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Lecture 1: General relativistic hydrodynamics equations.
                Einstein’s equations.
                Gravitational radiation.
                Numerical methods for conservation laws.

Lecture 2: Binary neutron stars.
                Black-hole torus systems.

Motivation: 
Multi-messenger astronomy: photons, cosmic 
rays, neutrinos, gravitational waves.
www.aspera-eu.org

Outline
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[...] a few projects whose funding has to be kept at substantial levels, be it 
because they have an impressive momentum that needs to be maintained, because they 
enter a phase with high discovery potential, because they go hand in hand with LHC 
physics, because they are technologically ready and have a worldwide community 
behind them, or finally, because a delay of crucial decisions and funding could even 
jeopardize the project. In this spirit, we recommend the following projects and urge the 
agencies to join their forces in order to provide effective and substantial support:

[...]

• Gravitational waves: With Advanced VIRGO, Advanced LIGO and GEO-HF, a 
discovery in the next five years becomes highly probable. This would open an entirely 
new window to the Universe. We urge the agencies to continue to substantially 
support the ongoing and planned upgrades to advanced detectors.

From the ASPERA roadmap (as of Nov 2011)

The path for research in gravitational waves beyond the 
advanced detectors foresees two very large-scale projects 
(costs on the billion Euro scale): the Earth-bound Einstein 
Telescope (E.T.) and the space-bound LISA project. In 
today’s perspective, E.T. construction would start at the end of 
the decade and after the first detection of gravitational waves 
with the advanced detectors. We also look forward to the results 
of LISA-Pathfinder. We renew our strong support of the 
LISA mission and preparatory work on E.T.

ASPERA: European network of national agencies responsible for coordinating 
and funding national research efforts in Astroparticle Physics.



The Einstein Telescope project aims to the realization of a crucial 
research infrastructure in Europe: a third generation Gravitational Wave 
observatory.  Supported as Design Study by the European Commission 
under the Framework Programme 7 (Grant Agreement 211743).

The ASPERA organization includes ET in the “Magnificent Seven” list in 
its roadmap.

www.et-gw.eu

http://www.et-gw.eu
http://www.et-gw.eu


Numerical relativity in non-vacuum spacetimes, which 
amounts to solving the Einstein-Euler system of 
equations, is providing the most accurate gravitational 
waveforms that can be used as templates to help 
detectors dig out the (tiny) signal buried in the noise.

These two lectures will discuss the theoretical framework 
to perform numerical relativity simulations, and will focus 
on a particular important scenario in gravitational wave 
astronomy - binary neutron stars.



Introduction



Many astrophysical objects of interest (planets, stars, jets, 
galaxies), as well as the ISM and the IGM can be modelled at a 
theoretical model as fluids or plasmas (continuum dynamics).

(Compressible) fluid dynamics plays a central role in many 
numerical applications of Computational Astrophysics. 
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Computational Relativistic Astrophysics
Natural domain of general relativistic hydrodynamics (GRHD) and 
magneto-hydrodynamics (GRMHD) is the field of relativistic 
astrophysics. Essential role in the description of gravitational 
collapse and the formation of  compact objects (neutron stars 
and black holes).

Scenarios characterised by the presence of high speed flows 
(close to the speed of light), strong shock waves (discontinuous 
solutions), and  strong gravitational fields. 

GRHD/GRMHD equations are nonlinear hyperbolic systems. Solid 
mathematical foundations and accurate numerical methodology 
imported from CFD. A “preferred” choice: high-resolution shock-
capturing schemes written in conservation form. 

Time-dependent evolutions of fluid flow coupled to the spacetime 
geometry (Einstein’s equations) possible through accurate, large-
scale numerical simulations. Some scenarios can be described in 
the test-fluid approximation: GRHD/GRMHD computations in curved 
backgrounds (highly mature, particularly GRHD case).



