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INTRODUCTION

• Hard QCD deals with the interactions of high transverse momenta partons.

These are short distance phenomena which are calculated within the

framework of pQCD.

• Soft QCD is traditionally associated with low transverse momenta partons

separated by large distances. Consequently, we are unable to utilize

perturbative methods. The relevant npQCD calculations are, thus,

based on phenomenological models, foremost, the Regge pole model.

• As we shall see, Pomeron exchange is the leading Regge term. As such,

it dominates the soft scattering dynamics at high enough energies.

i.e. at and above the CERN Spp̄S energy.



In this talk I shall briefly review the original definitions of the Pomeron and

its development to its present formulation with special attention to its relevance

to LHC physics. The present vigorous studies of the Pomeron and its dynamics

are based on sophisticated utilization of ideas dated decades ago:

• S-Matrix Regge Poles, Regge(1957), Chew-Frautchi(1960).

• Reggeon Field Theory, Gribov(1961).

• Eikonal Model, Glauber(1959).

• GW Proton Wave Function Decomposition, Good-Walker(1964).

• Triple Pomeron Formalism, Mueller(1971).

• Multi Pomeron Interactions, Gribov(1968), Kaidalov et al.(1986).

• Pomeron as a 2 gluon color singlet, Low(1975), Nussinov(1976).

• BFKL hard Pomeron, Balitsky-Fadin-Kuraev-Lipatov(1975-1978).



REGGE POLES

Perturbation theory does not apply to soft scattering. We depend, thus, on the

phenomenological Regge model which is rooted in S-Matrix theory. A major

tool of this approach is to analytically continue a scattering amplitude and its

variables from the real axis into the complex plane. This procedure enables us

to utilize the powerful methods of complex analysis.

An analytic continuation of the angular momentum into the complex plane was

originally suggested by Regge in low energy potential scattering, and was adopted

by Chew and Frautchi in their high energy scattering formulation.

Consider an hadronic scattering a + b → c + d, initiated by a t-channel exchange

of a spin J meson. Reggeization implies that J → Reα(t). The simplest form of

α(t) is linear, α(t) = α(0) + α′t. For t > 0, α(t) is determined by the measured

meson mass spectra. The implication is that a functional description of the meson

masses enables a prediction of the scattering dynamics at t ≤ 0.



The figure shows the leading meson trajectory with α(t) = 0.5+ t. Recall that, for

a given trajectory σtot ∝ s(α(0)−1) and σel ∝ s2(α(0)−1), modulo logarithmic corrections.

It leads to a monotonic decrease of σtot ∝ s−1/2, which is not

compatible with the experimental p-p cross sections. The energy dependence of

the forward elastic t-slope is controlled by α′.



POMERON MODEL

The original Pomeron, with αIP (0) = 1, was postulated as an added feature to the

Regge model. Theoretically, it is induced by Gribov’s Reggeon Calculus. Since

the Pomeron trajectory is higher than the Regge contributions, it

dominates p-p scattering at high energies.

The total and elastic (but NOT diffractive) cross sections in the ISR-Tevatron

range are well reproduced by the simple DL parametrization in which,

αIP (t) = 1 + ∆IP + α′
IP t, where, ∆IP = 0.08 and α′

IP = 0.25GeV −2.

The simple Pomeron model needs considerable re-formulations at high energies,

so as to be compatible with s and t unitarity. This goal is executed in impact

parameter b-space. Let the elastic scattering amplitude be normalized so that

dσel
dt = π | fel(s, t) |2 and σtot = 4πImfel(s, 0).

The b-space amplitude is defined ael(s, b) = 1
2π

∫
dqe−iq·bfel(s, t), (t = −q2).

We obtain: σtot = 2
∫
d2bImael(s, b) and σel =

∫
d2b | ael(s, b) |2 .



