Indirect Dark Matter Detection

Alejandro Ibarra Technische Universität München

Zakopane May 2012

Indirect dark matter searches

Production

Propagation

0

Setterin 12.9

Wild Duck

0

M. RingMS)

13 Lagreen Mill

> M7" SC 7293

NGC 10

7 M2 0 CNM

11 NGC 70274

WE ARE HERE

A

Carina NGC 3200 Keybole NGC 3924

Experimental results: antiprotons

PAMELA collaboration arXiv:1007.0821

Fairly good agreement between the measurements and the theoretical predictions from spallation.

Annihilating dark matter: Lightest SUSY particle

DM model	m	$\langle \sigma_{\mathrm{ann}} v angle$	$t\bar{t}$	$b\overline{b}$	$c\bar{c}$	$s\bar{s}$	$u ar{u}$	$d\bar{d}$	ZZ	W^+W^-	HH	gg
LSP1.0	1.0	0.46	-	-	-	-	-	-	-	100	-	-
LSP1.7	1.7	102	-	-	-	-	-	-	20.1	79.9	-	-

Decaying dark matter

Experimental results: positrons

PAMELA collaboration arXiv:0810.4995

Fig. 6. Positron fraction data corrected for solar modulation effects according to the Galprop conventional model. PAMELA data have been corrected based on the charge-sign dependent model, the weighted mean of the previously published data has been corrected based on a charge-symmetric model using $\phi = 442$ MV.

PAMELA excess at high energies?

Theoretical calculation of the background positron fraction:

Experiment	power law index α
AMS-01 29	3.15 ± 0.04
ATIC [30]	3.14 ± 0.08
BETS [<u>31</u> , <u>32</u>]	3.05 ± 0.05
CAPRICE 33	3.47 ± 0.34
HEAT 34	2.82 ± 0.16
MASS [35]	2.89 ± 0.10

PAMELA excess at high energies?

Theoretical calculation of the background positron fraction:

Experiment	power law index α
AMS-01 29	3.15 ± 0.04
ATIC [30]	3.14 ± 0.08
BETS [<u>31</u> , <u>32</u>]	3.05 ± 0.05
CAPRICE 33	3.47 ± 0.34
HEAT [34]	2.82 ± 0.16
MASS 35	2.89 ± 0.10

PAMELA excess at high energies?

Theoretical calculation of the background positron fraction:

Present situation:

Evidence for a primary component of positrons

(possibly accompanied by electrons)

Astrophysical sources? Pulsars, SN remnants New particle physics? DM annihilation, DM decay

Annihilating dark matter

Cholis et al. arXiv:0811.3641

Cholis et al. arXiv:0811.3641

Annihilating dark matter

Annihilating dark matter

 $\chi \chi \to \phi \phi$, followed by $\phi \to \tau^+ \tau^-$

Cholis et al. arXiv:0811.3641

Decaying dark matter

Democratic decay $\psi \rightarrow \ell^+ \ell^- \nu$

<u>Conclusion from these plots:</u> the electron/positron excesses could be explained by the annihilation/decay of dark matter particles.

Is this the first non-gravitational evidence of dark matter?

"Extraordinary claims require extraordinary evidence" Carl Sagan

High energy positrons are difficult to discriminate from protons. And there are many more protons in cosmic rays than positrons!

High energy positrons are difficult to discriminate from protons. And there are many more protons in cosmic rays than positrons!

PAMELA claims a proton rejection of one part in 10⁵.

• Fermi-LAT has confirmed the positron excess! Fermi coll. arXiv:1109.0521

• More independent measurements soon by AMS-02

Astrophysical interpretations

Pulsars <u>are</u> sources of high energy electrons & positrons

Atoyan, Aharonian, Völk; Chi, Cheng, Young; Grimani

Pulsar explanation I: Geminga + Monogem

T=370 000 years D=157 pc

Monogem (B0656+14) T=110 000 years D=290 pc

Pulsar explanation I: Geminga + Monogem

Grasso et al.

Nice agreement. However, it is not a prediction!

- $dN_{e}/dE_{e} \propto E_{e}^{-1.7} \exp(-E_{e}/1100 \text{ GeV})$
- Energy output in e+e- pairs: 40% of the spin-down rate (!)

