Topological solitons in a coupled ϕ^4 model

A. Halavanau, T. Romanczukiewicz, Ya. Shnir

Belarusian State University and Jagellonian University

2012

A. Halavanau, T. Romanczukiewicz, Ya. Shnir Topological solitons in a coupled ϕ^4 model

- Introduction
- Single component ϕ^4 model
- Extension of ϕ^4 model
- Solitonic collisions
- Effective Lagrangian
- Modulated dynamics

Soliton: This is a solution of a nonlinear partial differential equation which represents a solitary travelling wave, which:

- Is localized in space
- Has a constant shape
- Does not obey the superposition principle.

Examples:

Optical fibres - NLSE

Josephson junctions - sine-Gordon model

Lattice QCD - caloron solutions

Superconductivity - Abrikosov-Nielsen-Olesen model

Single component ϕ^4 system

Lagrangian and equation of motion

$$L=rac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi-rac{1}{2}\left(\phi^{2}-1
ight)^{2}$$

$$\partial_{tt}\phi - \partial_{xx}\phi + 2\phi(\phi^2 - 1) = 0$$

Static solution (kink/antikink)

$$\phi = \tanh(A(\pm x + x_0))$$

A. Halavanau, T. Romanczukiewicz, Ya. Shnir

Topological solitons in a coupled ϕ^4 model

Modes of ϕ^4 kink

Linear oscillations on the background

$$\phi = \phi_{\mathbf{K}} + \delta\phi$$

where $\delta \phi$ can be expanded in a set:

$$\delta\phi=\sum_{n=0}^{\infty}C_n(t)\eta_n(x)$$

Eigenfunctions

$$\eta_0(x) = \frac{1}{\cosh^2 x}$$

$$\eta_1(x) = \frac{\sinh x}{\cosh^2 x}$$

$$\eta_k(x) = e^{ikx} (3 \tanh^2 x - 3ik \tanh x) - e^{ikx} (1 + k^2) + \text{C.C..}$$

ϕ^4 kink-antikink collisions

Properties

- Annihilate or repel
- Produce oscillon state after annihilation
- Have bounce windows structure
- Fractal structure

Bounce windows and fractal structure refers to the energy exchange mechanism between translational and internal modes

Figure: Bounce window structure of $K\bar{K}$ collision in a usual ϕ^4 case

Lagrangian and field equations

Lagrangian of the coupled two-component model can be written as:

$$L = \frac{1}{2} [(\partial_t \phi_1)^2 - (\partial_x \phi_1)^2 - (\phi_1^2 - 1)^2] \\ + \frac{1}{2} [(\partial_t \phi_2)^2 - (\partial_x \phi_2)^2 - (\phi_2^2 - 1)^2] + \kappa \phi_1^2 \phi_2^2$$

Field equations:

$$\begin{cases} \partial_t^2 \phi_1 - \partial_x^2 \phi_1 + 2\phi_1(\phi_1^2 - 1) - 2\kappa \phi_1 \phi_2^2 = 0\\ \partial_t^2 \phi_2 - \partial_x^2 \phi_2 + 2\phi_2(\phi_2^2 - 1) - 2\kappa \phi_2 \phi_1^2 = 0 \end{cases}$$

Wess-Zumino model with two coupled Majorana spinor fields Montonen-Sarker-Trullinger-Bishop model with two scalar coupled fields

A. Halavanau, T. Romanczukiewicz, Ya. Shnir Topological solitons in a coupled ϕ^4 model

Static configuration (numerical)

A. Halavanau, T. Romanczukiewicz, Ya. Shnir

Topological solitons in a coupled ϕ^4 model

Zero order approximation

$$\phi_1^{(0)} = \tanh(x)/\sqrt{1-\kappa}; \qquad \phi_2^{(0)} = 1/\sqrt{1-\kappa}$$

