

First results from LHCb experiment

M. Witek Review of results on behalf of LHCb Collaboration Focus on QCD Cracow School of Theoretical Physics, Zakopane Poland June 11-19 2011

- LHCb and LHC
- Detector performance
- QCD measurements
 - Strangeness production, baryon number transport
 - Charm and beauty production
 - Exclusive dimuon production
- Examples of CP and New Physics results
- Summary

LHCb is a dedicated experiment to study flavour physics at the LHC

- Search for New Physics in quantum loop processes
- CP violation and rare decays allowing to probe beyond the LHC energy frontier

The spectrometer

Unique, fully equipped coverage in the rapidity region $1.9 < \eta < 4.9$ Only LHC experiment that can study in the high $\eta \log p_T$ region

Subsystems

- Trigger dedicated to b physics however it is flexible and can be tuned according to particular physics studies
- LHC lumi changed 5 orders of magnitude in 200 days
 - First collisions at low lumi with minimal trigger (minimum bias or micro bias trigger) suitable for QCD measurements
 - At intermediate lumi gradually switching HLT1 and then HLT2 (charm physics, low L0 E_T cut)
 - At high lumi special trigger lines added to allow for non-b physics (like CEP $\mu\mu$, Z $\rightarrow \mu\mu$, etc.)

Physics reach vs luminosity

LHC and LHCb

- Excellent performance of LHC and LHCb
 - Recorded 38 pb⁻¹ in 2010, 10¹⁰ bb-pairs produced
 - Flexible trigger, adjusted to LHC lumi and physics goals
- Data samples used in various studies
 - 6.8 $\mu b^{\text{-1}}$ at 900 GeV collected in 2009 with Minimum Bias trigger: requires activity in the calorimeter
 - 0.3 nb⁻¹ at 900 GeV in 2010 collected with Minimum Bias trigger: requires 1 track in the VELO.
 - 14 nb⁻¹ at 7 TeV in 2010 collected with Minimum Bias trigger: requires 1 track in the VELO
 - 37.7 pb⁻¹ at 7 TeV collected in 2010.

VELO performance

Particle Identification

RICH PID close to MC expectations across full momentum range

Clean reconstruction of hadronic decays critical to many of following physics results

B-hadron masses – detector quality test

Key analysis element: Momentum calibration B field Magnet up/down, alignment

$$B^+ \to J/\psi K$$

$$B^0 \to J/\psi K^{*0}$$

$$B^0 \to J/\psi K^0_S$$

$$B^0_s \to J/\psi \phi$$

$$\Lambda_b \to J/\psi \Lambda$$

$$B^+_c \to J/\psi \pi^+$$

 $\begin{array}{l} 5279.27 \pm 0.11 \,({\rm stat}) \pm 0.19 \,({\rm syst}) \,\,{\rm MeV}/c^2 \\ 5279.54 \pm 0.15 \,({\rm stat}) \pm 0.15 \,({\rm syst}) \,\,{\rm MeV}/c^2 \\ 5279.61 \pm 0.29 \,({\rm stat}) \pm 0.20 \,({\rm syst}) \,\,{\rm MeV}/c^2 \\ 5366.60 \pm 0.28 \,({\rm stat}) \pm 0.21 \,({\rm syst}) \,\,{\rm MeV}/c^2 \\ 5619.48 \pm 0.70 \,({\rm stat}) \pm 0.19 \,({\rm syst}) \,\,{\rm MeV}/c^2 \\ 6268.0 \ \pm 4.1 \ ({\rm stat}) \pm 0.5 \ ({\rm syst}) \,\,{\rm MeV}/c^2 \end{array}$

Masses and mass differences in $J/\psi X$ e.g. B_s mass ~ factor 3 better than previous measurement

- Full calculation of collision and hadronization process is not possible, only phenomenological models are available.
- Many different generators can be used to reproduce experimental data.
- Each generator can use one or more mechanisms to model the interaction
- Studies of proton-proton collision at the LHC can help in selecting or tuning models.
- Good description of the underlying event fundamental for the whole LHCb physics programme.
- Models tuned for central rapidity. Already many different generators give different predictions at LHC energies, which diverge at the rapidities covered by LHCb
- Interesting physics in new energy range