Pulsar explanation II: Multiple pulsars

Grasso et al.

• $dN_e/dE_e \propto E_e^{-\alpha} \exp(-E_e/E_0)$, $1.5 < \alpha < 1.9$, $800 \text{ GeV} < E_0 < 1400 \text{ GeV}$

• Energy output in e+e- pairs: between 10–30% of the spin-down rate

More later about the dark matter explanations to the electron/positron excesses

Production of gamma-rays

The gamma ray flux from dark matter annihilation/decay has two components:

- Inverse Compton Scattering radiation of electrons/positrons produced in the annihilation/decay.
- Always smooth spectrum.

- Prompt radiation of gamma rays produced in the annihilation/decay (final state radiation, pion decay...)
- May contain spectral features.

Inverse Compton Scattering radiation

The inverse Compton scattering of electrons/positrons from dark matter annihilation/decay with the interstellar and extragalactic radiation fields produces gamma rays.

$$\frac{dR_{\gamma}^{\rm IC}(\vec{r})}{dE_{\gamma}} = \int_0^\infty d\epsilon \int_{m_e}^\infty dE_e \; \frac{d\sigma^{\rm IC}(E_e,\epsilon)}{dE_{\gamma}} f_{e^{\pm}}(E_e,\vec{r}) f_{\rm ISRF}(\epsilon,\vec{r})$$

energy [eV]

$$\frac{dR_{\gamma}^{\rm IC}(\vec{r})}{dE_{\gamma}} = \int_{0}^{\infty} d\epsilon \int_{m_{e}}^{\infty} dE_{e} \frac{d\sigma^{\rm IC}(E_{e},\epsilon)}{dE_{\gamma}} f_{e^{\pm}}(E_{e},\vec{r}) f_{\rm ISRF}(\epsilon,\vec{r})$$
Number density of electrons/positrons.
 \rightarrow Transport equation.

$$0 = \frac{\partial f_{e^{\pm}}}{\partial t} = \nabla \cdot \left[K(E_e, \vec{r}) \nabla f_{e^{\pm}} \right] + \frac{\partial}{\partial E_e} \left[b(E_e, \vec{r}) f_{e^{\pm}} \right] - \nabla \cdot \left[\vec{V_c}(\vec{r}) f_{e^{\pm}} \right] - 2h\delta(z) \Gamma_{\rm ann} f_{e^{\pm}} + Q_{\rm DM}(E_e, \vec{r}) f_{e^{\pm}} \right] - \nabla \cdot \left[\vec{V_c}(\vec{r}) f_{e^{\pm}} \right] - 2h\delta(z) \Gamma_{\rm ann} f_{e^{\pm}} + Q_{\rm DM}(E_e, \vec{r}) f_{e^{\pm}} \right] - \nabla \cdot \left[\vec{V_c}(\vec{r}) f_{e^{\pm}} \right] - 2h\delta(z) \Gamma_{\rm ann} f_{e^{\pm}} + Q_{\rm DM}(E_e, \vec{r}) f_{e^{\pm}} \right] - \nabla \cdot \left[\vec{V_c}(\vec{r}) f_{e^{\pm}} \right] - 2h\delta(z) \Gamma_{\rm ann} f_{e^{\pm}} + Q_{\rm DM}(E_e, \vec{r}) f_{e^{\pm}} \right] - \nabla \cdot \left[\vec{V_c}(\vec{r}) f_{e^{\pm}} \right] - 2h\delta(z) \Gamma_{\rm ann} f_{e^{\pm}} + Q_{\rm DM}(E_e, \vec{r}) f_{e^{\pm}} \right] - \nabla \cdot \left[\vec{V_c}(\vec{r}) f_{e^{\pm}} \right] - 2h\delta(z) \Gamma_{\rm ann} f_{e^{\pm}} + Q_{\rm DM}(E_e, \vec{r}) f_{e^{\pm}} \right] - \nabla \cdot \left[\vec{V_c}(\vec{r}) f_{e^{\pm}} \right] - 2h\delta(z) \Gamma_{\rm ann} f_{e^{\pm}} + Q_{\rm DM}(E_e, \vec{r}) f_{e^{\pm}} \right] + 2h\delta(z) \Gamma_{\rm ann} f_{e^{\pm}} + Q_{\rm DM}(E_e, \vec{r}) f_{e^{\pm}} \right] + 2h\delta(z) \Gamma_{\rm ann} f_{e^{\pm}} + Q_{\rm DM}(E_e, \vec{r}) f_{e^{\pm}} \right] + 2h\delta(z) \Gamma_{\rm ann} f_{e^{\pm}} + 2h\delta(z) \Gamma_{\rm ann$$

