Screening in two-dimensional lattice gauge theories

Mateusz Koreń

Jagiellonian University, Cracow

In collaboration with Piotr Korcyl and Jacek Wosiek

Project carried within the MPD programme "Physics of Complex Systems" of the Foundation for Polish Science and co-financed by the European Regional Development Fund in the framework of the Innovative Economy Programme.

Zakopane, 24-05-2012

The anatomy of string breaking 000

Further developments

Table of contents

2 The anatomy of string breaking

- Lattice discretization of QED₂
- Wilson loops and string breaking
- 3 Further developments
 - Non-integer charges
 - Conclusions & outlook

The anatomy of string breaking 000

Further developments

Two-dimensional models of QCD – abelian case

• Goal: gain insight into non-perturbative regime of QCD-like theories by studying models in 1+1 dimensions.

•
$$\mathcal{L}_{\text{QCD-like}} = \frac{1}{g^2} \left[-\frac{1}{2} \text{Tr} F_{\mu\nu} F^{\mu\nu} + \sum_{i=1}^{N_f} \bar{\psi}_i (i \not D - m_i) \psi_i \right]$$

The anatomy of string breaking 000

Further developments

Two-dimensional models of QCD – abelian case

• Goal: gain insight into non-perturbative regime of QCD-like theories by studying models in 1+1 dimensions.

•
$$\mathcal{L}_{\text{QCD-like}} = \frac{1}{g^2} \left[-\frac{1}{2} \text{Tr} F_{\mu\nu} F^{\mu\nu} + \sum_{i=1}^{N_f} \bar{\psi}_i (i \not D - m_i) \psi_i \right]$$

- Start with abelian U(1) gauge group: QED₂:
 - Free electrodynamics in 1+1 dimensions no true dynamics but confining linear potential for probe charges
 - Schwinger, 1962: QED₂ with single massless flavour: solvable using bosonisation trick, exhibits charge screening ∀Q_{ext}.

The anatomy of string breaking

Further developments

Two-dimensional models of QCD – abelian case

• Goal: gain insight into non-perturbative regime of QCD-like theories by studying models in 1+1 dimensions.

•
$$\mathcal{L}_{\text{QCD-like}} = \frac{1}{g^2} \left[-\frac{1}{2} \text{Tr} F_{\mu\nu} F^{\mu\nu} + \sum_{i=1}^{N_f} \bar{\psi}_i (i \not D - m_i) \psi_i \right]$$

- Start with abelian U(1) gauge group: QED₂:
 - Free electrodynamics in 1+1 dimensions no true dynamics but confining linear potential for probe charges
 - Schwinger, 1962: QED₂ with single massless flavour: solvable using bosonisation trick, exhibits charge screening ∀Q_{ext}.
 - Coleman, Jackiw, Susskind, 1975: perturbative addition of small mass. Only integer charges Q_{ext} are screened for non-zero mass (string breaking).
 - Plethora of numerical studies (though only for integer charges) both using bosonisation & standard lattice methods (and also DLCQ). Still field of active research (e.g. Dürr, 2012).

ロト イポト イラト イラト・ラ

Two-dimensional models of QCD - non-abelian case

Non-abelian Schwinger model ≡ QCD₂ (with fundamental matter) – spectrum predictions exist (Frishman, Sonnenschein, 1997, 1998)

Two-dimensional models of QCD - non-abelian case

- Non-abelian Schwinger model ≡ QCD₂ (with fundamental matter) spectrum predictions exist (Frishman, Sonnenschein, 1997, 1998)
- 't Hooft,1974: solution of large-N limit of QCD₂
- Limitation of large-*N* limit of fundamental matter quenched fermion dynamics. Idea: use fermions in two-index representations of *SU*(*N*), e.g. the adjoint.

Two-dimensional models of QCD - non-abelian case

- Non-abelian Schwinger model ≡ QCD₂ (with fundamental matter) spectrum predictions exist (Frishman, Sonnenschein, 1997, 1998)
- 't Hooft,1974: solution of large-N limit of QCD₂
- Limitation of large-*N* limit of fundamental matter quenched fermion dynamics. Idea: use fermions in two-index representations of *SU*(*N*), e.g. the adjoint.
- Adjoint fermions analysed theoretically (e.g. Kutasov, 1994) and by DLCQ (e.g. Bhanot, Demeterfi, Klebanov, 1993) but hardly any lattice calculation in 1+1 dimensions.

The anatomy of string breaking $\bullet \circ \circ$

Further developments

3

Lattice discretization of QED₂

• Consider a lattice in \mathbb{R}^2 .

<ロト <回ト < 回ト < 回ト

The anatomy of string breaking $\bullet \circ \circ$

Further developments

Lattice discretization of QED₂

- Consider a lattice in \mathbb{R}^2 .
- On the links insert U(1)elements $U_{x,x+\mu} \sim e^{iagA_{\mu}(x)}$.