- Strangeness probes soft hadronic interactions ($\Lambda_{QCD} \sim m_s$)
 - Fragmentation
 - Soft non-perturbative production (suppressed but occurs)
 - Input to QCD models and MC tuning
- Analysis of Ks production
 - 7 ub⁻¹ @ 0.9 TeV in 2009
 - Minimum bias trigger: activity in calorimeters
 - Reconstruction of $K_s \rightarrow \pi^+\pi^-$, loose criteria

Phys. Lett. B 693 (2010) 69 arXiv:1008.3105v2

Novel absolute direct luminosity measurement from beam profiles, beam gas interaction and beam current

$K_s p_T$ spectra at 0.9 TeV

harder p_T spectrum in data than MC

Comparison of K_s production measurements

Particle production ratios Barion number transport

∧ selection

- Track selection: hits in VELO and in stations downstrem the magnet.
- Fisher discriminant based on impact parameter of p and π (large) and Λ (small).

Uncorrected p_T distributions

- Efficiencies are estimated from Monte Carlo
- Re-weighting procedure introduced to remove biases
- Uncorrected p_T spectra are harder than predicted by LHCb Monte Carlo

Baryon number transport - $\overline{\Lambda}/\Lambda$

clear energy dependence seen
 scaling in difference to beam rapidity
 → √s = 0.9 TeV: y_{beam} = 6.6
 → √s = 7.0 TeV: y_{beam} = 8.3
 consistent with STAR measurement

CERN-LHCb-CONF-2010-011 Perugia selection: Phys. Rev. D 82(7):074018(2010)

Baryon number transport p/p

• Baryon number transport higher than expected at 900 GeV. Consistent with the Λ/Λ ratio result.

- Ratios become flatter as expected from models.
- Better agreement with Monte Carlo than at 900 GeV.
- Consistent with $\overline{\Lambda}/\Lambda$ ratio result.

→ ratio as a function of the rapidity difference to the beam

scaling behaviour seen
 possibly slight dependence on p_T
 consistent with other measurements

Baryon/meson suppression significantly lower than predicted by models
 Forward region not well described by models

CERN-LHCb-CONF-2010-011

Open charm production

Open charm production

• 1.8 nb-1 taken in 2010 at 7 TeV with minimum bias trigger

LHCb-CONF-2010-013

- Selection strategy (reduce $b \rightarrow c$)
 - Short proper time
 - D momentum pointing to primary vertex
 - Good secondary vertex

- $D^0: D^0 \rightarrow K^- \pi^+,$
- D^+ : $D^+ \to K^- \pi^+ \pi^+$,
- $D^{*+}: D^{*+} \to \pi^+ D^0(K^-\pi^+),$
- $D^+_{(s)}$: $D^+ \to \phi(K^-K^+)\pi^+$ or $D^+_s \to \phi(K^-K)$

Open charm production

D⁰+c.c. cross-section

BAK et al. - B.A. Kniehl, G. Kramer, I. Schienbein, and H. Spiesberger, private comunication MC et al. - M. Cacciari, S. Frixione, M. Mangano, P. Nason, and G. Ridolfi, private comunication

- The production mechanism in pp collisions still unclear
- Several models developed
 - Color singlet(CSM)
 - Undershoots the data, no polarisation prediction
 - CSM extendend to color octet (COM) mechanisms
 - Better agreement for cross-section,
 - predicts TRANSVERSE polarisation,
 - not confirmed by experiments
 - NLO CSM
 - describes cross-section
 - allows LONGITUDINAL polarisation!

- Dedicated muon and dimuon triggers+ offline selection.
- $J/\psi \rightarrow \mu^+\mu^-$ estimated from a fit to the J/ψ invariant mass.
- Fraction of J/ψ from b extracted from pseudo-proper time (t_z) fit

- Total fit function.
- ---- Prompt J/ψ.
- Background.
- Tails from wrong PV association.

Prompt J/ψ production - comparison with theoretical models

- LHCb results for J/ψ not-polarized.
- Theoretical predictions
 - Direct production– upper plots. Prompt (direct+feed-down from χ_c etc.) bottom plots.
 - Direct = 0.7 * prompt

 σ (prompt J/ψ , $p_T < 14$ GeV/c, 2.0 < y < 4.5) = $10.52 \pm 0.04 \pm 1.40^{+1.64}_{-2.20}$ µb

Double J/ψ production cross-section LHCb

Efficiency corrected fitted $(\mu^+\mu^-)_1$ yields in bins of $(\mu^+\mu^-)_2$ invariant mass (signal shape fixed from inclusive J/ ψ sample).