S-CHANNEL UNITARITY

If the Pomeron is super critical (∆IP > 0), σel grows indefinitely faster than σtot and

will, eventually, get larger! This paradox is eliminated by imposing a unitarity

bound on ael(s, b). Enforcing unitarity is model dependent, so I shall start with

the simplest diagonal re-scattering matrix, where repeated elastic

re-scatterings secure s-channel unitarity: 2Imael(s, b) = | ael(s, b)|2 + Gin(s, b).

This is no more than a statement that σtot(s, b) = σel(s, b) + σin(s, b).

Its general solution is ael(s, b) = i
(
1− e−Ω(s,b)/2

)
and Gin(s, b) = 1 − e−Ω(s,b).

Ω(s, b) is arbitrary. We obtain a unitarity bound of | ael(s, b) |≤ 2.

In a Glauber type eikonal approximation the input opacity Ω(s, b) is real.

i.e. ael(s, b) is imaginary and it equals the imaginary part of the input Born term,

a IP exchange diagram in our context. The output bound is | ael(s, b) |≤ 1,

which is the black bound. Analyticity and crossing symmetry are restored by

dispersion relation (Cauchy theorem) substitution sαIP → sαIP e−
1
2iπαIP .



The figure illustrates the effect of eikonal screening restoring s-unitarity.

Total, elastic and inelastic cross sections are:

σtot = 2
∫
d2b

(
1 − e−Ω(s,b)/2

)
,

σel =
∫
d2b

(
1 − e−Ω(s,b)/2

)2
,

σin =
∫
d2b

(
1 − e−Ω(s,b)

)
.

Imposing unitarity + analyticity/crossing bounds results in Froissart bound:

σtot ≤ Cln2(s/s0). This is a numerical (not a functional) bound!



GOOD-WALKER DECOMPOSITION

Consider a system of two orthonormal states, a hadron Ψh and a diffractive state

ΨD. The GW mechanism stems from the observation that these states do not

diagonalize the 2x2 interaction matrix T. Assume that T is diagonalized by Ψ1

and Ψ2. We get, Ψh = αΨ1 + β Ψ2, ΨD = −β Ψ1 + αΨ2, α2 + β2 = 1.

The 4 elastic GW amplitudes are Ai′,k′
i,k = < ΨiΨk|T|Ψi′ Ψk′ >= Ai,k δi,i′ δk,k′.

For initial p(p̄)− p we have A1,2 = A2,1. The (i, k) s-channel unitarity equation

is analogous to the one dimensional equation, ImAi,k (s, b) = |Ai,k (s, b) |2 +Gin
i,k(s, b).

Gin
i,k is the summed probability for all non GW inelastic processes (including

non GW “high mass diffraction”) induced by an initial (i, k) state.

As in the one dimensional equation, we have Ai,k(s, b) = i
(
1− exp

(
−Ωi,k(s,b)

2

))
,

Gin
i,k(s, b) = 1− exp (−Ωi,k(s, b)) , and P S

i,k(s, b) = exp (−Ωi,k(s, b)). The b space

opacities, Ωi,k(s, b), are real, determined by the Born (non screened) input.



The elastic, SD and DD amplitudes are:

ael(s, b) = i{α4A1,1 +2α2β2A1,2 + β4A2,2},

asd(s, b) = iαβ{−α2A1,1+ (α2 − β2)A1,2 + β2A2,2},

add = iα2β2{A1,1 − 2A1,2 + A2,2}.

Updated eikonal models are multi channel in which:

• Ωi,k(s, b) = νi,k(s) Γi,k(s, b).

• In Regge type models, νi,k(s) = gigk(
s
s0
)∆IP and Γi,k(s, b) are parameterized so as

to reproduce dσ
dt of the elastic and diffractive channels in the forward cone.

• The eikonal re-scatterings of the incoming projectiles are summed over the

GW eigen states.

• The net result of the eikonalization procedure is that the input σtot ∝ s∆IP and

σel ∝ s2∆IP , behave asymptotically (after screening) like ln2(s) and 1
2ln

2(s).



Induced s-unitarity eikonal screening has a profound effect on the roll played

by the various elements which construct the Regge amplitudes.