Production rate of gamma rays due to IC scattering of e^{\pm} on the ISRF: $e^{\pm} + \gamma \rightarrow e^{\pm} + \gamma^{*}$ $\frac{dR_{\gamma}^{\text{IC}}(\vec{r})}{dE_{\gamma}} = \int_{0}^{\infty} d\epsilon \int_{m_{e}}^{\infty} dE_{e} \frac{d\sigma^{\text{IC}}(E_{e},\epsilon)}{dE_{\gamma}} f_{e^{\pm}}(E_{e},\vec{r}) f_{\text{ISRF}}(\epsilon,\vec{r})$

Number density of electrons/positrons. \rightarrow Transport equation.

$$0 = \frac{\partial f_{e^{\pm}}}{\partial t} = \nabla \cdot \left[K(E_e, \vec{r}) \nabla f_{e^{\pm}} \right] + \frac{\partial}{\partial E_e} \left[b(E_e, \vec{r}) f_{e^{\pm}} \right] - \nabla \cdot \left[\vec{V_e}(\vec{r}) f_{e^{\pm}} \right] - 2h\delta(z) \Gamma_{\mathrm{ann}} f_{e^{\pm}} + Q_{\mathrm{DM}}(E_e, \vec{r}) f_{e^{\pm}} \right] - 2h\delta(z) \Gamma_{\mathrm{ann}} f_{e^{\pm}} + Q_{\mathrm{DM}}(E_e, \vec{r}) f_{e^{\pm}} = 0$$

For electrons with E>10 GeV, the transport equation is dominated by the energy loss term. Therefore

$$f_{e^{\pm}}(E_{e},\vec{r}) \simeq \frac{1}{b(E_{e},\vec{r})} \int_{E_{e}}^{\infty} Q_{\rm DM}(E'_{e},\vec{r}) \, dE'_{e} = \begin{cases} \frac{1}{b(E_{e},\vec{r})} \int_{E_{e}}^{\infty} \frac{\rho(\vec{r})^{2} \langle \sigma_{\rm ann} v \rangle}{2m_{\rm DM}^{2}} \frac{dN_{e}}{dE'_{e}} \, dE'_{e} \\ \frac{1}{b(E_{e},\vec{r})} \int_{E_{e}}^{\infty} \frac{\rho(\vec{r})}{\tau_{\rm DM} m_{\rm DM}} \frac{dN_{e}}{dE'_{e}} \, dE'_{e} \end{cases}$$

with $b(E_e, \vec{r}) \simeq 10^{-16} E_e^2 (\text{GeV}) \,\text{s}^{-1}$

$$\frac{dR_{\gamma}^{\rm IC}(\vec{r})}{dE_{\gamma}} = \int_{0}^{\infty} d\epsilon \int_{m_{e}}^{\infty} dE_{e} \frac{d\sigma^{\rm IC}(E_{e},\epsilon)}{dE_{\gamma}} f_{e^{\pm}}(E_{e},\vec{r}) f_{\rm ISRF}(\epsilon,\vec{r})$$

$$\frac{d\sigma^{\rm IC}(E_{e},\epsilon)}{dE_{\gamma}} = \frac{3}{4} \frac{\sigma_{\rm T}}{\gamma_{e}^{2} \epsilon} \times \left[2q \ln q + 1 + q - 2q^{2} + \frac{1}{2} \frac{(q\Gamma)^{2}}{1 + q\Gamma}(1-q)\right]$$