Black hole-torus systems are common in the universe: 
 The central region of AGNs is believed to consist of a 

supermassive black hole of mass MBH ~ 106-1010Msun surrounded 
by a torus. Such systems may form through the collapse of 
supermassive stars (Rees 1984; Shibata and  Shapiro 2002). 

 Mergers of NS-NS binaries and BH-NS binaries often result 
in a BH and a torus (Rezzolla et al 2010, Kiuchi et al 2010). 

 Such systems can also be produced at the end of the life of 
massive stars (Heger et al 2003). 

 The merger and collapsar scenarios are linked to short- and 
long-duration gamma-ray bursts (GRBs), respectively (Narayan et 
al 1992; Woosley 1993). 

Numerical relativity simulations of non-vacuum spacetimes have 
reached a status where accurate descriptions of such distinctive 
scenarios of relativistic astrophysics are possible. 



Numerical simulations of NS-NS 
show that most of the material 
disappears beyond the event 
horizon in a few ms.

As a result, a thick accreting disk 
or torus with mass of about 10% 
of total mass (upper limit) may 
be formed.

The formation and evolution of BH-torus systems not yet been observed - 
sites opaque to electromagnetic waves (EWs) due to their intrinsic high 
density and temperature. Gravitational waves are much more 
transparent than EWs regarding absorption and scattering with matter. 

If BH-torus systems emitted detectable GWs, it would be possible 
to explore their formation and evolution, along with the prevailing 
hypotheses that associate them to GRB engines.

Black hole - torus system



The only experimental evidence of the existence of gravitational 
waves comes from the study of binary pulsars. 

What is a pulsar?
• very compact star - as massive as the Sun 
but with a radius of about 10 km.
• very rapidly-rotating star - some pulsars 
rotate around the axis once per second but 
others do it hundreds of times per second. 

The first binary pulsar, PSR1913+16, 
was discovered by radio-astronomers  
Russell Hulse and Joseph Taylor in 1974. 

It is located in the Milky Way, its orbital 
period is ~7.5 hours and the radio signal  
is received ~17 times per second. Hulse

Taylor

Gravitational radiation: experimental evidence

(cf. Prof. Blaschke’s talk)



Two orbiting neutron stars:

• mass of each star ~ 1.4 solar masses.
• orbital period ~ 7.5 hours.
• the stars revolve around the center of mass at a speed of a 
thousandth of the speed of light. 

According to General Relativity the binary pulsar has to radiate 
gravitational waves.  Such emission brings the two stars closer 
together, decreasing the orbital period and increasing the 
rotational frequency. 

The final fate of the binary pulsar will be the merger of the two 
neutron stars, which will produce a tremendous “burst” of 
gravitational radiation that would be detected by the current 
instruments.

Decrease of the orbital period in the 
Hulse-Taylor binary pulsar



The merger of the 
two stars will occur 
in about 240 million 
years ...

The decrease of the orbital 
period of  PSR1913+16 is 
~10 µs per year. 

(~ 3.1 mm in every rotation).

Matches exactly with the 
theoretical rate predicted by 
General Relativity.



 Merger of compact binaries:  “chirp” signal

 Gravitational collapse, i.e. supernovae / gamma-ray 
burts: “burst” signal

 Rotating neutron stars (pulsars): periodic signal

 Cosmological sources.

All of these sources, each in its own particular range of 
frequencies, contribute to the “writing of Einstein’s 
unfinished symphony” ... 

Suggested reading: Marcia Bartusiak, Einstein’s unfinished 
symphony: Listening to the sounds of space-time.

Astrophysical sources of gravitational waves

www.marciabartusiak.com

http://www.marciabartusiak.com
http://www.marciabartusiak.com


Merger of compact binaries
Compact binary systems formed by two neutron stars, 
two black holes, or a mixed configuration. 



The gravitational signal increases both in frequency and in  
amplitude as the two objects are brought closer together.

