# The Determination of Spectral Functions from Lattice QCD

Attila Pásztor <sup>1</sup> apasztor@bodri.elte.hu In collaboriation with S. Borsányi<sup>2</sup> S. Dürr<sup>23</sup> Z. Fodor<sup>123</sup> C. Hoelbling<sup>2</sup> S. D. Katz<sup>1</sup> S. Krieg<sup>23</sup> D. Nógrádi<sup>1</sup> B. C. Tóth<sup>2</sup> N. Trombitás<sup>1</sup> K. K. Szabó<sup>2</sup>

 $^{1}$ Eötvös University

 $^{2}$ University of Wuppertal

<sup>3</sup>Jülich Supercomputing Center

52<sup>nd</sup> Cracow Summer School on Theoretical Physics, 2012

### Outline of the talk

- Definition of the SPF, what is it good for?
- The Maximum Entropy Method
- Demonstration of the method with mock data analysis
- Preliminary results on  ${\rm J}/\Psi$  (Work in progress)

### Brief definitions

Hadronic current operators

$$J_H(\vec{x}, t) = \bar{q}(\vec{x}, t)\Gamma_i q(\vec{x}, t)$$
  
$$\Gamma_H = 1, \gamma_5, \gamma_\mu, \gamma_\mu \gamma_5 \text{ for } \mathbf{H} = \mathbf{S}, \mathbf{P}, \mathbf{V}, \mathbf{A}$$

### Hadronic point-point correlators

$$D_{H}^{>}(x_{0},\vec{x}) = \left\langle J_{H}(x_{0},\vec{x})J_{H}(0,\vec{0})\right\rangle , x_{0} > 0$$
$$D_{H}^{<}(x_{0},\vec{x}) = \left\langle J_{H}(0,\vec{0})J_{H}(x_{0},\vec{x})\right\rangle , x_{0} > 0$$
$$G(\tau,\vec{p}) = D_{H}^{>}(-i\tau,\vec{x}) = \int d^{3}x e^{ipx} \left\langle T_{\tau}J_{H}(-i\tau,\vec{x})J_{H}(0,\vec{0})\right\rangle$$

 $G(\tau, \vec{p})$  can be calculated on the lattice.

# Brief definitions

### Spectral function

Imaginary part of the Fourier-transform of the real time retarded correlator.

$$A_{H}(\omega) = \frac{1}{\pi} \text{Im} D_{\text{H}}^{\text{R}}(\mathbf{p}_{0}, \tilde{\mathbf{p}}) = \frac{1}{2\pi} \left( D_{\text{H}}^{>}(\mathbf{p}_{0}, \tilde{\mathbf{p}}) - D_{\text{H}}^{<}(\mathbf{p}_{0}, \tilde{\mathbf{p}}) \right)$$
$$D_{H}^{>(<)}(p_{0}, \vec{p}) = \int \frac{d^{4}p}{(2\pi)^{4}} e^{ipx} D_{H}^{>(<)}(x_{0}, \vec{x})$$

### Kubo-Martin-Schwinger condition

At temperature T, the correlators satisfy:

$$D_H^>(x_0, \vec{x}) = D_H^>(x_0 + i/T, \vec{x})$$

#### Contributions from different states

Inserting a complete set of states and using the KMS condition:

$$A(p_0, \vec{p}) = \frac{(2\pi)^2}{Z} \sum_{m,n} \left( e^{-E_n/T} \pm e^{-E_m/T} \right) \times |\langle n|J_H(0)|m\rangle|^2 \,\delta^{(4)}(p_\mu - k_\mu^n + k_\mu^m)$$

- A stable state gives a  $\delta\text{-function}$  like peak contribution.
- A quasi-particle in matter gives a smeared peak.

# What is the spectral function good for?

#### It is accessible by experiments

E.g. if  $J = \frac{2}{3}\bar{u}\gamma_{\mu}u - \frac{1}{3}\bar{d}\gamma_{\mu}d - \frac{1}{3}\bar{s}\gamma_{\mu}s + \dots$  is the EM current:

- The standard R-ratio in  $e^+e^-$  annihilation experiments is proportional to the SPF at T = 0.
- The differential thermal cross-section for the production of dilepton pairs in heavy ion experiments is proportional to the SPF at  $T \neq 0$ .

#### Kubo-formulas

Transport coefficients are given by the low frequency limit. E.g. if J is the EM current, than the electric conductivity is:

$$\frac{\sigma}{T} = \lim_{\omega \to 0} \frac{A(\omega)}{6\omega T}$$

Relation to the Euclidean time correlator

$$G(\tau, \vec{p}) = \int_0^\infty d\omega A(\omega, \vec{p}) K(\omega, \tau)$$
$$K(\omega, \tau) = \frac{\cosh(\omega(\tau - 1/2T))}{\sinh(\omega/2T)}$$

#### Regularizing

This inversion is ill-defined. To get a unique answer one has to regularize. A commonly used regularization scheme is the Maximum Entropy Method.

# The Maximum Entropy Method

### The method in a nutshell We maximize

$$Q = \alpha S - \frac{1}{2}\chi^2$$
$$S = \int d\omega \left( A(\omega) - m(\omega) - A(\omega) \log \left( \frac{A(\omega)}{m(\omega)} \right) \right)$$
$$\chi^2 = \sum_{i,j} (G_i^{\text{fit}} - G_i^{\text{data}}) C_{ij}^{-1} (G_j^{\text{fit}} - G_j^{\text{data}})$$

where C is the covariance matrix of the data and  $m(\omega)$  is a function, summarizing our prior knowledge of the solution. Then we average over  $\alpha$ . The conditional probability  $P[\alpha|\text{data}, m]$  is given by Bayes' theorem.