$$\begin{split} &\sigma_T = 0.67 \text{ barn} \longrightarrow \text{Compton scattering cross section in the Thomson limit.} \\ &\gamma_e = E_e/m_e \longrightarrow \text{Lorentz factor.} \\ &\Gamma_e = 4 \ \gamma_e \ \epsilon/m_e \ , \\ &q = E_{\gamma}/\Gamma(E_e - E_{\gamma}), \end{split}$$
Production rate of gamma rays due to IC scattering of e^{\pm} on the ISRF: $e^{\pm}+\gamma \to e^{\pm}+\gamma^*$

$$\frac{dR_{\gamma}^{\rm IC}(\vec{r})}{dE_{\gamma}} = \int_0^\infty d\epsilon \int_{m_e}^\infty dE_e \; \frac{d\sigma^{\rm IC}(E_e,\epsilon)}{dE_{\gamma}} f_{e^{\pm}}(E_e,\vec{r}) f_{\rm ISRF}(\epsilon,\vec{r})$$

Finally, the differential flux in the direction (l, b)

$$\frac{dJ_{\text{halo-IC}}}{dE_{\gamma}}(l,b) = 2 \times \frac{1}{4\pi} \int_0^\infty ds \; \frac{dR_{\gamma}^{\text{IC}}[r(s,l,b)]}{dE_{\gamma}}$$
$$r(s,l,b) = \sqrt{s^2 + R_{\odot}^2 - 2sR_{\odot}\cos b\cos l}$$

Bertone, Buchmüller, Covi, Al arXiv:0709.2299

Prompt radiation: Effect of substructures

Halo component

Summary:

Depends on the dark matter profile. Strong dependence in the direction of the galactic center and mild at high latitudes (|b|>10°)
Even if the profile is spherically symmetric, the flux at Earth depends on the direction of observation.

$$\frac{dJ}{dE_{\gamma}}(\Omega) = \frac{dJ_{\text{halo}}}{dE_{\gamma}}(\Omega) + \frac{dJ_{eg}}{dE_{\gamma}}$$

Extragalactic component

• Isotropic

$$\frac{dJ}{dE_{\gamma}}(\Omega) = \frac{dJ_{\text{halo}}}{dE_{\gamma}}(\Omega) + \frac{dJ_{eg}}{dE_{\gamma}}$$

Extragalactic component

- Isotropic
- Redshifted

$$\begin{aligned} \text{Annihilation} \quad & \frac{dJ_{\text{eg}}}{dE_{\gamma}} = \frac{c}{4\pi} \frac{\langle \sigma_{\text{ann}} v \rangle}{2} \frac{\Omega_{\text{DM}}^2 \rho_{\text{c}}^2}{m_{\text{DM}}^2} \int_0^\infty dz \frac{1}{H(z)} \frac{dN_{\gamma} \left[(1+z)E_{\gamma} \right]}{dE_{\gamma}} e^{-\tau(E_{\gamma},z)} \\ \\ \text{Decay} \quad & \frac{dJ_{\text{eg}}}{dE_{\gamma}} = \frac{c}{4\pi} \frac{\Omega_{\text{DM}} \rho_{\text{c}}}{m_{\text{DM}} \tau_{\text{DM}}} \int_0^\infty dz \frac{1}{H(z)} \frac{dN_{\gamma} \left[(1+z)E_{\gamma} \right]}{dE_{\gamma}} e^{-\tau(E_{\gamma},z)} \end{aligned}$$

$$\frac{dJ}{dE_{\gamma}}(\Omega) = \frac{dJ_{\text{halo}}}{dE_{\gamma}}(\Omega) + \frac{dJ_{eg}}{dE_{\gamma}}$$