- The measured cross-section in the fiducial region is model independent:
 - $5.6 \pm 1.1_{stat} \pm 1.2_{syst}$ nb
- LO QCD estimate (arXiv:1101.5581[hep-ph])
 - With initial state gluon radiation (ISR): 4.34 nb
 - Without ISR: 4.15 nb

LHCb-CONF-2011-009

- Observation of Y(1S), Y(2S) and Y(3S) in $Y \rightarrow \mu^+ \mu^-$
- Cross-section from number of observed events extracted from invariant mass fit

Signal – Crystal Ball

Background - exponential

- Large systematic effect on efficiency due to unknown Y(1S) polarization
- Comparison dσ/dp_T in good agreement with Theory (LO model only direct Y(1S)).

$$\sigma(0 < p_T < 15 \text{ GeV/c}, 2 < y < 4.5) = 108.3 \pm 0.7 \Big|_{\text{stat}}^{+30.9} \Big|_{\text{sys}} \text{ nb}$$

B_c^+ to B^+ production cross-section ratio

- B_c⁺ is the lightest heavy quark meson. Its mass, lifetime and production can be used to constrain QCD calculation.
- * Use $B_c{}^+ \to J/\psi \pi +$ and $B^+ \to J/\psi K +$
- BR of B_c^+ not known, measure σ^*BR

$$R_{c+} = \frac{\sigma(B_c^+) \times BR(B_c^+ \to J/\psi\pi^+)}{\sigma(B^+) \times BR(B^+ \to J/\psi K^+)} = \frac{N(B_c^+ \to J/\psi\pi^+)}{\varepsilon_{tot}^c} \times \frac{\varepsilon_{tot}^+}{N(B^+ \to J/\psi K^+)}$$

- ---- Signal shape: Gaussian.
- ----- Combinatorial Background shape: exponential.
- ----- Cabibbo suppressed $B^+ \rightarrow J/\psi \pi^+$ shape: double Crystal Ball.

$$R_{c+} = \frac{\sigma(B_c^+) \times BR(B_c^+ \to J/\psi\pi^+)}{\sigma(B^+) \times BR(B^+ \to J/\psi K^+)} = (2.2 \pm 0.8 |_{stat} \pm 0.2 |_{sys})\%$$
 LHCb measured in fudical region

BCVEGPY hep-ph/0604238

$$R_{c^+}^{\text{model-dependant}} = (1.4 \pm 0.4 \big|_{stat} \pm 0.1 \big|_{sys})\%$$

b production cross-section $\sigma(pp \rightarrow bbX)$

- $b \rightarrow D^0 X \mu v_{\mu}$ $b \rightarrow J/\psi X$

Vertex $D^{0}(\rightarrow K\pi)$ with right-sign μ , cut on Impact Parameter (IP) of μ then distinguish prompt D^0 and D^0 from B using IP of D^0 D from b

Two independent samples used: 3nb⁻¹ taken with unbiased trigger, and 12nb⁻¹ requiring single muon trigger

IP D⁰ (**NO** μ requirement)

50

 $b \rightarrow D^0 X \mu v_{\mu}$

$b \to J/\psi X$

Reconstruct $J/\psi \rightarrow \mu\mu$, using both single muon and dimuon triggers

Fit to pseudo-proper time, $t_z \equiv (z_{J/\psi} - z_{PV}) \times M_{J/\psi} / p_z$ in bins of p_T and y

Dominant systematics:

Source	Size
Tracking efficiency	8%
Luminosity	10%
B.R. $(b \rightarrow J/\psi X)$	9%

5.2pb⁻¹ used

 $\sigma(pp \rightarrow b\overline{b}X) = (288 \pm 4 \pm 48) \,\mu b$

(with LEP fragmentation fractions, 2% change when using TeVatron fractions is included in syst. error) Submitted to Eur. Phys. J C Preprint: hep-ex/1103.0423 (also prompt J/ψ cross section)

Central exclusive production of $\mu^+\mu^-$

Exclusive processes

- Exclusive $J/\psi \rightarrow \mu^+\mu^-$ and $\psi(2S) \rightarrow \mu^+\mu^-$
 - photon-pomeron fusion
 - Starlight: Models diphoton and photon pomeron fusion (S.R.Klein and J.Nystrand, Phys. Rev. Lett. 92 (2004) 142003).
- Exclusive $\chi_c \rightarrow \mu^+ \mu^- \gamma$
 - double pomeron exchange
 - **SuperChiC**: MC for central exclusive production
 - (L.A. Harland-Lang, V.A. Khoze, M.G. Ryskin, W.J. Stirling, arXiv:0909.4748 [hep-ph].).
- Exclusive $\gamma\gamma \rightarrow \mu^+\mu^-$
 - Produced by $\gamma\gamma$ fusion
 - LPAIR: Models EM production of lepton pairs
 - (A.G.Shamov and V.I.Telnov, NIM A 494 (2002) 51).