Accurate templates of the gravitational radiation produced in the 
moment of largest intensity (the merger) can only be obtained 
solving numerically the Einstein’s equations coupled to the 
hydrodynamics equations:  Numerical Relativity.  

Duez et al 
(2001)



Still very crude, though it can be improved: microphysics for the EoS, 
magnetic fields, dissipative fluids, radiative transfer, ...  

∇∗
νFµν = 0, (Maxwell eqs. : induction, zero div.)

Our best approximation to “reality”

Basic theoretical model



General relativistic 
hydrodynamics equations

F. Banyuls et al, “Numerical 3+1 general relativistic hydrodynamics: a 
local characteristic approach”,  Astrophysical Journal, 476, 221 (1997)

J.A. Font, “Numerical hydrodynamics and magnetohydrodynamics in 
general relativity”, Living Reviews in Relativity (2008) 
(www.livingreviews.org)

http://www.livingreviews.org
http://www.livingreviews.org


conservative external force field 
(e.g. gravity) 

source terms in momentum and energy eqs. due to coupling 
between matter and radiation (transport phenomena).

Hyperbolic equations have finite propagation speed: information cannot 
travel with speed higher than that given by the largest characteristic 
curves of the system. 

fluxes

sources

state vector

Range of influence of solution  
bounded by eigenvalues of 
Jacobian matrix of the system.

(Classical) hydrodynamics equations
Conservation laws of mass, momentum and energy. First-order hyperbolic 
system of conservation laws.

�g �g = −∇Φ, ∆Φ = 4πGρ

Qi
M , QE

A =
∂ �f i

∂�u
⇒ λ0 = vi, λ± = vi ± cs



In general relativity the hydrodynamics equations are obtained from the 
local conservation laws of the stress-energy tensor and of the 
matter current density (continuity equation): 

Equations of motion

∇µ is the covariant derivative associated with the 4-metric gµν. The density 
current is given by Jµ=ρuµ, uµ representing the fluid 4-velocity and ρ the 
rest-mass density in a locally inertial reference frame.

The stress-energy tensor for a non-perfect fluid is defined as: 

where ε is the specific internal energy density, p is the pressure, hµν is the 
spatial projection tensor, hµν=uµuν+gµν, and qµ is the energy flux.

In addition, µ and ξ are the shear and bulk viscosity coefficients. The 
expansion, Θ, describing the divergence or convergence of the fluid world 
lines is defined as Θ=∇µuν. The symmetric, trace-free, and spatial shear 
tensor σµν is defined by:



x0 foliation of the spacetime with hypersurfaces (coordinatised by xi). 

In the following we will neglect non-adiabatic effects, such as viscosity or 
heat transfer, assuming the stress-energy tensor to be that of a perfect 
fluid:

where we have introduced the relativistic specific enthalpy, defined as:

Tµν = ρhuµuν + pgµν

h = 1 + ε+
p

ρ
Introducing an explicit coordinate chart, the previous conservation 
equations read:

∂

∂xµ
(
√
−gρuµ) = 0

∂

∂xµ
(
√
−gTµν) =

√
−gΓν

µλT
µλ

Christoffel symbols√
−g, g = det(gµν)

volume element

Γν
µλ



The system formed by the equations of motion and the continuity equation 
must be supplemented with an equation of state (EOS) relating the 
pressure to some fundamental thermodynamical quantities.

Ideal gas:

Polytrope:

In the “test-fluid” approximation (fluid’s self-gravity neglected), the 
dynamics of the matter fields is fully described by the previous 
conservation laws and the EOS.

When such approximation does not hold, the previous equations must be 
solved in conjunction with Einstein’s equations for the gravitational field 
which describe the evolution of a dynamical spacetime:

(Newtonian analogy: Euler equations + Poisson equation) 

Einstein’s equations

p = p(ρ, ε)
p = κρΓ , Γ = 1 +

1

N

p = (Γ− 1)ρε



ds2 = −(α2 − βiβ
i)dt2 + 2βidx

idt+ γijdx
idxj

Spacetime is foliated with 
a set of non-intersecting 
spacelike hypersurfaces Σ. 

