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PERTURBATIVE SATURATION (AKA CGC)

ITS A LONG STORY, BUT IN A NUTSHELL

GLUON DENSITY GROWS RAPIDLY AS ONE GOES TO LOW VALUES OF x IN

HADRONIC WAVE FUNCTIONS.

THIS GENERATES ”MOMENTUM DIVIDE” AT MOMENTUM SCALE EQUAL

TO THE AVERAGE PARTON DENSITY IN THE TRANSVERSE PLANE, ”THE

SATURATION MOMENTUM” QS ∼ ρ

AT SHORT DISTANCES x < Q−1
S USUAL PARTONIC PHYSICS REMAINS VALID,

AS AT THIS SCALES BY DEFINITION EFFECTS OF DENSITY ARE NOT IMPORTANT.

HOWEVER WHEN PROBED ON TRANSVERSE DISTANCE SCALE x > Q−1
S THE

HADRON THEN LOOKS LIKE A DENSE SYSTEM.

QS PLAYS A DUAL ROLE IN THIS PICTURE:

A. IT IS THE AVERAGE VALUE OF COLOR ELECTRIC FIELDS IN THE

WAVE FUNCTION.

B. IT IS THE INVERSE OF THE LENGTH OVER WHICH THE COLOR

ELECTRIC FIELDS ARE CORRELATED.



TO SEE THIS LET US USE THE STANDARD DIPOLE DIAGNOSTICS.

SUPPOSE WE HAVE A COLOR NEUTRAL DIPOLE THAT SCATTERS ON OUR

SATURATED TARGET. FOR A GIVEN CONFIGURATION OF ELECTRIC FIELD IN THE

TARGET, THE DIPOLE SCATTERING AMPLITUDE IS

N(r) = 1 − Tr[S
†
(0)S(r)]

HERE S IS THE EIKONAL SCATTERING MATRIX S(x) = eig
∫

dx+A−(x).

THE POTENTIAL A−(x) (DISREGARDING COLOR FOR THE MOMENT) IS

JUST THE USUAL ∂iA
− = F−i. LET’S DEFINE FOR CONVENIENCE INTEGRATED

ELECTRIC FIELD Ei =
∫

dx+F−i. THEN SINCE THE AVERAGE OF Ei OVER THE

TARGET WAVE FUNCTION VANISHES

N(r) ∼ 1 − e
−(g~r·~E)2

FOR SMALL r WE HAVE PERTURBATIVE N(r) ∼ g2r2E2

REACHES UNITY FOR r2
s = Q−2

S ∼ (gE)−2

WE ALSO KNOW THAT THE GLUON DISTRIBUTION IN THE TARGET IS

CUTOFF BELOW MOMENTA PT ∼ QS. THUS COLOR ELECTRIC FIELDS ARE

NOT LONG RANGE, BUT MUST BE DOMINATED BY WAVELENGTHS λ ∼ Q−1
S .
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Figure 1: CARTOON OF A TYPICAL FIELD CONFIGURATION IN A SATURATED

TARGET.



QS ALSO MANIFESTS ITSELF AS THE TYPICAL MOMENTUM FOR PARTICLES

EMITTED INTO FINAL STATE IN COLLISIONS INVOLVING SUCH OBJECTS.

E.G. PERTURBATIVELY SINGLE INCLUSIVE SPECTRA ARE INFRARED

DOMINATED dN/dk2 ∝ 1/k4. BUT IN A SATURATED SYSTEM PRODUCTION

IN THE INFRARED IS SUPPRESSED, SO THE SPECTRUM IS DOMINATED BY

k ∼ QS.

MULTIPLICITIES OF PRODUCED PARTICLES ALSO SHOULD SCALE WITH Q2
S.

