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Electroweak Phase Transition

» In the early universe at temperature on the order of 100
GeV the electroweak (EW) symmetry is restored.

» For standard model (SM) parameters, quantum corrections
wash out the weak first order phase transition, as shown
through non-perturbative methods and lattice
simulations. 2

'W. Buchmuller, O. Philipsen Nucl. Phys. B 443 (1995) 47.
2M. E. Shaposhnikov, Phys. Rec. Lett. 77 (1996) 2887.
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Electroweak Phase Transition and Baryogenesis

» Sakharov Conditions for Baryogenesis
» B-number violating process.
» C, CP violation.
» Out of equilibrium interactions.
» A strong first order phase transition is necessary in order
to have the system out of equilibrium.

» A phase transition at lower temperature prevents system
from returning to equilibrium during the transition.

» A low temperature phase transition would potentially allow
for exploration of the electroweak phase transition in the
laboratory.
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Constraints on Higgs Potential
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Vacuum Expectation value vy = 246/1/2 GeV.
Mass constrained near m;, ~ 125 GeV.
Renormalizability.

SM Potential in unitary gauge
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Modifying the Higgs Potential

» Viewing the SM Higgs sector as an effective theory opens
the path to modifying the potential.

» We view a modification as the result of integrating out other
degrees of freedom. We currently have no model for this.
The following is purely phenomenological.

» Renormalizability only constrains the potential in the
neighborhood of different vacuum states where
perturbation theory applies.

» Removes the condition that the potential contain only
quadratic and quartic terms in A.
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Modifying the Higgs Potential

» We consider the family of potentials

X

W(h) =f(V(h),  flx)= 0+ Bx/VO)F

» This preserves the known vacuum expectation value and
mass of the Higgs, but modifies the potential near 7 = 0
and for large values of k.

» We could take f to be any smooth function with f(0) =0
and /' (0) = 1 and still maintain the desired properties of
the Higgs.
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Modifying the Higgs Potential

» In contrast to®, the expansion near the vacuum state
contains only even powers in h* — v3.

ABk

- W(h2 )40 ((h2 — v(z))6) .
0

W(h) = V(h)

» The new physics is primarily due to modification near
h=0.

3C. Grojean, G. Servant and J. D. Wells, Phys. Rev. D 71,(2005).
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Properties of Modified Potential
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» The parameters B
and k control the 004
height of the -
potential at h =0
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scales than the Figure: Modified potential for k = 1

standard potential. (top) and k = 3 (bottom) and for
B=0,1/2,1,2,5 (top curve to bottom
curve).
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Properties of Modified Potential
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» Fork < 1the
potential is globally
stable. -

» Fork>1, W — 0.
h—o0

» For (k—1)B > 1the
critical pointat 2 =0
becomes a local
minimum with Higgs
maSS 00 0.2 0.4 0.6 o 0.8 1 1.2 14

(k—1)B—1 Figure: Modified potential for k = 1

mii (top) and k = 3 (bottom) and for

2(1 + B)k+1 B=0,1/2,1,2,5 (top curve to bottom
curve).
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Effective Potential at Finite Temperature

» Each particle species contributes a free energy density
term

U(h,T) = W(h) + > _ Fi;(h,T),
4

__&T > —E/T\ 2
Fi(h,T):Fzﬂz/oln<1ie IT) 2z,

E/T = /2> +g*h?/T?,  z=p/T.
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Effective Potential at Finite Temperature

» Particles with gh < T don’t contribute to the difference in
effective potential.

» For our analysis to remain valid down to the scale T ~ 1
GeV we include Higgs, gauge bosons W+, Z° and the top,
bottom, charm quarks, and the tau lepton. The other
particles are approximately massless at this scale.
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Critical Temperatures

0.4

» T, : Massless
phase is
restored.

U/vg

> T,,: Critical
points become
degenerate.
Pressures of
two phases are
equal.

T,,/vo =043

U/vg

T., /vo = 0.066

» T.,: Massive oot R —
phase iS 0 0.2 0.4 0.6)1/1'00.8 1 1.2 1.4
eliminated. Figure: Higgs Effective Potential for B = 0,
k=1 (top) and B = 10, k = 1 (bottom) for
Higgs-top quark system at finite temperature.
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Computing Critical Temperatures

» Critical points are zeros of
Ah(i? = v3)(1 = B(k — 1) (/v = 1)%)
( + B(hz/vo _ 1)2)k+1

gsg2T3h/OO ZZ/E J
272 (eE/T £ 1) ¢

G(h,T) =

(1)

» To track the location of the critical point for T > 0 we solve
the ode
dh  0G <8G> !

ar ~ or \ oh )

Jeremiah Birrell 52 Cracow School of Thoeretical Physics

Model of a Strong First Order Electroweak Phase Transition at Low Temperature



Phase Diagram

Phase domains as a
function of the Higgs
potential parameter
B for k = 1 (top) and
k =2 (bottom).
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Phase Diagram
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Summary

» Maintains properties of the Higgs in the present day
massive phase.

» Creates strong first order phase transition.
» Significantly lowers phase transition temperature.

» Possible exploration of EW phase transition at laboratory
energies.

» Work is ongoing to provide a theoretical basis for effective
potentials of this type.
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