Elastic Signal

- Both protons remain intact
- Rapidity gaps
- p_T of central object small

Inelastic background

- Proton(s) dissociation
- Smaller rapidity gaps
- p_T of central object higher that fo signal

- Dedicated trigger lines
 - low track multiplicity (SPD hits < 20)
 - Presence of $\mu^+\mu^-$ with low dimuon p_T or high invariant mass
 - Effective int Lumi ~ 3 pb⁻¹ out of 36 pb⁻¹
- Use VELO Backward Tracking to identify Rapidity gaps (2 units of rapidity)

Clear peak at 2 Forward Tracks when rapidity gap requested Candidates for Exclusive production

- $\mu^+\mu^-$ mass spectrum for events passing trigger
- + no backward tracks + 2 forward fracks

Exclusive J/ψ , $\psi(2S)$, $\gamma\gamma \rightarrow \mu^+\mu^-$ candidates clearly seen

Exclusive J/ψ , $\psi(2S)$

- Inelastic Background Pt Shape obtained from Data (no backward tracks, no photons and >2 Forward Tracks)
- Elastic Signal Pt Shape taken from Starlight MC and full LHCb simulation

For JPsi Pt < 900 MeV the Inelastic Background is estimated to be 20 +/- 3%

• Non Resonant backgrounds from DiPhoton DiMuons or Misldentified Pions and Kaons

- 40 Events between 3.615 and 3.745 GeV (Non Resonant Background = 16%)
- 1468 Events between 3.035 and 3.165 GeV (Non Resonant Background = 0.8%)

Exclusive χ_c

- Shapes for ChiC0, ChiC1 and ChiC2 taken from SuperChiC MC + Full LHCb simulation
- Shape for Psi' taken from Starlight MC + full LHCb simulation

• Ratio of ChiC0 :ChiC1 : ChiC2 is 1 : 2.2 +/- 0.8 : 3.9 +/-1.1

Offline selection

M_{uu} > 2.5 GeV Cut out J/ψ , $\psi(2S)$ area No backward tracks, no photons p_⊤(µµ)< 100 MeV

- Inelastic Background Pt Shape obtained from Data (no backward tracks, no photons and >2 Forward Tracks)
- Elastic Signal Pt Shape taken from LPAIR MC and full LHCb simulation

Background considered

Double Pomeron Exchange Generated with POMWIG

 $\gamma\gamma$ process Generated with LPAIR

[•] For DiMuon Pt < 100 MeV there is a Signal Purity of 97 +/- 1%

Cross-sections

Experimental Results		Theory Predictions	
J/ψ -> μ⁺μ⁻ :	474 +/- 103 pb	292 pb (Starlight) 330 pb (SuperChic) 330 pb (Motyka&Watt) 710 pb (Schafer&Szczurek)	
ψ' -> μ⁺μ⁻ :	12.2 +/- 3.2 pb →	6.1 pb (Starlight) 17 pb (Schafer&Szczurek)	
X₀ -> μ⁺μ⁻ɣ :	9.3 +/- 4.5 pb →	14 pb (SuperChic)	
X ₁ -> μ ⁺ μ ⁻ γ :	6.4 +/- 7.1 pb →	10 pb (SuperChic)	
X ₂ -> μ ⁺ μ ⁻ γ :	28 +/- 12.3 pb →	3 pb (SuperChic)	
γγ -> μ⁺μ⁻ :	67 +/- 19 pb →	42 pb (LPAIR)	

- Large Theoretical uncertainties (Except DiPhoton DiMuon prediction, uncertainty ~ 1%)
- Predictions contain Rescattering Corrections (Extra strong Interaction between protons alters cross-section by ~20%)
- Results are consistent with predictions

Examples CP and New Physics results

Production asymmetry

- Controlled from $B^{\pm} \rightarrow J/\Psi K^{\pm} (A_{P} = -0.024 \pm 0.016)$.