THERE IS A HOST OF OTHER EFFECTS THAT APPEAR WHEN PHYSICS

IS SATURATION DOMINATED, BUT ALL DRIVEN BY TWO BASIC FEATURES:

GENERALLY LESS PARTICLE PRODUCTION AND LESS CORRELATIONS BETWEEN

PRODUCED PARTICLES

IF QS IS HIGH THERE IS A GOOD CHANCE TO DESCRIBE THIS PHYSICS

PERTURBATIVELY, SINCE THE COUPLING CONSTANT AT THE RELEVANT SCALE

IS SMALL...

THE BEST CHANCE FOR LARGE QS IS IN NUCLEI AT SMALL IMPACT

PARAMETER, SO CENTRAL A-A COLLISIONS IS BEST.

BUT A-A IS VERY COMPLICATED - LOTS OF INTERACTION BETWEEN

PRODUCED PARTICLES AFTER THE PRIMARY COLLISION, COLLECTIVE FLOW

PHENOMENA, ETC.



ANOTHER FAVORED REGION OF PHASE SPACE IS HIGH ENERGY.

QS GROWS WITH ENERGY (RAPIDITY)

QS(η) ∼ e
λη

( or e
a
√
η
)

LHC IS A NATURAL PLACE TO EXPLORE EFFECTS OF SATURATION

MOMENTUM

ANOTHER PROMISING REGION - FORWARD REGION IN d-Au AT RHIC,

WHERE ONE PROBES LOW x PART OF THE TARGET NUCLEUS WAVE

FUNCTION, BUT NO COMPLICATED FINAL STATE EFFECTS.

RECENT COUPLE OF YEARS THERE HAS BEEN A LOT OF ACTIVITY IN

THE CGC COMMUNITY INTERPRETING DATA IN THESE REGIMES THAT FAVOR

MANIFESTATION OF SATURATION.



HEYDAY OF ”CGC PHENOMENOLOGY”

FOUR (RECENT) PILLARS OF CGC PHENOMENOLOGY

FORWARD PARTICLE PRODUCTION IN d-Au -STRONG SUPPRESSION AT RHIC

AT η > 3.

DIHADRON CORELATIONS IN d-Au - STRONG SUPPRESSION OF THE AWAY

SIDE PEAK IN FORWARD PRODUCTION

”RIDGE”@LHC - LONG RANGE RAPIDITY AND ANGULAR CORRELATIONS IN

p-p HIGH MULTIPLICITY EVENTS

”RIDGE”@RHIC- SAME IN Au-Au AND Cu-Cu



IN THESE LECTURES A LITTLE BIT ABOUT THE FORWARD SUPPRESSION

AND THE RIDGE IN p − p.

FIRST LECTURE: A QUALITATIVE DISCUSSION OF NATURALNESS OF LONG

RANGE RAPIDITY CORRELATIONS COUPLED WITH CORRELATIONS IN THE

ANGLE OF PARTICLE EMISSION. THE ROLE OF SATURATION HERE, AS WE WILL

SEE IS ACTUALLY TO MOVE THE EFFECT TO HIGHER TRANSVERSE MOMENTA

AND ALSO TO MAKE IT EVENTUALLY WEAKER.

SECOND IS THE DISCUSSION OF THE CGC BASED CALCULATION OF

FORWARD PARTICLE SUPPRESSION. HERE I WILL DISCUSS ADDITIONAL

CONTRIBUTIONS WHICH WERE NOT INCLUDED IN CALCULATIONS SO FAR AND

WILL EXPLAIN THAT THOSE ARE THE ONES MORE DIRECTLY AFFECTED BY

SATURATION EFFECTS.



LECTURE I - ON CMS ANGULAR ”RIDGE” CORRELATIONS

CMS - TWO PARTICLE CORRELATIONS IN P-P, LONG RANGE IN RAPIDITY

AND PEAKED IN FORWARD DIRECTION - ”RIDGE” IN P-P COLLISIONS

Figure 2: THE CMS RIDGE.



SIMILAR CORRELATIONS HAVE BEEN MEASURED ALSO AT RHIC BY STAR

AND PHOBOS.

