Two texture zeros in neutrino mass matrices

Patrick Otto Ludl

Faculty of Physics, University of Vienna

LII Cracow School of Theoretical Physics, Zakopane, May 2012

Der Wissenschaftsfonds.

FWF Project P 24161-N16

Lepton mixing

Lepton mass terms (we assume Majorana neutrinos):

$$\mathcal{L} = -\bar{\ell}'_R \mathcal{M}_\ell \ell'_L + \frac{1}{2} \nu'_L {}^T C^{-1} \mathcal{M}_\nu \nu'_L + \text{H.c.} =$$
$$= -\bar{\ell}_R \hat{\mathcal{M}}_\ell \ell_L + \frac{1}{2} \nu_L {}^T C^{-1} \hat{\mathcal{M}}_\nu \nu_L + \text{H.c.}$$

Diagonalization by a biunitary transformation:

$$\mathcal{M}_{\ell} = U_{R}^{\ell} \hat{\mathcal{M}}_{\ell} U_{L}^{\ell\dagger}, \quad \mathcal{M}_{\nu} = U_{L}^{\nu*} \hat{\mathcal{M}}_{\nu} U_{L}^{\nu\dagger}$$
$$\Rightarrow U_{L}^{\nu\dagger} \nu_{L}^{\prime} = \nu_{L}, \quad U_{L}^{\ell\dagger} \ell_{L}^{\prime} = \ell_{L}$$

Charged current interaction:

$$\mathcal{L}_{\rm CC} = -\frac{g}{\sqrt{2}} W^-_{\mu} \bar{\ell}'_L \gamma^{\mu} \nu'_L + \text{H.c.} = -\frac{g}{\sqrt{2}} W^-_{\mu} \bar{\ell}_L \gamma^{\mu} \underbrace{U^{\ell\dagger}_L U^{\nu}_L}_{U_{\rm PMNS}} \nu_L + \text{H.c.}$$

 $U_{\rm PMNS}$ can be parameterized by three mixing angles, the CP-violating phase δ and two physical Majorana phases.

parameter	best fit	2σ	HPS
$\sin^2\theta_{12}$	$0.320\substack{+0.015\\-0.017}$	0.29 - 0.35	$\frac{1}{3}$
$\sin^2\theta_{23}$	$0.49\substack{+0.08\\-0.05}$	0.41 - 0.62	$\frac{1}{2}$
	$0.53\substack{+0.05\\-0.07}$	0.42 - 0.62	$\frac{1}{2}$
$\sin^2\theta_{13}$	$0.026\substack{+0.003\\-0.004}$	0.019 - 0.033	0
	$0.027\substack{+0.003\\-0.004}$	0.020 - 0.034	0

M. Tórtola, J.W.F. Valle and D. Vanegas (2012)¹

¹ arXiv: 1205.4018 (17 May 2012)	(ロ) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日
Patrick Ludl, University of Vienna	Two texture zeros in neutrino mass matrices

Symmetries in the lepton sector

For a long time $U_{\rm PMNS}$ seemed to be compatible with the Harrison-Perkins-Scott (HPS) mixing matrix

$$U_{\rm HPS} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

 \rightarrow ldea: symmetries in the lepton sector

Recent data from oscillation experiments (T2K, MINOS, Double Chooz, Daya Bay, RENO)

 $\Rightarrow \theta_{13} > 0$ at $> 6\sigma!$

Global fit²: $\sin^2 \theta_{13} = 0.026^{+0.003}_{-0.004}$ (0.027^{+0.003}_{-0.004}).

Although $\theta_{13} > 0$, the idea of symmetries in the lepton sector is still interesting.

A simple way to restrict the lepton mass matrices (and therefore also $U_{\rm PMNS}$) is to assume so-called texture zeros in the mass matrices:

 $\mathcal{M}_{ij} = 0$ for some i, j.

In the following we will assume:

- The charged lepton mass matrix \mathcal{M}_{ℓ} is diagonal.
- Neutrinos are Majorana particles ($\rightarrow M_{\nu}$ symmetric).
- Texture zeros in the neutrino mass matrix \mathcal{M}_{ν} .

Within this framework: More than two texture zeros in $\mathcal{M}_{\nu} \Rightarrow$ incompatible with experimental data.

 \Rightarrow (At most) two texture zeros.

