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Introduction The anatomy of string breaking Further developments

Two-dimensional models of QCD – abelian case

Goal: gain insight into non-perturbative regime of QCD-like
theories by studying models in 1+1 dimensions.

LQCD-like = 1
g2

[
−1

2TrFµνFµν +
∑Nf

i=1 ψ̄i (i /D −mi )ψi

]

Start with abelian U(1) gauge group: QED2:

Free electrodynamics in 1+1 dimensions – no true dynamics
but confining linear potential for probe charges

Schwinger, 1962: QED2 with single massless flavour: solvable
using bosonisation trick, exhibits charge screening ∀Qext .

Coleman, Jackiw, Susskind, 1975: perturbative addition of
small mass. Only integer charges Qext are screened for
non-zero mass (string breaking).

Plethora of numerical studies (though only for integer charges)
both using bosonisation & standard lattice methods (and also
DLCQ). Still field of active research (e.g. Dürr, 2012).
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Two-dimensional models of QCD – non-abelian case

Non-abelian Schwinger model ≡ QCD2 (with fundamental
matter) – spectrum predictions exist (Frishman,
Sonnenschein, 1997, 1998)

’t Hooft,1974: solution of large-N limit of QCD2

Limitation of large-N limit of fundamental matter – quenched
fermion dynamics. Idea: use fermions in two-index
representations of SU(N), e.g. the adjoint.

Adjoint fermions analysed theoretically (e.g. Kutasov, 1994)
and by DLCQ (e.g. Bhanot, Demeterfi, Klebanov, 1993) but
hardly any lattice calculation in 1+1 dimensions.
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Lattice discretization of QED2

Consider a lattice in R2.

On the links insert U(1)

elements Ux ,x+µ ∼ e iagAµ(x).

Introduce action Sgauge and
quantize using euclidean path
integral formulation.

Add fermion fields ψ(x)

. . . and integrate them out.

We choose Wilson fermions for D lat and use standard Hybrid
Monte Carlo numerical setup.
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Mateusz Koreń Screening in two-dimensional lattice gauge theories

Ux,x+μx

a

Z =
∫

(
∏

x ,µ dUx ,x+µ)e−Sgauge[U]



Introduction The anatomy of string breaking Further developments

Lattice discretization of QED2

Consider a lattice in R2.

On the links insert U(1)

elements Ux ,x+µ ∼ e iagAµ(x).

Introduce action Sgauge and
quantize using euclidean path
integral formulation.

Add fermion fields ψ(x)

. . . and integrate them out.

We choose Wilson fermions for D lat and use standard Hybrid
Monte Carlo numerical setup.
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Confinement vs. charge screening

For closed contour Γ: WΓ = exp{ig
∮

Γ dlµAµ(l)} – Wilson

loop. On the lattice: WΓ =
∏

Ui∈Γ Ui

Wilson loop for square contour of sizes R ×T – interpreted as

pair of opposite static charges, W (R,T ) ∼=
∑

i Cie
−Ei (R)T

E0(R) ∼= σR – confinement (pure gauge QCD4, Creutz, 1980)

E0(R) ∼= Const(R) – charge screening

In full QCD4 – charge screening at large distances (“string
breaking”)

String breaking – hard to observe on the lattice. Conjecture:
small overlap of Wilson loops onto broken-string ground state.
Including other observables necessary (Bali et al., 2005).
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Wilson loops and string breaking in QED2

In terms of confinement/screening QED2 resembles QCD4.

Extract 1st excited state: W (R,T ) ∼= C0e
−E0(R)T + C1e

−E1(R)T
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Wilson loop energies, g−2 = 1.5, κ = 0.245,V = 24× 24.
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Fractional charges

Despite numerous analyses for Qext ∈ Z, equation (CJS, 1975)

σ = #mg (1− cos(2πQext))

has never been verified on the lattice when Qext is non-integer.

“Charged Wilson loop”:

WQ(R,T ) ≡ exp{iQg
∮
� dlµAµ(l)} =

(
W (R,T )

)Q

For WQ in QED2 with light fermions we found string tension
σQ = 0 for every Q analysed.

To understand this, we came back to pure gauge U(1) theory.

σQ with Q /∈ Z is “cast” to the closest integer value.

Manton, 1984: QED2 on a (spatial) circle – extra
topologically non-trivial gauge transformations – fulfilled only
for integer charges.
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Fractional charges
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Conclusions & outlook

Two-dimensional theories share many intrinsic features with
those in 4 dimensions and can be used as a test bed for
concepts relating to QCD4.

Wilson loops can be used as a probe of string breaking but
very large statistics is required as overlap on the ground state
becomes poor.

Fractional charges require extra care (different boundary
conditions?) to be implemented in a lattice simulation.

Plans for future:

Move to non-abelian theories, in particular with adjoint
matter, which are of great interest recently (technicolor,
large-N equivalences).
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