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Outline of the talk

Outline of the talk

Definition of the SPF, what is it good for?

The Maximum Entropy Method

Demonstration of the method with mock data analysis

Preliminary results on J/Ψ (Work in progress)
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Brief definitions

Hadronic current operators

JH(~x, t) = q̄(~x, t)Γiq(~x, t)

ΓH = 1, γ5, γµ, γµγ5 for H = S,P,V,A

Hadronic point-point correlators

D>
H(x0, ~x) =

〈
JH(x0, ~x)JH(0,~0)

〉
, x0 > 0

D<
H(x0, ~x) =

〈
JH(0,~0)JH(x0, ~x)

〉
, x0 > 0

G(τ, ~p) = D>
H(−iτ, ~x) =

∫
d3xeipx

〈
TτJH(−iτ, ~x)JH(0,~0)

〉
G(τ, ~p) can be calculated on the lattice.
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Brief definitions

Spectral function

Imaginary part of the Fourier-transform of the real time retarded
correlator.

AH(ω) =
1

π
ImDR

H(p0, p̃) =
1

2π

(
D>

H(p0, p̃)−D<
H(p0, p̃)

)
D
>(<)
H (p0, ~p) =

∫
d4p

(2π)4
eipxD

>(<)
H (x0, ~x)

Kubo-Martin-Schwinger condition

At temperature T, the correlators satisfy:

D>
H(x0, ~x) = D>

H(x0 + i/T, ~x)
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What is the spectral function good for?

Contributions from different states

Inserting a complete set of states and using the KMS condition:

A(p0, ~p) =
(2π)2

Z

∑
m,n

(
e−En/T ± e−Em/T

)
×

|〈n|JH(0)|m〉|2 δ(4)(pµ − knµ + kmµ )

A stable state gives a δ-function like peak contribution.

A quasi-particle in matter gives a smeared peak.
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What is the spectral function good for?

It is accessible by experiments

E.g. if J = 2
3 ūγµu−

1
3 d̄γµd−

1
3 s̄γµs+ ... is the EM current:

The standard R-ratio in e+e− annihilation experiments is
proportional to the SPF at T = 0.

The differential thermal cross-section for the production of
dilepton pairs in heavy ion experiments is proportional to the SPF
at T 6= 0.

Kubo-formulas

Transport coefficients are given by the low frequency limit. E.g. if J is
the EM current, than the electric conductivity is:

σ

T
= lim

ω→0

A(ω)

6ωT
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Determining the spectral function

Relation to the Euclidean time correlator

G(τ, ~p) =

∫ ∞
0

dωA(ω, ~p)K(ω, τ)

K(ω, τ) =
cosh(ω(τ − 1/2T ))

sinh(ω/2T )

Regularizing

This inversion is ill-defined. To get a unique answer one has to
regularize. A commonly used regularization scheme is the Maximum
Entropy Method.
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The Maximum Entropy Method

The method in a nutshell

We maximize

Q = αS − 1

2
χ2

S =

∫
dω

(
A(ω)−m(ω)−A(ω) log

(
A(ω)

m(ω)

))
χ2 =

∑
i,j

(Gfit
i −Gdata

i )C−1
ij (Gfit

j −Gdata
j )

where C is the covariance matrix of the data and m(ω) is a function,
summarizing our prior knowledge of the solution. Then we average over
α. The conditional probability P [α|data,m] is given by Bayes’ theorem.
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Practical implementation

Discretization

ωi = iδω (i = 1...Nω)

τi = iat (i = 1...Ndata)

Subspace

It can be shown, that the maximum in the Nω dimensional space lies in
an Ndata dimensional subspace, that can be parametrized as:

A(ω) = m(ω) exp

(
Ndata∑
i=1

sifi(ω)

)

Two choice for basis functions: Bryan (Eur. Biophys J. 18, 165 (1990))
or Jakovác et al (Phys.Rev. D75 014506 (2007), arXiv:0611017)
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Prior function

Four choices

m(ω) = m0 We know nothing

m(ω) = m0ω
2 Motivated by PT, we use this for know

m(ω) = m0ω Kubo− formula

m(ω) = m0ω(b+ ω) Kubo + PT
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Analysis with mock data

Strategy

Write down an input spectral function Ain

Generate correlators by integrating

G(τ) =

∫
K(τ, ω)Ain(ω)dω

Generate mock data by adding gaussian noise with variance
σ(τ) = η · τ ·Gmock(τ).

Reconstruct spectral function with MEM.
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How many data points are enough?
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Sensitivity on the prior function
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Individual resolution of many peaks
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Conclusion of the mock data analysis

Lessons learned

MEM gives the correct qualitative features of the spectral
function, but it is not a precise quantitative method.

The peak positions agree well with the input, the shapes do not

As long as the data points are not too noisy, O(10) point are
enough for reconstruction.

Features that remain unchanged by varying the prior are restricted
by the data.

Higher excitations can be merged into one broader peak.
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Analysis with lattice QCD data

Lattice details

Gauge action = Symanzik tree-level improved gauge action
Fermion action = 2+1 dynamical Wilson fermions with 6 step stout
smearing (ρ = 0.11) and tree-level clover improvement

a[fm] amud ams mπ Ns Nt T = 1
Nta

0.057(1) -0.00336 0.0050 545MeV 64 64 ≈ 0MeV
0.057(1) -0.00336 0.0050 545MeV 64 28 123MeV
0.057(1) -0.00336 0.0050 545MeV 64 20 173MeV
0.057(1) -0.00336 0.0050 545MeV 64 18 192MeV
0.057(1) -0.00336 0.0050 545MeV 64 16 216MeV
0.057(1) -0.00336 0.0050 545MeV 64 14 247MeV
0.057(1) -0.00336 0.0050 545MeV 64 12 288MeV
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Analysis with lattice QCD data

Quenched approximation

In our simulation, u,d, and s quarks, are dynamical, but c quarks are
not. They are in the quenched approximation. There are no internal
charm quark loops, they are only at tree level.

Mass tuning

We had ms and mud already tuned (Science 322 (2008) 1224-1227,
arXiv:0906.3599) We adopted mc = 0.3022, chosen so that the ratios
of the masses of Ds and ϕ mesons are physical.
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Preliminary results on J/Ψ

Expectations of heavy ion physicists

At sufficiently high temperature, QCD undergoes a transition to a
deconfined phase.

Unlike light mesons, heavy mesons like J/Ψ may survive in the hot
medium up to higher temperatures, before dissociating because of
colour screening, and collisions within the medium.

Their supression may be a good experimental signal on the
formation of QGP.

Original paper on the idea:
T. Matsui, H. Satz, Phys. Lett. B178, 416 (1986).
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Cold lattice, prior function sensitivity
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Hot lattice, prior function sensitivity
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Temperature dependence
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J/Ψ mass as a function of temperature
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Future work

What’s next?

Doing the same analysis for ηc, Ds, ... mesons

Doing the same analysis for bottonium states

Checking the conclusions on the first peak by doing the same
analysis with smeared operators

Determining the masses of the first two-three states by
diagonalizing cross-correlators

Determining transport coefficients by looking at the ω → 0 limit

Error bars!

Continuum extrapolation?

Anisotropic lattice calculations with dynamical light quarks
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