In the non screened model, ∆IP controls the energy dependence of the scattering

amplitude, while α′
IP controls the t dependence. Recall that, in such a simple

model, the total and elastic cross sections, in the ISR-Tevatron range, are well

reproduced by DL ∆IP = 0.08 and α′
IP = 0.25GeV −2. The DL parametrization does

not apply to the diffractive channels!

The eikonal screening affects the scattering amplitudes s and t dependencies. A

higher ∆IP induces stronger screenings affecting the t dependence. It is balanced

by a smaller α′
IP . The ISR-Tevatron total and elastic cross sections are well

reproduced in a screened model with a large ∆IP and a diminishing α′
IP .

A discussion of the diffractive channels, which are only partially included in the

GW mechanism, will be presented coupled to the introduction of multi IP

interactions.



MULTI POMERON INTERACTIONS

Mueller(1971) applied 3 body unitarity to equate the cross section of

a + b → M + b to the triple Regge diagram a + b + b̄ → a + b + b̄.

The core of this representation is a triple vertex with a leading 3IP term.

The equation is valid for “high mass diffraction”,
mp

M2 << 1 and M2

s << 1.

The corresponding cross section is M 2 dσ3IP

dt dM2 =
g2p(t)gp(0)G3IP

16π2

(
s

M2

)2αIP (t)−2 (
M2

s0

)αIP (0)−1
.

αIP connects between σtot and σel s dependencies and σsd high mass dependence.



a) b)

Muller’s 3IP approximation for “high mass” single diffraction is the lowest

order of a very large family of multi Pomeron interactions which are not

included in the GW mechanism. This dynamical feature is compatible with

t-channel unitarity. The figure shows the low order IP Green’s function.

a) Enhanced diagrams which renormalize (in low order) the IP propagator.

b) Semi-enhanced diagrams which renormalize (in low order) the IP -p vertexes.

The complexity of these diagrams requires summing algorithms which are

model dependent.



Multiple Pomeron interactions initiate additional screening, resulting in

a further reduction of the calculated soft cross sections. Note, though, that

these features become significant well above the Tevatron energy!

• The strong screening is a product of the correlated large ∆IP and very small

α′
IP obtained from the adjustment of the IP parameters.

• The IP renormalization diagrams with the adjusted parameters yield a monotonous

decrease of ∆eff
IP shown in the Table.

• A larger value of ∆input
IP initiates a stronger reduction of ∆eff

IP .

W[TeV] 1.8 → 14.0 14.0 → 100.0

∆input
IP =0.335 0.056 0.041

∆input
IP =0.200 0.078 0.060



LRG SURVIVAL PROBABILITY

An exchanged t-channel Pomeron carries the quantum numbers of the vacuum.

This dynamic feature applies to elastic and diffractive scattering.

Its experimental signature is a large rapidity gap (LRG) in the η − ϕ lego plot

devoid of hadrons (η = −ln(tanθ
2)).

Screening of IP exchange reactions are induced by 2 different dynamic processes:

s-channel eikonalization and t-channel multi IP interactions.

• GW (elastic+“low mass” diffraction) s-unitarity screening is manifested

through eikonalization. It is further being screened by multi IP interactions.

• Non GW diffraction (soft or hard) screening is expressed by the probability

that its LRG signature will not be filled by debris (partons and/or hadrons)

originating from either the s-channel re-scatterings of the spectator partons,

or by the t-channel multi IP interactions.



• Denote the gap survival factor initiated by s-channel eikonalization S2
eik, and

the one initiated by t-channel multi IP interactions S2
enh. S

2 = S2
eik · S2

enh.

In a single channel eikonal model,

S2
eik =

∫
d2b | M in

diff(s, b) |2 P S(s, b)∫
d2b | M in

diff(s, b) |2
.

Recall that, Gin = 1 − P S, where, P S(s, b) = e−ΩIP (s,b). It is the probability that

the colliding projectiles reach the IP exchange diffractive reaction in their initial

state, regardless of their prior re-scatterings.