Two texture zeros

P.H. Frampton, S.L. Glashow, D. Marfatia (2002)³:

In the basis where \mathcal{M}_{ℓ} is diagonal, there are seven cases of two texture zeros that are compatible with the experimental data.

$$\begin{aligned} A_1 &= \begin{pmatrix} 0 & 0 & \times \\ 0 & \times & \times \\ \times & \times & \times \end{pmatrix}, \ A_2 &= \begin{pmatrix} 0 & \times & 0 \\ \times & \times & \times \\ 0 & \times & \times \end{pmatrix}, \ B_1 &= \begin{pmatrix} \times & 0 & \times \\ 0 & 0 & \times \\ 0 & \times & \times \end{pmatrix}, \\ B_2 &= \begin{pmatrix} \times & 0 & \times \\ 0 & \times & \times \\ \times & \times & 0 \end{pmatrix}, \ B_3 &= \begin{pmatrix} \times & 0 & \times \\ 0 & 0 & \times \\ \times & \times & \times \end{pmatrix}, \ B_4 &= \begin{pmatrix} \times & \times & 0 \\ \times & \times & \times \\ 0 & \times & 0 \end{pmatrix}, \\ C &= \begin{pmatrix} \times & \times & \times \\ \times & 0 & \times \\ \times & \times & 0 \end{pmatrix}. \end{aligned}$$

³Phys.Lett. B536 (2002) 79-82 [hep-ph/0201008]

Patrick Ludl, University of Vienna

Two texture zeros in neutrino mass matrices

Possible predictions of two texture zeros in \mathcal{M}_{ν}

C.I. Low (2005)⁴:

The only extremal mixing angle which can be enforced by texture zeros is $\theta_{13} = 0$.

 \Rightarrow Problems:

- $\theta_{13} = 0$ is ruled out by experiment.
- $\theta_{23} = 45^{\circ}$ cannot be enforced by texture zeros.

However, even if texture zeros do not restrict the mixing angles to certain values:

Texture zeros imply relations among the observables $(m_i, \Delta m_{ij}^2, \sin^2 \theta_{ij}, \delta, \sigma_i)$.

Near maximal atmospheric mixing from texture zeros

Texture zeros cannot enforce $\theta_{23} = 45^{\circ}$

- \rightarrow Can $\theta_{23}\approx45^\circ$ be achieved with an additional assumption?
- W. Grimus, POL (2011)⁵:
 - **①** Texture zeros of type B_3 or B_4
 - 2 Quasi-degenerate neutrino mass spectrum: $m_i \gg \sqrt{|\Delta m_{ii}^2|}$

 $\Rightarrow \theta_{23} \approx 45^{\circ}.$

Note: If one assumes a quasi-degenerate neutrino mass spectrum one has to take into account the cosmological bounds: PDG (2010):

 $\sum_{i} m_{i} < 1 \, \text{eV} \Rightarrow \text{quasi-degenerate spectrum not excluded yet.}$

⁵Phys. Lett. B700 (2011) 356-361 [arXiv:1104.4340] < □> < ♂> < ≧> < ≧> < ≧> < ≥

Near maximal atmospheric mixing from texture zeros

$$B_3: \mathcal{M}_{\nu} \sim \begin{pmatrix} \times & 0 & \times \\ 0 & 0 & \times \\ \times & \times & \times \end{pmatrix}, \ B_4: \mathcal{M}_{\nu} \sim \begin{pmatrix} \times & \times & 0 \\ \times & \times & \times \\ 0 & \times & 0 \end{pmatrix}$$
$$\mathcal{M}_{\ell} \text{ diagonal} \Rightarrow U_{\mathrm{PMNS}} = U_L^{\nu} =: U.$$

$$\mathcal{M}_{
u}=\mathit{U}^{*}\operatorname{diag}(\mathit{m}_{1},\,\mathit{m}_{2},\,\mathit{m}_{3})\,\mathit{U}^{\dagger}$$

Two texture zeros in $\mathcal{M}_{\nu} \Rightarrow$ two equations of the form

$$(\mathcal{M}_{\nu})_{ij}=\sum_{k}m_{k}U_{ik}^{*}U_{jk}^{*}=0.$$

Input: m_1 , m_2 , m_3 , θ_{12} , $\theta_{13} \Rightarrow$ predictions: θ_{23} , δ , $\sigma_{1,2}$

 \rightarrow One obtains a cubic equation for $\lambda = \tan^2 \theta_{23}$.