Within a given surface 
distances are measured 
with the spatial 3-metric. 

The most widely used approach to solve Einstein’s equations in 
Numerical Relativity is the so-called Cauchy or 3+1 formulation (IVP). 

Two kinematical variables describe the evolution from one hypersurface to 
the next: the lapse function α which describes the rate of proper time 
along a timelike unit vector nµ normal to the hypersurface, and the shift 
vector βi, spatial vector which describes the movement of coordinates in 
the hypersurface. 



There exist different formulations depending on:

1. Choice of slicing: level surfaces of x0 can be spatial (3+1) or null (CIVP)

2. Choice of physical (primitive) variables (ρ, ε, ui …)

Wilson (1972) wrote the system as a set of advection equation within the 
3+1 formalism. Non-conservative.
Conservative formulations well-adapted to numerical methodology were 
developed in the 1990s: 

• Martí, Ibáñez & Miralles (1991): 1+1, general EOS 
• Eulderink & Mellema (1995): covariant, perfect fluid
• Banyuls et al (1997): 3+1, general EOS
• Papadopoulos & Font (2000): covariant, general EOS

3+1 GR Hydro equations: formulations
∂

∂xµ
(
√
−gρuµ) = 0

∂

∂xµ
(
√
−gTµν) =

√
−gΓν

µλT
µλ



The use of Eulerian coordinates in multidimensional numerical relativistic 
hydrodynamics started with the seminal work of Wilson (1972). 

Introducing the basic dynamical variables D, Sµ, and E, i.e. the relativistic 
density, momenta, and energy, respectively, defined as:

The equations of motion in Wilson’s formulation are:

with the “transport velocity” given by

Non-conservative formulation

D = ρu0, Sµ = ρhuµu
0, E = ρεu0

V µ =
uµ

u0



A direct inspection of the system shows that the equations are written as 
a coupled set of advection equations.

Conservation of mass:

(linear advection eq.)

Sidesteps an important guideline for the formulation of nonlinear 
hyperbolic systems of eqs, the preservation of their conservation form.

This is a necessary feature to guarantee correct evolution in regions of 
entropy generation (i.e. shocks). As a result, some amount of numerical 
dissipation (artificial viscosity) must be used to stabilize the numerical 
solution across discontinuities.

Formulation showed some limitations in dealing with situations involving 
ultrarelativistic flows, as first pointed out by Centrella & Wilson (1984).

Norman & Winkler, in their 1986 paper “Why ultrarelativistic 
hydrodynamics is difficult?” performed a comprehensive numerical study 
of such formulation in the special relativistic limit.



(Martí & Müller, 2003)

Problem setup

constant density 
cold gas

flow 
velocity

shock 
speed

shock front                  solid wall

shocked 
material

high density

high pressure

zero velocity

Analytic solution:

1 2

The relativistic shock reflection problem 
was among the 1D tests considered by 
Norman & Winkler (1986). 

This is a demanding test involving the 
heating of a cold gas which impacts at 
relativistic speed with a solid wall 
creating a shock which propagates off the 
wall.

Relativistic shock reflection test



Non-conservative formulations show limitations to handle ultrarelativistic 
glows (Centrella & Wilson 1984, Norman & Winkler 1986).

Relative error relativistic shock reflection test as a function of Lorentz 
factor W of incoming gas. For W≈2 (v≈0.86c), 5-7% error (depending on 
EOS adiabatic index); shows linear increase with W. 