# Practical implementation

#### Discretization

$$\omega_i = i\delta\omega \quad (i = 1...N_{\omega})$$
  
$$\tau_i = ia_t \quad (i = 1...N_{data})$$

#### Subspace

It can be shown, that the maximum in the  $N_{\omega}$  dimensional space lies in an  $N_{data}$  dimensional subspace, that can be parametrized as:

$$A(\omega) = m(\omega) \exp\left(\sum_{i=1}^{N_{data}} s_i f_i(\omega)\right)$$

Two choice for basis functions: Bryan (Eur. Biophys J. 18, 165 (1990)) or Jakovác et al (Phys.Rev. D75 014506 (2007), arXiv:0611017)

#### Four choices

$$\begin{split} m(\omega) &= m_0 & \text{We know nothing} \\ m(\omega) &= m_0 \omega^2 & \text{Motivated by PT, we use this for know} \\ m(\omega) &= m_0 \omega & \text{Kubo - formula} \\ m(\omega) &= m_0 \omega (b+\omega) & \text{Kubo + PT} \end{split}$$

#### Strategy

- Write down an input spectral function  $A_{in}$
- Generate correlators by integrating

$$G(\tau) = \int K(\tau, \omega) A_{in}(\omega) d\omega$$

- Generate mock data by adding gaussian noise with variance  $\sigma(\tau) = \eta \cdot \tau \cdot G_{mock}(\tau)$ .
- Reconstruct spectral function with MEM.

### How many data points are enough?



# Sensitivity on the prior function



## Individual resolution of many peaks



#### Lessons learned

- MEM gives the correct qualitative features of the spectral function, but it is not a precise quantitative method.
- The peak positions agree well with the input, the shapes do not
- As long as the data points are not too noisy, O(10) point are enough for reconstruction.
- Features that remain unchanged by varying the prior are restricted by the data.
- Higher excitations can be merged into one broader peak.

# Analysis with lattice QCD data

#### Lattice details

Gauge action = Symanzik tree-level improved gauge action Fermion action = 2+1 dynamical Wilson fermions with 6 step stout smearing ( $\rho = 0.11$ ) and tree-level clover improvement

| $a[\mathrm{fm}]$ | $am_{ud}$ | $am_s$ | $m_{\pi}$          | $N_s$ | $N_t$ | $T = \frac{1}{N_t a}$    |
|------------------|-----------|--------|--------------------|-------|-------|--------------------------|
| 0.057(1)         | -0.00336  | 0.0050 | $545 \mathrm{MeV}$ | 64    | 64    | $\approx 0 \mathrm{MeV}$ |
| 0.057(1)         | -0.00336  | 0.0050 | $545 \mathrm{MeV}$ | 64    | 28    | $123 \mathrm{MeV}$       |
| 0.057(1)         | -0.00336  | 0.0050 | $545 \mathrm{MeV}$ | 64    | 20    | $173 \mathrm{MeV}$       |
| 0.057(1)         | -0.00336  | 0.0050 | $545 \mathrm{MeV}$ | 64    | 18    | $192 \mathrm{MeV}$       |
| 0.057(1)         | -0.00336  | 0.0050 | $545 \mathrm{MeV}$ | 64    | 16    | $216 \mathrm{MeV}$       |
| 0.057(1)         | -0.00336  | 0.0050 | $545 \mathrm{MeV}$ | 64    | 14    | $247 \mathrm{MeV}$       |
| 0.057(1)         | -0.00336  | 0.0050 | $545 \mathrm{MeV}$ | 64    | 12    | $288 \mathrm{MeV}$       |

#### Quenched approximation

In our simulation, u,d, and s quarks, are dynamical, but c quarks are not. They are in the quenched approximation. There are no internal charm quark loops, they are only at tree level.

#### Mass tuning

We had  $m_s$  and  $m_{ud}$  already tuned (Science 322 (2008) 1224-1227, arXiv:0906.3599) We adopted  $m_c = 0.3022$ , chosen so that the ratios of the masses of  $D_s$  and  $\varphi$  mesons are physical.

#### Expectations of heavy ion physicists

- At sufficiently high temperature, QCD undergoes a transition to a deconfined phase.
- Unlike light mesons, heavy mesons like  $J/\Psi$  may survive in the hot medium up to higher temperatures, before dissociating because of colour screening, and collisions within the medium.
- Their supression may be a good experimental signal on the formation of QGP.

Original paper on the idea: T. Matsui, H. Satz, Phys. Lett. B178, 416 (1986).

## Cold lattice, prior function sensitivity



## Hot lattice, prior function sensitivity



## Temperature dependence



### $J/\Psi$ mass as a function of temperature



#### What's next?

- Doing the same analysis for  $\eta_c, D_s, \dots$  mesons
- Doing the same analysis for bottonium states
- Checking the conclusions on the first peak by doing the same analysis with smeared operators
- Determining the masses of the first two-three states by diagonalizing cross-correlators
- Determining transport coefficients by looking at the  $\omega \to 0$  limit
- Error bars!
- Continuum extrapolation?
- Anisotropic lattice calculations with dynamical light quarks