1 and γs/γq = 0.8,
with λq = 1 to 2 in
steps of 0.2 from
bottom to top and
γq = 1 (dashed lines),
or γq = emπ/(2T ) (full
lines).

Hadronic gas flows
very different from
quark-gluon plasma.
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Phase boundary

Solid: point hadrons Tp

Dashed: finite size

Dotted: Tc(µb)|Peff−B=0 for

v2 = 0, 1/10, 1/6, 1/5, 1/4, 1/3 .

Thick solid: breakup with
v = 0.54 (κ = 0.6)
PRL 85 (2000) 4695

DEEP SUPERCOOLING
by 20 MeV

⇐ point hadrons

⇐ finite size hadrons

vc = 0.54 →

⇐====

← P = 0

↑ TH

TH = 158 MeV Hagedorn temperature where P = 0, no hadron P
Tf ' 0.9TH ' 143 MeV is where supercooled QGP fireball breaks up
equilibrium phase transformation is at ' 166.
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From QGP to Hadrons: Statistical Hadronization Model
= recombinant quark hadronization, main consequence: enhancement of flavored
(strange, charm, bottom) antibaryons progressing with ‘exotic’ flavor content.
Anomalous meson to baryon relative yields. Proposed 25 years ago, see review
See: P. Koch, B. Muller and J. Rafelski, Strangeness In Relativistic Heavy Ion Colli-
sions, Phys. Rept. 142, 167 (1986), and references therein.
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1. GG→ ss̄ (thermal gluons collide)

GG→ cc̄ (initial parton collision)

GG→ bb̄ (initial parton collision)

gluon dominated reactions

2. RECOMBINATIONof pre-formed

s, s̄, c, c̄, b, b̄ quarks

Formation of complex rarely produced
multi flavor (exotic) (anti)particles
enabled by coalescence between
s, s̄, c, c̄, b, b̄ quarks made in different
microscopic reactions; this is signature
of quark mobility and independent
action, thus of deconfinement. More-
over, strangeness enhancement =
gluon mobility.
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SHM is FERMI MODEL with QUARK CHEMISTRY
If QGP near/at chemical equilibrium prior to fast hadronization we expect that
emerging hadron multiplicities to be governed by parameters of ABSOLUTE
chemical non-equilibrium described by phase space occupancy γ; Boltzmann
gas: γ ≡ ρ(T,µ)

ρeq(T,µ)

DISTINGUISH: hadron ‘h’ phase space and QGP phase parameters: micro-canonical variables

such as baryon number, strangeness, charm, bottom, etc flavors are continuous, and entropy is

almost continuous across phase boundary:

γQGP
s ρQGP

eq V QGP = γh
s ρh

eqV
h

Equilibrium distributions are different in two phases and hence are densities:

ρQGP
eq =

∫
fQGP

eq (p)dp 6= ρh
eq =

∫
fh

eq(p)dp

Another RELATIVE equilibrium: FOUR QUARKS: s, s, q, q → FOUR CHEMICAL PARAMETERS

γi controls overall abundance Absolute chemical HG production

of quark (i = q, s) pairs equilibrium

λi =eµi/Tcontrols difference between Relative chemical HG exchange

strange and light quarks (i = q, s) equilibrium

See Physics Reports 1986 Koch, Müller, JR
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Example of counting hadronic particles
The counting of hadrons is conveniently done by counting the va-
lence quark content (u, d, s, . . . λ2

q = λuλd, λI3 = λu/λd) :

Υi ≡ Πiγ
ni
i λki

i = eσi/T ; λq ≡ e
µq
T = e

µb
3T , λs ≡ e

µs
T = e

[µb/3−µS ]
T

Example of NUCLEONS γN = γ3
q :

ΥN = γNe
µb
T , ΥN = γNe

−µb
T ;

σN ≡ µb + T ln γN , σN ≡ −µb + T ln γN

Meaning of parameters from e.g. the first law of thermodynamics:

dE + P dV − T dS = σN dN + σN dN

= µb(dN − dN) + T ln γN(dN + dN).

NOTE: For γN → 1 the pair terms vanishes, the µb term remains, it
costs dE = µB to add to baryon number.