The calculation of S2
eik in a multi channel model is straight forward, depending

on the summation over the GW eigen states. It is:

• Coherent for an exclusive channel,

such as: p + p → p + LRG + Higgs(di− jet) + p.

• Non coherent for an inclusive channel,

such as: p + p → X + LRG + Higgs(di− jet) + Y .



UPDATED POMERON MODELS

Pomeron models have a few components:

• A bare non screened Pomeron exchange amplitude.

• Eikonal re-scatterings of the incoming projectiles secures s-unitarity.

• Screening of the elastic and “low mass” diffraction is initiate by the initial

re-scatterings.

• t-channel unitarity is coupled to multi IP interactions, leading to

“high mass” diffraction and renormalization of the Pomeron.

• Survival probability provides unitarity suppression of non GW diffraction.

• Current IP models obtain a relatively large ∆IP and a diminishing α′
IP .

The value of these parameters have far reaching consequences revealing the

theoretical foundations of updated Pomeron models.



Following I shall discuss mainly 3 multi-channel IP models in which s and t

unitarity screenings are incorporated. The models are very similar

conceptually, but differ in their multi IP diagram summation procedures and data

analyses. I shall, also, refer to 4 single channel eikonal models.

• GLM(10) (Tel AVIV): has a single soft IP , ∆IP = 0.20, α′
IP = 0.02.

• KMR(10) (Durham): ∆IP = 0.3, α′
IP ∝ 1/p2t is approximated by 3 effective

BFKL like trajectories with different α′
IP values.

• Ostapchenko(10) (Bergen): has 2 Pomerons,

soft: ∆IP = 0.17, α′
IP = 0.11, hard: ∆IP = 0.31, α′

IP = 0.085.

• Kaidalov-Poghosyan(10): is a single channel IP model, ∆IP = 0.12, α′
IP = 0.22.

• Block-Halzen(11), Grau et al.(09), Achilly et al.(11) are single channel eikonal

minijet models.



The Pomeron is defined as a moving Regge pole void of electrical and color

charges. The proposition by Low and Nussinov (1975) that the IP is a 2 gluon

color singlet, is intuitively appealing. This is a Born term description. In high

order the 2 gluons are replaced by gluonic ladders.

The microscopic sub structure of the Pomeron is provided in Gribov partonic

interpretation of Regge theory, in which the slope of the Pomeron trajectory is

related to the mean transverse momentum of the partonic dipoles constructing

the Pomeron, α′
IP ∝ 1/ < pt >

2 .

The running QCD coupling constant is αS ∝ π/ln
(
< p2t > /Λ2

QCD

)
<< 1.

• GLM utilize the pQCD MPSI procedure, where nIP → mIP reduces to a

sequence of G3IP vertexes(Fan diagrams). i.e. 2IP → IP and IP → 2IP .

• KMR coupling is gnm = 1
2 gN nmλn+m−2 = 1

2 nmG3IP λn+m−3. G3IP = λgN , λ is a free

parameter and n + m > 2. Kaidalov et al. and Ostapchenko have the same

coupling with a different normalization.



The experimental study of e-p DIS provides a “laboratory” in which we can

investigate the Pomeron properties as a function of its kinematic variables.

Indeed, HERA e-p DIS data is a rich source of information on IP features.

pQCD study of e-p DIS, in the limit of very high Q2 and exceedingly small x, led

Balitsky, Fadin, Kuraev, Lipatov (1975-78) to introduce the hard BFKL Pomeron

corresponding to a hard gluon ladder.

• The soft IP is a simple moving pole in the J-plane,

while, the BFKL IP is a branch cut.

• The BFKL IP is commonly parameterized as a simple J-pole with α′
IP = 0,

which is a signature of the hard IP .

• Recall that in pQCD the BFKL Pomeron slope

α′
IP ∝ 1/Q2

s → 0 as s → ∞. Q2
s is the saturation scale.



The figure presents σ(γ∗ + p→ p + X) ∝ sλ. λ = ∆eff
IP .

It clearly shows the transition from the soft (non perturbative) Pomeron to the

hard (perturbative) Pomeron.