Detector asymmetry

- Magnet up/down with D* and D⁰ \rightarrow K π (A_D=-0.004±0.004)

 $A_{CP}(B^0 \to K^+\pi^-) = -0.074 \pm 0.033 \pm 0.008$ HFAG average: $A_{CP}(B_s^0 \to \pi^+ K^-) = 0.15 \pm 0.19 \pm 0.02.$

 $A_{CP}(B^0 \to K^+\pi^-) = -0.098^{+0.012}_{-0.011}$ $A_{CP}(B_s^0 \to \pi^+ K^-) = 0.39 \pm 0.17$

New Physics in $B_{s,d} \rightarrow \mu^+ \mu^-$

- $B_{d,s} \rightarrow \mu\mu$ the super rare loop decay. In Standard Model:
 - $B(B_d \rightarrow \mu \mu) = (0.10 \pm 0.01) \times 10^{-9}$
 - $B(B_s \rightarrow \mu \mu) = (3.2 \pm 0.2) \times 10^{-9}$
- Sensitive to New Physics
 - can be strongly enhanced in SUSY with scalar Higgs exchange
 - however lower rate predicted with some models
 - sensitive probe for MSSM with large tan β : $B(B_S \rightarrow \mu^+ \mu^-) \sim \tan \beta^6 / M_A^4$

 $B_{s.d} \rightarrow \mu^+ \mu^-$

Soft selection:

(pairs of opposite charged muons with high quality tracks, making a common vertex very displaced with respect to the PV and $M_{\mu\mu}$ in the range [4769-5969] MeV/c²)

1) Keeps high efficiency for signals:

After selection $B_s(B_d) \rightarrow \mu \mu$ events expected (if BR=BR(SM)): 0.3 (0.04)

3) Rejects most of the background

→ ~ 3000 background events in the large mass range [4769-5969] MeV/c²

~ 300 background events in the signal windows $M(B_{s,d}) \pm 60 \text{ MeV}$

> Signal regions blinded up to the analysis end

Our main background is combinatorial background from two real muons:

 → reduce it by using variables related to the "geometry" of the event: (vertex, pointing, µ IPS, lifetime, mu-isolation) + p_T of the B

Geometrical Likelihood (MC)

2) compare observed events with the expected number

of signal and background events

LHCb 38 pb⁻¹

BR($B_s \rightarrow \mu^+ \mu^-$) < 4.3 (5.6) 10⁻⁸ @ 90 (95% CL)

BR(B⁰→µ⁺µ⁻) < 1.2 (1.5) 10⁻⁸ @ 90 (95% CL)

Already now competitive to worlds best limit (not published, CDF 3.7 fb⁻¹):

 $\begin{array}{l} BR(B_{s} \rightarrow \mu^{+}\mu^{-}) < 3.6 \ (4.3) \ 10^{-8} \ @ \ 90 \ (95\% \ CL) \\ BR(B^{0} \rightarrow \mu^{+}\mu^{-}) < 0.76 \ (0.91) \ 10^{-8} \ @ \ 90 \ (95\% \ CL) \end{array}$

Physics Letters B 699 (2011) 330-340.

$B_s \rightarrow \mu\mu$: LHCb reach in 2011

With the data collected in 2011 we will be able to explore the very interesting region of BR~ 10⁻⁸ and below

Exotic meson spectrocopy: Mass X(3872)

Exotic charmonium state, discovered by Belle

- $\eta_{c2}(1D)$ but X mass too high ?
- $D^{*0}\overline{D}^{0}$ molecule ?
- tetra-quark ?

Key analysis element: Momentum calibration using J/Ψ Cross-check Y,D⁰,K_s

Summary

- The LHCb experiment provides lots of high quality measurements.
- The main LHCb goals is to search for new physics (rare decays and quantum loop processes) and standard CPV measurements.
- High quality of the detector enabled to perform many valuable QCD measurements (main part of this presentation)
- Most results from 2010 with 38 pb⁻¹. Many new and updated results to be released this summer for data collected in 2011 (300 pb⁻¹ already on tape, 1fb⁻¹ expected for the entire 2011)

Backup slides

- 5.6 nb⁻¹ at 7 TeV
- Minimum bias trigger.
- PID important:
 - eff determined from tag and probe method.
 - Independent PID calibration of two magnet polarities and independent analysis
- Signal: Breit-Wigner shape * Gaussian resolution
- Background: polynomial

Inclusive ϕ production - preliminary results