Ultrarrelativistic flows could only be simulated resorting to 
conservative formulations. (Martí, Ibáñez & Miralles 1991; Marquina et al 1992)



Eulerian observer: at rest on the hypersurface; moves from ∑t to 
∑t+∆t along the normal to the hypersurface, with velocity:

Numerically, the hyperbolic and conservative nature of the GRHD 
equations allows to design a solution procedure based on the 
characteristic speeds and fields of the system, translating to 
relativistic hydrodynamics existing tools of CFD.

This procedure departs from earlier approaches, most notably in 
avoiding the need for artificial dissipation terms to handle 
discontinuous solutions as well as implicit schemes as proposed by 
Norman & Winkler (1986).

3+1: spacetime foliation with constant t spatial hypersurfaces ∑t  

Conservative formulation (Banyuls et al 1997)

Line element: ds2 = −(α2 − βiβ
i)dt2 + 2βidx

idt+ γijdx
idxj



Replace the “primitive variables”  in terms of the  “conserved variables” :

Lorentz factor specific enthalpy

The extension of high-resolution shock-capturing (HRSC) schemes from 
classical fluid dynamics to relativistic hydrodynamics accomplished in three 
steps:

1. Casting the GRHD equations as a system of conservation laws.
2. Identifying the suitable vector of unknowns.
3. Building up an approximate Riemann solver.

The associated numerical scheme had to meet a key prerequisite – being 
written in conservation form, as this automatically guarantees the correct 
propagation of discontinuities as well as the correct Rankine-Hugoniot (jump) 
conditions across discontinuities (the shock-capturing property).

In 1991 Martí, Ibáñez, and Miralles presented a new formulation of the general 
relativistic hydrodynamics equations, in 1+1, aimed at taking advantage of their 
hyperbolic character. Corresponding 3+1 extension presented in Font et al 
(1994) in special relativity, and in Banyuls et al (1997) in general relativity.



Conservative formulations well-adapted to numerical methodology:
• Banyuls et al (1997); Font et al (2000): 3+1, general EOS

First-order flux-conservative hyperbolic system

Solved using HRSC schemes 

(either upwind or central)



General Relativity

Newton

Minkowski

Hydrodynamics 
equations

Hyperbolic systems of 
conservation laws



HRSC schemes based on approximate Riemann solvers use the local 
characteristic structure of the hyperbolic system of equations. For the previous 
system, this information was presented in Banyuls et al (1997). 

The eigenvalues (characteristic speeds) are all real (but not distinct, one 
showing a threefold degeneracy), and a complete set of right-eigenvectors 
exists. The above system satisfies, hence, the definition of hiperbolicity.

Eigenvalues (along the x direction)

Right-eigenvectors



Special relativistic limit (along x-direction)

coupling with transversal components of the velocity 
(important difference with Newtonian case)

Even in the purely 1D case:

For causal EOS the sound 
cone lies within the light cone

Recall Newtonian (1D) case:

�v = (vx, 0, 0) ⇒ λ0 = vx, λ± =
vx ± cs
1± vxcs

λ0 = vx, λ± = vx ± cs

λ0 = vx

λ± =
1

1− v2c2s
[vx(1− c2s)± cs

�
(1− v2)(1− v2c2s − vxvx(1− c2s))]



A distinctive feature of the numerical solution of the relativistic 
hydrodynamics equations is that while the numerical algorithm updates 
the vector of conserved quantities, the numerical code makes extensive 
use of the primitive variables.

Those would appear repeatedly in the solution procedure, e.g. in the 
characteristic fields, in the solution of the Riemann problem, and in the 
computation of the numerical fluxes.

For spacelike foliations of the spacetime (3+1) the relation between the 
two sets of variables is implicit. Hence, iterative (root-finding) algorithms 
are required. Those have been developed for all existing formulations.

This feature, which is distinctive of the equations of general (and special) 
relativistic hydrodynamics (and also in GRMHD) – not existing in the 
Newtonian case – may lead to accuracy losses in regions of low density 
and small velocities, apart from being computationally inefficient.