In the limit of a quasi-degenerate neutrino mass spectrum the cubic equation becomes

$$\lambda^3 + \lambda^2 - \lambda - 1 = 0$$

$$\Rightarrow \lambda = \tan^2 \theta_{23} = 1 \Rightarrow \sin^2 \theta_{23} = \frac{1}{2} \Rightarrow \theta_{23} = 45^{\circ}.$$

Limit independent of the values of θ_{12} and θ_{13} !

Approximate solution of the exact equation:

$$\sin^2\theta_{23} \simeq \frac{1}{2} \mp \frac{1}{8} \frac{\Delta m_{31}^2}{m_1^2} (1 + \sin^2\theta_{13})$$

The limit of a quasi-degenerate spectrum

 $(\Delta m_{21}^2, \Delta m_{31}^2, \sin^2 \theta_{12} \text{ and } \sin^2 \theta_{13} \text{ fixed to best fit values.})$ B_3 (inverted) B_4 (normal) B_3 (normal) B_4 (inverted)

Patrick Ludl, University of Vienna Two texture zeros in neutrino mass matrices

The limit of a quasi-degenerate spectrum

In the limit of a quasi-degenerate mass spectrum:

Patrick Ludl, University of Vienna Two texture zeros in neutrino mass matrices

Two texture zeros and the relation between $heta_{13}$ and δ

• $\sin^2 \theta_{13}$ well known by now.

 \bullet CP-phase δ almost not restricted at a significant level.

 \Rightarrow Interesting question: Correlation between $\theta_{\rm 13}$ and δ in models with two texture zeros?

POL, S. Morisi, E. Peinado (2011)⁶:

Two texture zeros A_1, \ldots, C (\mathcal{M}_ℓ diagonal)

 \Rightarrow two equations of the form

$$(\mathcal{M}_{\nu})_{ij}=\sum_{k}m_{k}U_{ik}^{*}U_{jk}^{*}=0.$$

Leads (in the seven viable cases) to an at most cubic equation for $\cos \delta$ as a function of the ratio $\Delta m^2_{21}/\Delta m^2_{31}$ and the three mixing angles.

⁵ Nucl. Phys. B857 (2012) 411-423 [arXiv:1109.3393]< □ > < ♂ > < ≥ > < ≥ >

⇒ Vary $\Delta m_{21}^2 / \Delta m_{31}^2$, $\sin^2 \theta_{12}$ and $\sin^2 \theta_{23}$ in their *n* σ -ranges. ⇒ One obtains plots of the allowed regions for $\sin^2 \theta_{13}$ and $\cos \delta$. Colors: black: best fit, red: 1σ , green: 2σ , blue: 3σ . The best fit points⁷ for $\sin^2 \theta_{13}$ and $\cos \delta$ are indicated by black crosses.

⁷T. Schwetz, M. Tórtola and J.W.F. Valle, New J. Phys. 13 (2011) 109401 [arXiv:1108.1376].

A_1 : only normal spectrum allowed:

э

Similar for A_2 :

æ

Cases B_1 to B_4 all predict $\cos \delta \approx 0$.

Case C (normal): No correlation between $\sin^2\theta_{13}$ and $\cos\delta$.

Case C (inverted):

æ

Conclusions

- We have found two instances in the framework of two texture zeros in \mathcal{M}_{ν} (\mathcal{M}_{ℓ} diagonal) which lead to maximal atmospheric neutrino mixing in the limit of a quasi-degenerate neutrino mass spectrum.
- In this scenario the limit

$$\sin^2\theta_{23} o \frac{1}{2}$$

is independent of the values of θ_{13} and θ_{12} !

- θ₂₃ ≈ 45° and cos δ ≈ 0 achievable by the use of an Abelian symmetry (texture zeros). → Alternative road to explain near maximal atmospheric neutrino mixing.
- Seven cases of two texture zeros in \mathcal{M}_{ν} are compatible with the experimental data.
- Two of these cases are compatible with the experimental data on $\sin^2\theta_{12}$, $\sin^2\theta_{23}$ and Δm_{ii}^2 only if $\sin^2\theta_{13} > 0$.