Expansion of the fields

$$\begin{split} \phi_1 &= \phi_1^{(0)} + \kappa \phi_1^{(1)} + \kappa^2 \phi_1^{(2)} + \dots; \qquad \phi_2 &= \phi_2^{(0)} + \kappa \phi_2^{(1)} + \kappa^2 \phi_2^{(2)} + \dots;, \\ \phi_1^{(1)} &= \sum_{n=0}^{\infty} A_n \tanh^{2n+1} x, \qquad \phi_2^{(1)} &= \sum_{n=0}^{\infty} \frac{B_n}{\cosh^{2n} x} \\ \phi_1^{(1)} &= \frac{16}{15} \tanh x - \frac{1}{3} \tanh^3 x - \frac{4}{75} \tanh^5 x - \frac{1}{75} \tanh^7 x + \dots, \\ \phi_2^{(1)} &= \frac{1}{2} - \frac{1}{6\cosh^2 x} - \frac{1}{28\cosh^4 x} - \frac{5}{728\cosh^6 x} - \frac{45}{11284\cosh^8 x} + \dots \end{split}$$

Topological charge

$$Q_i = rac{1}{2}\sqrt{1-\kappa}\int\limits_{-\infty}^{\infty}dx\,rac{\partial\phi_i}{\partial x},\qquad i=1,2$$

Interesting channels

$$(-1,0)+(1,0)
ightarrow \left\{ egin{array}{c} (0,0)\ (0,-1)+(0,1)\ (-1,0)+(1,0) \end{array}
ight.
onumber \ \left. \left(\begin{array}{c} (0,0)\ (-1,1)+(-1,1) \end{array}
ight.
ightarrow \left\{ egin{array}{c} (0,0)\ (-1,1)+(-1,1) \end{array}
ight.
ight.
ight.$$

글 > - < 글 >

Topological flipping and double kink configuration

X(t) - mutual distance; A(t),B(t) - internal mode perturbation

$$\begin{split} \phi_{\text{ansatz}} &= 2 \left[\frac{\tanh(x+X(t))-\tanh(x-X(t))-1}{\sqrt{1-\kappa}} \right. \\ &\left. + \frac{1}{2} A(t) (\eta(x+X(t)) - \eta(x-X(t))) \right. \\ &\left. + \frac{1}{2} B(t) (\eta(x+X(t)) + \eta(x-X(t))) \right] \end{split}$$

Simplified by dropping out high-order terms

$$\begin{split} L_{eff} &= \frac{2}{1-\kappa} \left[(M+I(X)) \dot{X}^2 - U(X) \right. \\ &+ F(X) A(t) \sqrt{1-\kappa} + F(X) B(t) \sqrt{1-\kappa} \\ &+ \frac{4}{3} \dot{A}^2 - 8\omega^2 A^2 + \frac{4}{3} \dot{B}^2 - 8\omega^2 B^2 \end{split}$$

글 🖌 🔺 글 🕨

Potential and coupling functions

Note: U(X) is similar to Lennard-Jones potential. Instantonic liquid?

Solutions for X and A,B

Note: Annihilation is represented as many-bouncing state

Effective potential

Contour plots for V_{eff} from $H_{eff} = \frac{P_X^2}{(M+I(X))} + P_A^2 + V_{eff}$ for single-component (left) and double-component (right)

Modulated $K\bar{K}$ dynamics

Initial configuration

$$\phi_1 = \tanh(x)/\sqrt{1-\kappa}; \qquad \phi_2 = 1/\sqrt{1-\kappa} + A\sin(kx + \omega t)$$

A. Halavanau, T. Romanczukiewicz, Ya. Shnir

Topological solitons in a coupled ϕ^4 model

Conclusions and outlook

- There are two different types of solitons, the double kink and the lump kink, in both cases our numerical simulations of collisions between the various types of solitons reveal some chaotic resonance behavior
- The resonant scattering structure in the $K\bar{K}$ collisions is related with energy exchange between the translational mode and the inner mode of the kink-antikink system
- Effective Lagrangian which can describe the main properties of the model is proposed
- Coupling of the model with harmonic perturbation in the second sector allows us manipulate the fine structure of the process providing harmonic time dependency of the translational and inner modes of the kinks
- Perturbative analytical analyse is quite consistent with numerical results