Extragalactic component

- Isotropic
- Redshifted

Enhancement

$$\begin{array}{ll} \text{Annihilation} & \frac{dJ_{\text{eg}}}{dE_{\gamma}} = \frac{c}{4\pi} \frac{\langle \sigma_{\text{ann}} v \rangle}{2} \frac{\Omega_{\text{DM}}^2 \rho_{\text{c}}^2}{m_{\text{DM}}^2} \int_0^\infty dz \frac{1}{H(z)} \; \frac{dN_{\gamma} \left[(1+z)E_{\gamma} \right]}{dE_{\gamma}} (1+z)^3 \Delta^2(z) \; e^{-\tau(E_{\gamma},z)} \\ \\ \text{Decay} & \frac{dJ_{\text{eg}}}{dE_{\gamma}} = \frac{c}{4\pi} \frac{\Omega_{\text{DM}} \rho_{\text{c}}}{m_{\text{DM}} \tau_{\text{DM}}} \int_0^\infty dz \frac{1}{H(z)} \; \frac{dN_{\gamma} \left[(1+z)E_{\gamma} \right]}{dE_{\gamma}} \; e^{-\tau(E_{\gamma},z)} \end{array}$$

Fermi coll. arXiv:1002.4415

$$\frac{dJ}{dE_{\gamma}}(\Omega) = \frac{dJ_{\text{halo}}}{dE_{\gamma}}(\Omega) + \frac{dJ_{eg}}{dE_{\gamma}}$$

Extragalactic component

- Isotropic
- Redshifted
- Attenuated due to pair production $\gamma\gamma \rightarrow e^+e^-$

$$\begin{aligned} \text{Annihilation} \quad \frac{dJ_{\text{eg}}}{dE_{\gamma}} &= \frac{c}{4\pi} \frac{\langle \sigma_{\text{ann}} v \rangle}{2} \frac{\Omega_{\text{DM}}^2 \rho_{\text{c}}^2}{m_{\text{DM}}^2} \int_0^\infty dz \frac{1}{H(z)} \frac{dN_{\gamma} \left[(1+z)E_{\gamma} \right]}{dE_{\gamma}} (1+z)^3 \Delta^2(z) \ e^{-\tau(E_{\gamma},z)} \end{aligned}$$
$$\begin{aligned} \text{Decay} \quad \frac{dJ_{\text{eg}}}{dE_{\gamma}} &= \frac{c}{4\pi} \frac{\Omega_{\text{DM}} \rho_{\text{c}}}{m_{\text{DM}} \tau_{\text{DM}}} \int_0^\infty dz \frac{1}{H(z)} \frac{dN_{\gamma} \left[(1+z)E_{\gamma} \right]}{dE_{\gamma}} \ e^{-\tau(E_{\gamma},z)} \end{aligned}$$

$$\frac{dJ}{dE_{\gamma}}(\Omega) = \frac{dJ_{\text{halo}}}{dE_{\gamma}}(\Omega) + \frac{dJ_{eg}}{dE_{\gamma}}$$

Extragalactic component

- Isotropic
- Redshifted
- Attenuated due to pair production $\gamma\gamma \rightarrow e^+e^-$

Impact of attenuation: decaying dark matter

Propagation

Suffreedry: 152 9 Suffreedry: 152 9 Suffreedry: 152 9 Suffreedry: 15 Suffreedry: 16 Suffreedry: 16 Suffreedry: 17 Suffreedry: 18 Su

0

O R I O NI Southe dec.

Kepsa Chic NGC 4755

Carine Keybole NGC 3924

Kuhlen, Diemand, Madau

Kuhlen, Diemand, Madau

Kuhlen, Diemand, Madau

Baltz et al. arXiv:0806.2911

Kuhlen, Diemand, Madau

Baltz et al. arXiv:0806.2911

Kuhlen, Diemand, Madau

Kuhlen, Diemand, Madau

But beware of backgrounds when searching for dark matter...

Background I: sources

Background II: modelling of the diffuse emission

Inverse compton

bremmstrahlung

 π^0 -decay

Conservative approach: demand that the flux from dark matter annihilations does not exceed the measured flux