(4回) (日) (日)

3

The anatomy of string breaking $\bullet \circ \circ$

Further developments

Lattice discretization of QED₂

- Consider a lattice in \mathbb{R}^2 .
- On the links insert U(1)
 elements U_{x,x+μ} ~ e^{iagA_μ(x)}.
- Introduce action S_{gauge} and quantize using euclidean path integral formulation.

(1日) (1日) (日)

$$\mathcal{Z} = \int (\prod_{x,\mu} dU_{x,x+\mu}) e^{-S_{ ext{gauge}}[U]}$$

The anatomy of string breaking $\bullet \circ \circ$

Further developments

Lattice discretization of QED₂

- Consider a lattice in \mathbb{R}^2 .
- On the links insert U(1)
 elements U_{x,x+μ} ~ e^{iagA_μ(x)}.
- Introduce action S_{gauge} and quantize using euclidean path integral formulation.

・ 同下 ・ ヨト ・ ヨト

 $\mathcal{Z} = \int (\prod_{x,\mu} dU_{x,x+\mu}) e^{-\#g^{-2} \sum_{\square} (1 - \operatorname{Re} U_{x,\mu\nu}^{\square})}$

The anatomy of string breaking $\bullet \circ \circ$

Further developments

Lattice discretization of QED₂

- Consider a lattice in \mathbb{R}^2 .
- On the links insert U(1)
 elements U_{x,x+μ} ~ e^{iagA_μ(x)}.
- Introduce action S_{gauge} and quantize using euclidean path integral formulation.
- Add fermion fields $\psi(x)$

- 4 回 ト 4 ヨ ト 4 ヨ ト

 $\mathcal{Z} = \int (\prod_{x,\mu} dU_{x,x+\mu}) e^{-\#g^{-2} \sum_{\square} (1 - \operatorname{Re} U_{x,\mu\nu}^{\square})} - \sum_{\psi} \bar{\psi}(D^{\operatorname{lat}} + \operatorname{am}) \psi$

The anatomy of string breaking $\bullet \circ \circ$

Further developments

Lattice discretization of QED₂

- Consider a lattice in \mathbb{R}^2 .
- On the links insert U(1)
 elements U_{x,x+μ} ~ e^{iagA_μ(x)}.
- Introduce action S_{gauge} and quantize using euclidean path integral formulation.
- Add fermion fields ψ(x)
 ... and integrate them out.

(4回) (日) (日)

$$\mathcal{Z} = \int (\prod_{x,\mu} dU_{x,x+\mu}) e^{-\#g^{-2} \sum_{\square} (1 - \operatorname{Re} U_{x,\mu\nu}^{\square})} - \ln \det(D^{\operatorname{lat}} + am)$$

The anatomy of string breaking $\bullet \circ \circ$

Further developments

Lattice discretization of QED₂

- Consider a lattice in \mathbb{R}^2 .
- On the links insert U(1)
 elements U_{x,x+μ} ~ e^{iagA_μ(x)}.
- Introduce action S_{gauge} and quantize using euclidean path integral formulation.
- Add fermion fields ψ(x)
 ... and integrate them out.

イロト イポト イヨト イヨト

 $\mathcal{Z} = \int (\prod_{x,\mu} dU_{x,x+\mu}) e^{-\#g^{-2} \sum_{\square} (1 - \operatorname{Re} U_{x,\mu\nu}^{\square}) - \ln \det(D^{\operatorname{lat}} + am)}$

• We choose Wilson fermions for D^{lat} and use standard Hybrid Monte Carlo numerical setup.

The anatomy of string breaking $\circ \bullet \circ$

Further developments

Confinement vs. charge screening

- For closed contour Γ: W_Γ = exp{ig ∮_Γ dl_µA_µ(I)} Wilson loop. On the lattice: W_Γ = ∏_{Ui∈Γ} U_i
- Wilson loop for square contour of sizes $R \times T$ interpreted as pair of opposite static charges, $W(R, T) \cong \sum_{i} C_{i} e^{-E_{i}(R)T}$

イロト イポト イラト イラト 二日

Confinement vs. charge screening

- For closed contour Γ: W_Γ = exp{ig ∮_Γ dl_μA_μ(l)} Wilson loop. On the lattice: W_Γ = Π_{U_i∈Γ} U_i
- Wilson loop for square contour of sizes $R \times T$ interpreted as pair of opposite static charges, $W(R, T) \cong \sum_{i} C_{i} e^{-E_{i}(R)T}$
 - $E_0(R) \cong \sigma R$ confinement (pure gauge QCD₄, Creutz, 1980)
 - $E_0(R) \cong Const(R)$ charge screening
- In full QCD₄ charge screening at large distances ("string breaking")