Recovering the primitive variables



The root of the above function can be obtained by means of a nonlinear 
root-finder (e.g. Newton-Raphson method).

Newtonian hydro: explicit to obtain “primitive” variables from state vector.

3+1 GR hydro: root-finding procedure. The expressions relating the 
primitive variables to the state vector depend explicitly on the EOS. Simple 
expressions are only obtained for simple EOS, i.e. ideal gas.

One can build a function of pressure whose zero represents the pressure in 
the physical state (other choices possible):

Example of primitive recovery



Einstein’s Equations



The dynamics of the gravitational field is described by Einstein’s 
field equations:

These equations relate the spacetime geometry (left-hand side)  
with the distribution of matter and energy (right-hand side): 
“Matter tells spacetime how to curve, and spacetime tells matter 
how to move.”

Einstein’s equations are a system of 10 nonlinear, coupled, partial 
differential equations in 4 dimensions. 

When written with respect to a general coordinate system they may 
contain hundreds of terms ... 

Einstein’s equations and Numerical Relativity



There’s plenty of exact solutions of Einstein’s equations, but very few 
of such solutions have astrophysical significance. Due to their 
complexity exact solutions of such equations have only been found when 
adopting simplifying symmetries:

• Schwarzschild solution (static and spherically symmetric)
• Kerr solution (stationary and axisymmetric)
• Cosmological solution (isotropic, homogeneous, or both)

When studying more complex systems with astrophysical significance  
(gravitational collapse, supernovae, mergers of compact binaries) is 
unfeasible to solve Einstein’s equations in an exact way.

The field of Numerical Relativity emerged in the mid 1960s from the 
need to study such kind of problems, aiming at trying to solve the field 
equations with supercomputers using numerical approximations. 

Numerical Relativity’s main goal: provide templates of the gravitational 
produced in astrophysical sources to facilitate its detection (and the  
analysis of the available data; LIGO, VIRGO).



Numerical Relativity is the field of research of General Relativity 
devoted to seeking numerical solutions of Einstein’s equations 
through (super)computer simulations. 

Numerical Relativity: dynamical spacetimes

• Mathematical difficulties:

 PDEs highly non-linear with hundreds of terms.
 Hyperbolic and elliptic character.
 Coordinates and gauge conditions (gauge freedom).
 Boundary conditions.

• Numerical difficulties:

 Formulation of the equations.
 Development of numerical schemes.
 Stability and efficiency.
 Possible formation of curvature singularities (collapse to black 

hole).

• Huge computational resources needed (3D).



Intrinsic and extrinsic curvature of spatial hypersurfaces: 
Intrinsic curvature given by the 3-dimensional Riemann tensor 
defined in terms of the 3-metric       . 

Extrinsic curvature       measures the change of the vector normal 
to the hypersurface as it is parallel-transported from one point in 
the hypersurface to another.

γij

Kij

Pα
β ≡ δαβ + nαnβProjection operator:

Unit normal vector: nµ =

�
1

α
,−βi

α

�
, nµ = (−α, 0), nµnµ = −1

Kαβ ≡ −Pµ
αP

ν
β∇µnν = −(∇αnβ + nαn

µ∇µnβ))

Substituting the form of the normal vector in the definition of the 
extrinsic curvature, we get:

Kij =
1

2α
(−∂tγij +∇iβj +∇jβi)



Einstein’s equations in 3+1 form
Using the projection operator and the normal vector, Einstein’s 
equations can be separated in three groups:

 Normal projection (1 equation; energy or Hamiltonian constraint)

 Mixed projections (3 equations; momentum constraints)

 Projection onto the hypersurface (6 equations; evolution of the 
extrinsic curvature)

nαnβ(Gαβ − 8πTαβ) = 0

P [nα(Gαβ − 8πTαβ)] = 0

P (Gαβ − 8πTαβ) = 0



Evolution equations:

Constraint equations:

3+1 Formulation (Cauchy)
Lichnerowicz (1944); Choquet-Bruhat (1962); Arnowitt, Deser & Misner (1962); York (1979)

Cauchy problem (IVP):
•  Specify        ,          at t=0 
subjected to the constraint equations.