Cirelli, Panci, Serpico

Dwarf spheroidal galaxies

Name	Distance (kpc)	year of discovery	M _{1/2} /L _{1/2} ref. 8	1	b	Ref.
Ursa Major II	30± 5	2006	4000+3700	152.46	37.44	1,2
Segue 2	35	2009	650	149.4	-38.01	3
Willman 1	38±7	2004	770 ⁺⁹³⁰	158.57	56.78	1
Coma Berenices	44± 4	2006	1100^{+800}_{-500}	241.9	83.6	1,2
Bootes II	46	2007	18000??	353.69	68.87	6,7
Bootes I	62±3	2006	1700^{+1400}_{-700}	358.08	69.62	6
Ursa Minor	66± 3	1954	290 ⁺¹⁴⁰	104.95	44.80	4,5
Sculptor	79±4	1937	18+6	287.15	-83.16	4,5
Draco	76± 5	1954	200 ⁺⁸⁰	86.37	34.72	4,5,9
Sextans	86±4	1990	120^{+40}_{-35}	243.4	42.2	4,5
Ursa Major I	97±4	2005	1800^{+1300}_{-700}	159.43	54.41	6
Hercules	132±12	2006	1400^{+1200}_{-700}	28.73	36.87	6
Fornax	138±8	1938	8.7+2.8	237.1	-65.7	4,5
Leo IV	160±15	2006	260^{+1000}_{-200}	265.44	56.51	6

Relatively close

High mass-to-light ratio: dwarf galaxies contain large amounts of dark matter

Assume a Navarro-Frenk-White dark matter halo profile inside the tidal radius:

$$\rho(r) = \begin{cases} \frac{\rho_s r_s^3}{r(r_s + r)^2} & \text{for } r < r_t \\ 0 & \text{for } r \ge r_t \end{cases}$$

Name	$ ho_s$	r_s	J^{NFW}	
	$(M_\odot \ pc^{-3})$	(kpc)	$(10^{19} GeV^2 cm^{-5})$	
Segue 1	1.65	0.05	0.97	C .
Ursa Major II	0.17	0.25	0.57	$J(\psi) = dl(\psi)\rho^2(l(\psi))$
Segue 2	0.61	0.06	0.1	J1.o.s
Willman 1	0.417	0.17	0.84	
Coma Berenices	0.232	0.22	0.42	
Usra Minor	0.04	0.97	0.35	
Sculptor	0.063	0.52	0.12	
Draco	0.13	0.50	0.43	
Sextans	0.079	0.36	0.05	
Fornax	0.04	1.00	0.11	

Flux upper limits

Fermi coll. arXiv:1001.4531

Constraints on annihilating WIMPs

Closing in light WIMP scenarios from dwarf galaxy observations

Geringer-Sameth, Koushiappas '11

Gamma-ray features

<u>Strategy</u>: search for a feature in the gamma-ray spectrum which cannot be mimicked by any (known) astrophysical source:

- If not observed → strong limits on models (background substraction very efficient)
- If observed, unequivocal sign of dark matter

Produced in the annihilation DM DM $\rightarrow \gamma \, \gamma$

Predicted to be fairly intense in some concrete models

• Inert Higgs

Gustafsson, Lundström, Bergström, Edsjö

Produced in the annihilation DM DM $\rightarrow \gamma \, \gamma$

Predicted to be fairly intense in some concrete models

• Dirac fermion coupled to a Z'

Jackson et al. arXiv: 0912.0004

E_{γ}	95%CLUL $\langle \sigma v \rangle_{\gamma\gamma} [\gamma Z]$			$[10^{-27} \text{ cm}^3 \text{s}^{-1}]$	
(GeV)	$(10^{-9} \text{ cm}^{-2} \text{s}^{-1})$	NFW	Einasto	Isothermal	
30	3.5	0.3 [2.6]	0.2 [1.9]	0.5 [4.5]	
40	4.5	0.7 [4.2]	0.5[3.0]	1.2[7.2]	
50	2.4	0.6 [2.7]	0.4 [1.9]	1.0 [4.6]	
60	3.1	1.1 [4.2]	0.8 [3.0]	1.8 [7.3]	
70	1.2	0.6 [2.0]	0.4 [1.4]	1.0[3.4]	
80	0.9	0.5 [1.7]	0.4 [1.2]	0.9 [2.9]	
90	2.6	2.0[6.0]	1.5[4.3]	3.5[10.3]	
100	1.4	1.4 [3.8]	1.0 [2.8]	2.4 [6.6]	
110	0.9	1.0[2.7]	0.7 [1.9]	1.7 [4.6]	
120	1.1	1.6 [4.0]	1.1 [2.9]	2.7 [6.9]	
130	1.8	3.0 [7.3]	2.1 [5.3]	5.1 [12.6]	
140	1.9	3.5[8.4]	2.5 [6.0]	6.0 [14.3]	
150	1.6	3.5[8.2]	2.5 [5.9]	6.0 [14.1]	
160	1.1	2.7 [6.3]	2.0 [4.5]	4.7 [10.9]	
170	0.6	1.7 [4.0]	1.3 [2.9]	3.0[6.8]	
180	0.9	2.7 [6.1]	1.9 [4.4]	4.6 [10.4]	
190	0.9	3.2 [7.1]	2.3 [5.1]	5.5 [12.2]	
200	0.9	3.3 [7.3]	2.4[5.2]	5.7 [12.5]	