As seen, at very small Q2, ∆eff
IP ≃ 0.1, compatible with the hadronic soft data. At

higher Q2, up to ≃ 100GeV 2, ∆IP grows smoothly toward ∆eff
IP ≃ 0.30− 0.35.



To summarize, the basic parameters of the soft and hard Pomerons are:

• The exact updated soft IP parameters are model dependent. In general,

α′
IP is small and ∆IP is large. Given the strong screening induced by these

parameters, the effective values of these parameters in the ISR-Tevatron range

are compatible with DL.

• The parameters of the hard BFKL Pomeron are: α′
IP = 0, reflecting the high

pt of the hard IP partons. ∆IP is large, determined by the pQCD calculations.

In LO: ∆BFKL
IP = 1

π12ᾱsln(2) ≃ 0.53.

In NLO: ∆BFKL
IP ≃ 0.20− 0.35, depending on the renormalization scheme used.

• As we shall see, the triple IP vertex plays an important roll in multi Pomeron

interactions. Its value is determined by the data analysis.

• The relationship between the soft and hard Pomerons is intriguing and de-

serves further study.



DATA ANALYSIS

The essential output of current IP models is a a large ∆IP and a very small α′
IP ,

which initiate s and t screenings. Recall, though, that ∆IP and α′
IP are just two

out of a large number of IP model free parameters which have to be adjusted.

Current Pomeron models adjust, out of necessity, their free parameters from

a small data base. This difficulty was addressed differently by each group.

1) Data Bases:

• GLM fit a data base having 58 points: σtot, σel, σsd, σdd and Bel in the ISR-

Tevatron range. We add a consistency check of SD forward slopes and CDF

dσel/dt(t ≤ 0.5GeV 2), dσsd/dt d(M 2/s)(t = 0.05GeV 2). The wide energy range of

this base necessitates the addition of a secondary Regge contribution.

• KMR tune a smaller data base containing just the measured values of

σtot, dσel/dt(t ≤ 0.5GeV 2), dσsd/dtd(M
2/s)(t = 0.05GeV 2).

• Ostapcenko tunes a data base similar to KMR but somewhat larger.



∆IP β α′
IP g1 g2 m1 m2

0.2 0.388 0.020 GeV −2 2.53 GeV −1 88.4 GeV −1 2.648 GeV 1.37 GeV

∆R γ α′
R gR1 gR2 R2

0,1 G3IP

- 0.466 0.0033 0.4 GeV −2 14.5 GeV −1 1343 GeV −1 4.0 GeV −2 0.0173GeV −1

2) Adjustment Of The Free Parameters:

The incompatibility between the number of adjusted parameters and size of the

data base results with shortcuts and simplifications in the data analysis particular

to each group.

• The data analysis of GLM aims to simultaneously fit the 9 IP and 5 Regge

parameters. γ is the low energy colorless dipole-target amplitude. We define

σ = 1
2(σ(pp) + σ(p̄p)). Our fitted parameters are displayed in the Table. Our

fit has χ2/d.o.f. = 1.56. A very large contribution to the overall χ2 stems from

2 SD data points and the CDF value for σtot at 1800GeV.

Neglecting these 3 points we obtain an excellent χ2/d.o.f. = 0.86.

Our fit provides a good reproduction of σdd.



• KMR and Ostapchenko data bases are predominantly sets of differential cross

sections. Such sets have a systemic behaviour and, as such, it is non trivial

to obtain a significant “best fit” with a parameter rich model.

Both models assume the values of some, less important, parameters.

3) The Approach To The Black Bound:

The basic (post screening) amplitudes are A1,1, A1,2 and A2,2, with which we

construct the elastic, SD and DD amplitudes.

ael(s, b) = i{α4A1,1 +2α2β2A1,2 + β4A2,2},

asd(s, b) = iαβ{−α2A1,1+ (α2 − β2)A1,2 + β2A2,2},

add = iα2β2{A1,1 − 2A1,2 + A2,2}.