•  Specify coordinates through     ,       

• Evolve the data using EE and the 
definition of  

γij Kij

Kij

α

(✱)

(✱) (∂t − Lβ)γij = −2αKij

βi



Covariant derivative wrt the induced 3-metric

Ricci tensor 

Definitions:

∇i

Rij = ∂nΓ
n
ij − ∂jΓ

n
in + Γn

mnΓ
m
ij − Γn

jmΓm
in

Christoffel symbols
Γi
jk =

1

2
γin

�
∂γnj
∂xk

+
∂γnk
∂xj

− ∂γjk
∂xn

�

R = Rijγ
ijScalar curvature

Trace of extrinsic curvature K = Kijγ
ij

ρ ≡ Tµνnµnν = ρhW 2 − P

Si ≡ − ⊥i
µ Tµνnν = ρhW 2vi

Sij ≡ ⊥µ
i ⊥

ν
j Tµν = ρhW 2vivj + γijP

S ≡ ρhW 2viv
i + 3P

Matter fields



Kojima, Nakamura & Oohara (1987); Shibata & Nakamura (1995); Baumgarte & Shapiro (1999)

Idea: Remove mixed second derivatives in the Ricci tensor by introducing 
auxiliary variables. Evolution equations start to look like wave equations for 
3-metric and extrinsic curvature (idea goes back to De Donder 1921; Choquet-
Bruhat 1952; Fischer & Marsden 1972).

 Conformal decomposition of the 3-metric:   

 BSSN evolution variables (trace of extrinsic curvature is a separate 
variable): 

 Introduce evolution variables (gauge source functions): 

BSSN formulation



Kojima, Nakamura & Oohara (1987); Shibata & Nakamura (1995); Baumgarte & Shapiro (1999)

BSSN is currently the standard 3+1 formulation in Numerical 
Relativity. Long-term stable applications include strongly-
gravitating systems such as neutron stars (isolated and binaries) 
and single and binary black holes!

Can be solved numerically!

Evolution equations in BSSN formulation 



BBH simulations: State of the art

1995: Pair of pants 
(Head-on collision)

2007: Pair of twisted pants 
(spiral & merge)
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In the CFC approximation (Isenberg 1985; Wilson & Mathews 1996) the ADM 3+1 
equations 

reduce to a system of five coupled, nonlinear elliptic equations for the 
lapse function, conformal factor, and the shift vector:

CFC approximation

Useful approximations: CFC equations



Numerical methods 
for conservation laws

R.J. LeVeque, “Numerical methods for conservation laws”
Birkhäuser, Basel (1992)
E.F. Toro, “Riemann solvers and numerical methods for fluid dynamics”
Springer Verlag, Berlin (1997)



Numerical methods in Astrophysical Fluid Dynamics

Main numerical schemes to solve the equations of a compressible fluid:

• Finite difference methods. Require numerical viscosity to stabilize the 
solution in regions where discontinuities develop. 

• Finite volume methods. Conservation form. Use Riemann solvers to 
solve the equations in the presence of discontinuities (Godunov 1959). 
HRSC schemes.

• Symmetric methods. Conservation form. Centred finite differences and 
high spatial order. 

• Particle methods. Smoothed Particle Hydrodynamics (Monaghan 
1992). Integrate movement of discrete particles to describe the flow. 
Diffusive.

For hyperbolic systems of conservation laws, schemes written in 
conservation form guarantee that the convergence (if it exists) is to one of 
the weak solutions of the system of equations (Lax-Wendroff theorem 
1960).



W h e n a C a u c h y p r o b l e m 
described by a set of continuous 
PDEs is solved in a discretized 
form the numerical solution is 
piecewise constant (collection 
of local Riemann problems). 

