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Addendum ||

o The main concern are applications of very large and
complex computer codes by essentially untrained users

O There exist now a large number of such codes in public
domain

O Those are frequently presented (for marketing
purposes) as very stable, well-documented, proven and
easy-to-use science application tools

O Large database of users is meant to offer evidence to
the sponsor justifying continued funding

O ltis crucial that those codes are not used blindly

May 22, 2012



Addendum I
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Consistent discretization

For the consistent discretization, the truncation error goes to zero
with increased mesh resolution for all sufficiently smooth solutions.

Stable discrete scheme

The scheme is stable in the norm and for a given refinement path if
there exists a constant K such that for two solutions obtained from
different initial data,

e

<K

and K is independent of initial states and of refinement path
stepping.

Convergent approximation

The discrete solution is said to provide a convergent approximation

in a certain norm if in that norm the discrete solution approaches
exact solution as the mesh resolution increases.



Lax Equivalence Theorem

If a linear PDE has been approximated by a consistent
discretization method, then the discrete solution is
convergent if and only if the method is stable.

Convergence = consistency + stability

o If the LET applies but no convergence is observed then
either

1. The algorithm is unstable, or
2. ltis inconsistent, or
3. (for codes) implementation is wrong

May 22, 2012



The Method of Manufactured Exact Solutions

GT:LV-K’VT

t pCp
D)= pC,0u—V- -xVu

Given
O a manufactured function u representing the exact solution, and
O a differential operator D
Find
the corresponding source term g such that

g =D(u)

That is, first we define the solution, then we calculate the
corresponding source term and examine the result of the modified
operator (residuals).
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Observational Evidence of Mixing

speckle interferometry (imaging)

Niesenson & Papaliolios (1999)
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ejecta tomography (spectroscopy)

o——n Ca

———-m M

o gHe
[ -2 H
11 11 r L L1 L I 1 Ll 1 I 1L 1 1 I 1 Ll i |
25 3.0 is 4.0 4.5 50
Log v/km gl
Hanuschik et al. (1991)
0.m47
1238 2 509 2250
“u!._|||TT1|'|r1]r1r1|r| TTTTITrrTrorr]
n :._ Augusi 1 1987 through Way 28 19688 ]
:';-, {,g: Source Live-time = 3.3 x 10" sec ]
= L .
u M4r 3
w - —.
m - —
E o2 -1
g C .
5 o | 1T e
-r.]z";]ll_;J_nnnl |||.||J|J||IIJ|III:I|J

0.5 1.0 1.5 3.0 3.5

Wang et al. (2002)

Encrg}r {Me“u”}
gamma rays (SpeCtrOSCOpy) #

Leising & Share (1990)

13



Our Stellar Neighbours

Type |l

Massive
Single
H-rich

White Dwarfs
m < 1.4 Msun
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Supernovae From Single Stars
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Computations in Stellar Evolution

May 22, 2012

© O 0O O

0,U+VF(U)=S(U)
V*® =47Gp
PDEs of every possible type
ODEs frequently stiff

complex equation of state (first closure relation)
strongly coupled
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Internal Structure of Stars

May 22, 2012

evolved massive star

‘Chromosphere

solar-type star
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Core-Collapse SN Explosion Theory

O O O O O

May 22, 2012

Massive stars
Gravity bombs
Energy extracted by neutrinos

Accretion shock originally too weak
Revived by neutrino heating of the post-shock matter

Once the shock is launched...

We used a computational method for explicit hydrodynamics and implicit radiative
transfer very similar to that of Christy (1964). The opacity corresponded to a Popu-
lation I composition. A strong shock wave propagates outward through an envelope
of some assumed density structure, transporting energy mechanically outward until
encountering regions where photon diffusion dominates the energy transfer. The
explosion energy was adjusted to give interesting results.

Falk & Arnett (1973)
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Standing Accretion Shock Instability

1,000 km

10,000 km
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1,000 km 1,000 km

1,000 km 10,000 km 1,000 km

Janka et al. (2006)
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ccSN Shock Revival in 3D

Princeton

MPA

May 22, 2012 20



Origins of the ccSN RT Mixing

o Time-dependent deceleration of dense layers due to unsteady
supernova shock motion though the progenitor envelope
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Accelerating material interface

O Column of air can easily ; 55
support a thin flat layer of
water (actually layers up to S e e
10 meters thick!) U fger i

O However, in reality the s

P ———waler ce————=y

interface will not be perfectly RO
flat but slightly perturbed

o Water will “leak” down in [ eor T
form of spikes and be
replaced with air bubbles

JWM//////

Sharp (1984)
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Local interface dynamics

O Presence of small ripples translates into
variable pressure support along the interface

o Parcels of fluid lying higher than average will
experience higher pressure than needed to
support them

O They will start rising pushing aside neighboring
fluid elements

O The opposite applies to elements lying lower
than average height: these will not have the
sufficient support and will fall down

May 22, 2012
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Rayleigh-Taylor instability

O Heavy fluid pushing against lighter fluid
(bubble of rising ashes)

o Growth in time is exponential.