Recall that, Ai,k are bounded by the s-channel unitarity black disc limit.

ael(s, b) reaches this bound at a given (s, b) when, and only when,

A1,1(s, b) = A1,2(s, b) = A2,2(s, b) = 1, independent of β.

Consequently, when ael(s, b) = 1, asd(s, b) = add(s, b) = 0.



Checking GLM fitted parameters, we note that g1 >> g2.

Accordingly, the 3 output Ai,k amplitudes reach the black bound at different

energies. In this case ael(s, b = 0) reaches the black bound when, and only when,

the smallest amplitude A2,2(s, b = 0) does.

KMR and Ostapchenko assume that g1 = g2, which implies that all

Ai,k(s, b = 0) reach the black bound simultaneously at the same energy.

4) “Low Mass” Versus “High Mass”:

• Good and Walker original study incorporated the few known discrete nuleon

isobar states as the diffractive component in their mechanism.

• Mueller’s triple IP approximation is valid when s >> M 2 >> mp. The added

“high mass” diffraction is continuous. Its arbitrary high limit is M2

s ≤ 0.05.

• ISR experimental SD data established the mass continuity above 2.0GeV 2.



• Kaidalov, in his breakthrough studies of high energy diffraction, adopted the

original GW point of view defining the GW diffracted mass to be small:

Y ≤ 3, corresponding to M 2 ≤ 4.5GeV 2.

Y > 3 defines the non GW “high mass”. KMR and Ostapchenko adopt

Kaidalov’s definitions.

• GLM offer a radically different approach in which GW diffraction has no Y

cut, and it is continuous in M 2 from 2.0 - 0.05s GeV 2. Multi IP diagrams

generating the non GW diffraction are summed above Y=3.

• The net result is that GLM diffraction is predominantly GW, while KMR

and Ostapchenko diffraction is predominantly non GW. In the ISR-Tevatron

range the difference between the two definitions is small. At LHC energies

the difference may be significant.



1.8TeV 7TeV 14TeV 100TeV

GLM KMR OSTAP GLM KMR OSTAP GLM KMR OSTAP GLM KMR OSTAP

σtotmb 74.4 72.8 73.0 91.3 89.0 101.0 98.3 114.0 128.0 127.1

σel mb 17.5 16.3 16.8 23.0 21.9 26.1 25.1 33.0 35.6 35.2

σsdmb 8.9 11.4 9.6 10.2 15.4 10.8 17.6 11.0 12.7 24.7

σddmb 4.5 3.9 6.4 6.5 4.8 7.8

S2
H 0.11 0.06 0.024 0.04 0.015

 < | S2| >

Higgs

ln(M2/s0)

W=1.8 TeV

W=7 TeV

W=10 TeV

W=14 TeV

0.03

0.04

0.05

0.06

0.07

0.08

0.09

2 4 6 8 10 12 14 16 18

5) Calculated Cross Sections:

The table displays GLM, KMR and Ostapchenko output results.

The figure shows GLM mass dependence of S2
H. H=Higgs.



• GLM and KMR total and elastic cross sections are compatible over

a remarkable energy range spanning 1.8 to 100 TeV.

Ostapchenko is compatible at 1.8. His predictions grow much faster,

probably because of the hard IP component in his model.

• GLM and Ostapchenko SD cross sections are compatible. KMR are

moderately larger at 1.8 TeV, increasing fast with energy.

• KMR refrain from presenting their “high mass” DD cross sections. Their

“low mass” DD cross section are negligible over the range of 1.8 to 100 Tev.

• Regardless of small differences GLM, KMR and Ostapchenko results at

1.8 TeV are in a reasonable agreement. The main difference between the

models is in the formulation and summation procedures of their

multi IP sector which becomes significant at higher energies.



LHC Data And Its Interpretation

1)From The Tevatron To LHC:

LHC preliminary data, relevant to this talk, started to become available only

recently. The available predictions, regardless of the method with which they

were obtained, are based on relatively low energy data analysis.

• GLM fitted the ISR-Tevatron cross sections, most of them obtained from

the ISR.