This is particularly problematic 
when solving the hydrodynamic 
equations (either Newtonian or 
relativistic) for compressible fluids. 

The i r hyperbo l i c , non l inear 
character produces discontinuous 
solutions in a finite time (shock 
waves, contact discontinuities) 
even from smooth initial data! 

Any FD scheme must be able 
to handle discontinuities in a 
satisfactory way.

1. 1st order accurate schemes 
(Lax-Friedrich): Non-oscillatory 
but inaccurate across discontinuities 
(excessive diffusion)

2. (standard) 2nd order accurate 
s c h e m e s ( L a x - W e n d r o f f ) : 
Oscillatory across discontinuities

3. 2nd order accurate schemes with 
artificial viscosity

4. Godunov-type schemes (upwind 
High Resolution Shock Capturing 
schemes)



Lax-Wendroff numerical solution of Burger’s equation at t=0.2 (left) and t=1.0 (right)

2nd order TVD numerical solution of Burger’s equation at t=0.2 (left) and t=1.0 (right)



cell boundaries where fluxes are required

shock frontrarefaction wave

Solution at time n+1 of the two 
Riemann problems at the cell 
boundaries xj+1/2  and xj-1/2

Initial data at time n for the two 
Riemann problems at the cell 
boundaries xj+1/2  and xj-1/2

Spacetime evolution of the two 
Riemann problems at the cell 
boundaries xj+1/2  and xj-1/2. Each 
problem leads to a shock wave 
and a rarefaction wave  moving 
in opposite directions

courtesy of L. Rezzolla



In Godunov’s method the structure of the Riemann solution is “lost” in the 
cell averaging process (1st order in space).
The exact solution of a Riemann problem is computationally expensive, 
particularly in multidimensions and for complicated EoS.
Relativistic multidimensional problems: coupling of all flow velocity 
components through the Lorentz factor.

• Shocks: increase in the number of algebraic jump (RH) conditions.
• Rarefactions: solving a system of ODEs.

(Jacobian matrix)

Approximate Riemann solvers

This motivated development of approximate (linearized) Riemann solvers.

Based on the exact solution of Riemann problems corresponding to a new 
system of equations obtained by a linearization of the original one (quasi-
linear form). The spectral decomposition of the Jacobian matrices is on the 
basis of all solvers (“extending” ideas used for linear hyperbolic systems).

Approach followed by an important subset of shock-capturing schemes, the 
so-called Godunov-type methods (Harten & Lax 1983; Einfeldt 1988).

∂�u

∂t
+

∂ �f

∂x
= 0 ⇒ ∂�u

∂t
+A

∂�u

∂x
= 0 , A =

∂ �f

∂�u



In practice: 2nd or 3rd order time 
accurate, conservative Runge-Kutta 
schemes (Shu & Osher 1989; MoL)

3. Numerical fluxes: Approximate 
Riemann solvers (Roe, HLLE, 
Marquina). Explicit use of the 
spectral information of the system

2. Cell reconstruction: Piecewise 
constant (Godunov), linear (MUSCL, 
MC, van Leer), parabolic (PPM, Colella 
& Woodward) interpolation procedures 
of state-vector variables from cell 
centers to cell interfaces.

1. Time update: 

Algorithm in conservation form

Standard implementation of a HRSC scheme



 Stable and accurate shock profiles

 Accurate propagation speed of discontinuities

 Accurate numerical resolution of nonlinear features:  discontinuites, 
rarefaction waves, vortices, turbulence, etc

Shock tube test Relativistic shock reflection
V=0.99999c   (W=224)

High-resolution shock-capturing schemes



The theoretical tools outlined in this lecture 
will be used in the simulations that will be 
discussed in tomorrow’s lecture:

Lecture 2: Binary neutron stars.
                Black-hole torus systems.

Motivation: gravitational waveforms.