Fermi coll. arXiv:1001.4836

Vertongen, Weniger arXiv:1101.2610

A Tentative Gamma-Ray Line from Dark Matter Annihilation at the Fermi Large Area Telescope

Christoph Weniger

Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München, Germany E-mail: weniger@mppmu.mpg.de

arXiv:1204.2797

A Tentative Gamma-Ray Line from Dark Matter Annihilation at the Fermi Large Area Telescope

Christoph Weniger

Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München, Germany E-mail: weniger@mppmu.mpg.de

Annihilation cross-sections (ULTRACLEAN)

A Tentative Gamma-Ray Line from Dark Matter Annihilation at the Fermi Large Area Telescope

Christoph Weniger

Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München, Germany E-mail: weniger@mppmu.mpg.de

Gamma-ray boxes

AI, Lopez-Gehler, Pato arXiv:1205.0007

Gamma-ray boxes

Al, Lopez-Gehler, Pato arXiv:1205.0007

Virtual internal Bremsstrahlung

Virtual internal Bremsstrahlung

A priori, same targets as for annihilating dark matter:

- Diffuse galactic background (galactic center, galactic halo)
- Dwarf galaxies.
- Clusters of galaxies.
- Isotropic ("extragalactic") background.
- Gamma-ray lines.

Where to look for decaying dark matter

A priori, same targets as for annihilating dark matter:

- Diffuse galactic background (galactic center, galactic halo)
- Dwarf galaxies.
- Clusters of galaxies.
- Isotropic ("extragalactic") background.
- Gamma-ray lines. 🗲

Isotropic ("extragalactic") background

Average flux, excluding galactic disk

<u>Clusters of galaxies</u>

Inequivocal sign of dark matter. No (known) astrophysical source can produce a gamma-ray line

Predicted to be fairly intense in some concrete models

• Gravitino in general SUSY models (without imposing R-parity conservation)

<u>Gamma-ray lines</u>

Inequivocal sign of dark matter. No (known) astrophysical source can produce a gamma-ray line

Predicted to be fairly intense in some concrete models

• Vector of a hidden SU(2).

<u>Gamma-ray lines</u>

Inequivocal sign of dark matter. No (known) astrophysical source can produce a gamma-ray line

Predicted to be fairly intense in some concrete models

• Vector of a hidden SU(2).

arXiv:1001.4836

<u>Gamma-ray lines</u>

Vertongen, Weniger 1101.2610

<u>Gamma-ray lines</u>

Inequivocal sign of dark matter. No (known) astrophysical source can produce a gamma-ray line

Predicted to be fairly intense in some concrete models

• Gravitino in general SUSY models (without imposing R-parity conservation)

m=200 GeV τ =7×10²⁶ s

Buchmüller et al.

Conclusions

• We have entered an era where indirect searches provide strong constraints on the dark matter properties. Or from the optimistic point of view, there exists (perhaps for the first time) a discovery potential.

Conclusions

• We have entered an era where indirect searches provide strong constraints on the dark matter properties. Or from the optimistic point of view, there exists (perhaps for the first time) a discovery potential.

• A few anomalies have been reported, which can be interpreted as originated from dark matter annihilations/decays. Very exciting, but caution should prevail over excitement. Look for smoking guns and for correlations in signals in different channels/energies.

 Bright future in indirect dark matter searches: AMS-02, IceCube, CTA... New surprises (and new challenges) are surely awaiting us.