Proressor Apam Burrows
[REFARTMENT OF AsTRONCMY, Kl 136

O There exists the most unstable mode.

Livescu et al. Cabot & Cook (2006)

May 22, 2012

A. Burrows

US DOE
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Richtmyer-Meshkov instability

o RMI is similar to RTI but involves

May 22, 2012

Impulsive acceleration. Growth in
time is linear. There exists the
most unstable mode.

I b b
bbb bl

Jacobs & Krivets (2005)

Rightley et al. (1996)
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Kelvin-Helmholtz instability

O The interface between two fluids is
unstable if there is a jump in the
tangential component of the
velocity across the interface. All
wavelengths are unstable.

Denver, CO

26
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Combined RTI & RMI

O Passage of a laser-driven shock initially leads
to RMI

O Rarefaction follows leading to a long-term
deceleration of the interface and RTI growth

Tube Wall 8
Drive Beams -

sop I Bl
?uan 1200 1400 1600 1800
Target Coord. X (um)
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Importance/Examples E ..

10keV - p (mfem®)

Atzeni et al. (2005)

O Inertial Confinement Fusion (RMI+RTI)
O Electromagnetic implosions (RTI)

O Core-collapse supernovae (RMI+RTI)
o Thermonuclear supernovae (RTI)

O Exhibits transition to turbulence

Omega/LLE Rochester Z Machine/SNL

May 22, 2012 28



Inertial Confinement Fusion
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Single mode RTIl in 2D
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Magnetized RTI Model

negligible field: modest field:
beta=250,000 beta=2,500

005 010 0,15 0.20 005 0,10 015 0.20
X-Axis X-Axis

See also early work by Jun, Norman, & Stone (1995).

May 22, 2012 31



Multimode RTI in 3D

32
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RTI mixing layer growth

O This yields the famous “alpha”:
h(t= adgt® +2(adgh,) + h,

o Usually only the leading term is retained

1/2
ah, | 2  h,
Ag t Agt’

May 22, 2012
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Complex Post-Explosion ccSN Dynamics

Kelvin-Helmholtz Leading Shock Front

Rayleigh-Taylor

Rayleigh-Taylor

Reverse Shock

nirdileRxloleNslel Kelvin-Helmholtz




Model Validation: How Much °°Ni? How Fast?

ejecta tomography (spectroscopy)

m Following SN 1987A observations, °°Ni distribution
evolution is one of the primary model evaluation criteria
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Supernovae Do Not Love Us Back!

o Theory ultimately insufficient...®
o Computations not terribly successful... ®®
O Experiments...? :-\

May 22, 2012
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Experiments

¢ Heavy ion and particle accelerators (RHIC, RIA...)

¢ Fluid dynamics and plasma experiments (stellar
formation and collapse, jets)

e High-Energy Density Physics experiments
(U.S., France, UK, Japan, China, EU)

B Nuclear plasma physics

Dark-energy related astronomical missions:
SDSS, SNLS, SN Factory, ESSENCE, HST... 47
LSST, Pan-STARRS, South Pole Telescope, GSMT... [l
JDEM (20147?), Constellation-X '
JWST (201x)

May 22, 2012 37



HED Laboratory Astrophysics

¢ High Energy Density: pressure > 1 Mbar (100 Mbar in IFC), energies
> 10" J/m3or > 102 erg/cm?, temperatures > 5x10° K or > 400 eV

Quark-Gluon
e "-;"G-llri
Hat Neutron
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. Gamma
-~ RayBusts = 44
X 5
& Cold Maufron
5 1 GBar Star
et
E P [tolal) = 1 MBar = Whits
8 . \
& i 8
| y HEDLA
A S
radhydro| | “. <

Délnslty [cm"i

Davidson et al. (2004)
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National Ignition Facility (NIF)

o 2MJ =400 Twatts = 500 W per 24 hr = food for 10,000
men for 1 year = energy of a 1 tonne car at 100 mph

May 22, 2012
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High-Energy Density Physics References

Connecting Quarks with the Cosmos (NRC 2002)

High Energy Density Physics: The X-Games of Contemporary
Science (NRC 2003)

The Physics of the Universe (NSTC 2004)

Frontiers for Discovery in High Energy Density Physics (OSTP
2004)

Report of the Dark Energy Task Force (DOE/NASA/NSF 2006)

May 22, 2012
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High Energy Density Physics textbook

o Drake, R. P. High-Energy
Density Physics —
Fundamentals, Inertial
Fusion, and Experimental
Astrophysics (Springer)

May 22, 2012

K Wav EA
Hm P RESSU Pm: OMENA

R.P. Drake
High-Energy-
Density Physics

Fundamentals,

Inertial Fusion,

and Experimental
Astrophysics

@ Springer
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