• KMR and Ostapchenko data base is taken from Spp̄S-Tevatron, which

is higher in energy but is too limited to support the adjustment of

parameter rich models.

• The Tevatron data, on its own, does not have the resolution to discriminate

between the soft Pomeron models I have discussed.

Consequently, a successful reproduction of Tevatron data does not secure a

similar success at the LHC.



• The early LHC cross section data published over the last few weeks can

provide the extra resolution needed to discriminate between models and ideas.

However, as long as the LHC volume of relevant data will be

considerably smaller than the ISR-Tevatron data base, we shall need to apply

more sophisticated methods in our data analysis.

2) Inclusive Pseudorapidity Distributions:

ALICE and CMS have just published the NSD charged multiplicity density

dNch/dη = (1/σNSD)dσ/dη, at central pseudorapidity −2.5 ≤ η ≤ 2.5.

This data provides an addional angle to assess the IP models.

Regretfully, neither KMR nor Ostapchenko have any publications on this topic.

The following is a short summary of the GLM approach.

In the framework of Gribov’s IP calculus, single inclusive cross sections can be

calculated using Mueller diagrams.



Y
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a) Mueller inclusive diagrams, b) IP Green function, c) IP -hadron vertex.

A bold waving line = IP . A zigzag line = R.

In the calculation, we have used the GLM IP model fitted parameters, to which we

have to add 3 additional phenomenological parameters: aIPIP and aIPR = aRIP . They

account for hadron emission from the IP or Reggeon. Q is the average transverse

momentum of the produced minijets with a mass Q0Q. In BNL minijet studies

Q0 = 2 GeV.



Data aIPIP aIPR Q0/Q

CMS 0.390 0.186 0.427

All 0.413 0.194 0.356

The inclusive data fit depends, thus, on 3 free parameters. The data base for

this fit is obtained from a few experiments spread over many years with different

approaches to their error estimates. We have fitted the data twice. Once, fitting

the 546, 900, 1800, 2369, 7000 GeV data. The second fitting was confined to the

very recent CMS data at 900, 2360, 7000 GeV. The 2 sets of fitted parameters

are not identical. The difference between the 2 values of Q/Q0 is significant for

the CMS fits at small η.
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3) Inelastic Cross Sections:

• The measurement of σinel, the inelastic cross section, is relatively easy.

Indeed, it was measured by ALICE, ATLAS and CMS.



ATLAS10 ALICE11 Achilli et al. Block-Halzen GLM Kaidalov el al. KMR

69.4 ± 2.4 ± 6.9 72.7 ± 1.1± 5.1 60-75 69 68.3 70 62.6-67.1

• Theoretically, σinel = σtot − σel can be predicted not only by the complicated

multi channel unitary models but, also, by single channel models in which the

GW mixing is ignored. Recall, though, that single channel models are prone

to over estimate the survival probability.

• The table compares between the ATLAS10 and ALICE11 measurement at 7

TeV and 5 model predictions.

• The energy dependence of σinel measured by a few collaborations, together

with 4 predictions was presented by ALICE 2 weeks ago and will be shown

on the next page.



Quark Matter 2011 M.Poghosyan 19 

Comparison with other experiments and models 
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Model predictions:  

SD !  M2 < 0.05s 

DD !  > 3 

 [GeV]s
210

3
10 410

 [
m

b
]

S
D

0

5

10

15

20

25
 (M<200 GeV)ALICE

<0.05s)2 (extrapolated to MALICE

<0.05s)
2

ISR  (M

<0.05s)
2

UA5  (M

<0.05s)
2

UA4  (M

<0.05s)2<M
2

E710 (2 GeV

Preliminary

 [GeV]s
210

3
10 410

 [
m

b
]

D
D

0

5

10

15
ALICE

UA5

CDF
Low energy data

Preliminary

 [GeV]s 
10

210
3

10 410

 [
m

b
]

I
n

e
l

0

20

40

60

80

100

Preliminary

ALICEpp 
ATLASpp 
CMSpp 

pp
pp