Confinement vs. charge screening

- For closed contour Γ: W_Γ = exp{ig ∮_Γ dl_µA_µ(l)} Wilson loop. On the lattice: W_Γ = ∏_{Ui∈Γ} U_i
- Wilson loop for square contour of sizes $R \times T$ interpreted as pair of opposite static charges, $W(R, T) \cong \sum_{i} C_{i} e^{-E_{i}(R)T}$
 - $E_0(R) \cong \sigma R$ confinement (pure gauge QCD₄, Creutz, 1980)
 - $E_0(R) \cong Const(R)$ charge screening
- In full QCD₄ charge screening at large distances ("string breaking")
- String breaking hard to observe on the lattice. Conjecture: small overlap of Wilson loops onto broken-string ground state. Including other observables necessary (Bali et al., 2005).

Wilson loops and string breaking in QED₂

In terms of confinement/screening QED₂ resembles QCD₄.

Further developments

Wilson loops and string breaking in QED₂

In terms of confinement/screening QED_2 resembles QCD_4 .

Extract 1st excited state: $W(R, T) \cong C_0 e^{-E_0(R)T} + C_1 e^{-E_1(R)T}$

The anatomy of string breaking $\circ \circ \bullet$

Further developments

Wilson loops and string breaking in QED₂

In terms of confinement/screening QED_2 resembles QCD_4 .

Extract 1st excited state: $W(R, T) \cong C_0 e^{-E_0(R)T} + C_1 e^{-E_1(R)T}$

The anatomy of string breaking 000

Further developments $\bullet \circ$

Fractional charges

• Despite numerous analyses for $Q_{ext} \in \mathbb{Z}$, equation (CJS, 1975)

$$\sigma = \#mg\left(1 - \cos(2\pi Q_{ext})\right)$$

has never been verified on the lattice when Q_{ext} is non-integer.
"Charged Wilson loop":

$$W_Q(R,T) \equiv \exp\{iQg \oint_{\Box} dl_\mu A_\mu(I)\} = (W(R,T))^Q$$

The anatomy of string breaking 000

Further developments ●○

Fractional charges

• Despite numerous analyses for $Q_{ext} \in \mathbb{Z}$, equation (CJS, 1975)

$$\sigma = \#mg\left(1 - \cos(2\pi Q_{ext})\right)$$

has never been verified on the lattice when Q_{ext} is non-integer.

• "Charged Wilson loop":

$$W_Q(R,T) \equiv \exp\{iQg \oint_{\Box} dl_{\mu}A_{\mu}(I)\} = (W(R,T))^Q$$

- For W_Q in QED₂ with light fermions we found string tension $\sigma_Q = 0$ for every Q analysed.
- To understand this, we came back to pure gauge U(1) theory.

The anatomy of string breaking 000

Further developments $\bullet \circ$

3

Fractional charges

Mateusz Koreń Screening in two-dimensional lattice gauge theories

The anatomy of string breaking 000

Further developments ●○

Fractional charges

• Despite numerous analyses for $Q_{ext} \in \mathbb{Z}$, equation (CJS, 1975)

$$\sigma = \#mg\left(1 - \cos(2\pi Q_{ext})\right)$$

has never been verified on the lattice when Q_{ext} is non-integer.

• "Charged Wilson loop":

$$W_Q(R,T) \equiv \exp\{iQg \oint_{\Box} dl_{\mu}A_{\mu}(I)\} = (W(R,T))^Q$$

- For W_Q in QED₂ with light fermions we found string tension $\sigma_Q = 0$ for every Q analysed.
- To understand this, we came back to pure gauge U(1) theory.
- σ_Q with $Q \notin \mathbb{Z}$ is "cast" to the closest integer value.
- Manton, 1984: QED₂ on a (spatial) circle extra topologically non-trivial gauge transformations – fulfilled only for integer charges.

Conclusions & outlook

- Two-dimensional theories share many intrinsic features with those in 4 dimensions and can be used as a test bed for concepts relating to QCD₄.
- Wilson loops can be used as a probe of string breaking but very large statistics is required as overlap on the ground state becomes poor.
- Fractional charges require extra care (different boundary conditions?) to be implemented in a lattice simulation.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Conclusions & outlook

- Two-dimensional theories share many intrinsic features with those in 4 dimensions and can be used as a test bed for concepts relating to QCD₄.
- Wilson loops can be used as a probe of string breaking but very large statistics is required as overlap on the ground state becomes poor.
- Fractional charges require extra care (different boundary conditions?) to be implemented in a lattice simulation.

Plans for future:

• Move to non-abelian theories, in particular with adjoint matter, which are of great interest recently (technicolor, large-*N* equivalences).