Figure 3: HARD RIDGE AT PHOBOS



Figure 4: SOFT RIDGE AT STAR

THE RHIC RIDGE MAY HAVE A DIFFERENT NATURE, AS IT IS BELIEVED THAT

FINAL STATE INTERACTIONS CAN GENERATE RADIAL FLOW WHICH PRODUCES

ANGULAR CORRELATIONS INDEPENDENT FROM THOSE IN THE INITIAL STATE.

THE DISCUSSION HERE IS DECOUPLED FROM FINAL STATE, AND SO IS ONLY

PERTINENT TO THE CMS MEASUREMENTS.



THERE IS AN ONGOING CALCULATIONAL EFFORT IN THE CGC COMMUNITY

TO DESCRIBE THE CMS CORRELATION QUANTITATIVELY. HERE I ONLY GIVE

A QUALITATIVE DISCUSSION, BUT ALSO POINT OUT TO SOME IMPORTANT

PHYSICS WHICH NEEDS TO BE MUCH BETTER HANDLED QUANTITATIVELY IN

THESE CALCULATIONS.

DUMITRU, DUSLING, GELIS, JALILIAN-MARIAN, LAPPI, VENUGOPALAN -

arXiv:1009.5295 AND ONGOING - THE SAME MECHANISM ALBEIT IN A LITTLE

DIFFERENT GUISE OF ”GLASMA FLUX TUBES”. BUT REALLY THE SAME!

LEVIN, REZAEIAN - arXiv:1105.3275 - AGAIN THE SAME EXACT MECHANISM,

BUT DRESSED IN ROBES OF POMERON CALCULUS.



CHOICE OF FRAME

CENTER OF MASS COMPLICATED FOR CENTRAL RAPIDITY

CM frame

Figure 5: COLLISION IN CM - NOT EIKONAL AT Y=0.

RECOIL CEARLY NONNEGLIGIBLE - EIKONAL APPROXIMATION NOT

APPLICABLE - FOR SCATTERED PARTONS PT ∼ P+



AFTER COLLISION YOU HAVE THE ”GLASMA” MESS - LONGITUDINAL FIELDS,

”FLUX TUBES”...

BUT IT IS MUCH SIMPLER IN THE LAB FRAME

Lab frame

Figure 6: COLLISION IN LAB FRAME - EIKONAL OK.

PARTONS SCATTER EVER SO SLIGHTLY - P+ ≫ PT - EIKONAL

APPROXIMATION SHOULD BE OK

LONGITUDINAL FIELDS STILL EXIST, BUT THE PICTURE THANKFULLY IS

RATHER MORE MUNDANE



<T|| P>

Figure 7: PARTONIC EIKONAL SCATTERING

PARTONS OF THE PROJECTILE SCATTER OFF THE FIELDS OF THE TARGET.

PROJECTILE CARRIES COLOR CHARGE DENSITY ρa(x).

THIS CHARGE DENSITY DRAGS WITH IT COULOMB (OR WEIZSACKER-

WILLIAMS) FIELD SQUEEZED BY LORENTZ BOOST

F
a
−i = b

a
i (x)δ(x

−
)

DETERMINED BY THE MAXWELL (YANG-MILLS) EQUATIONS:

∂ib
a
i (x) = ρ

a
(x); ∂ib

a
j − ∂jb

a
i − gf

abd
b
b
i(x)b

c
j(x) = 0



AFTER PASSING THROUGH THE TARGET FIELDS, THE SOURCES SCATTER

ρ
a
(x) → S

ab
(x)ρ

b
(x)

AND ALSO THE SOFT GLUONS SCATTER:

b
a
i (x) → S

ab
(x)b

b
i(x)

RESULT: SOFT GLUONS DECOHERE FROM THE SOURCES AND FLY AWAY

AS FINAL STATE GLUONS. THEY FLY THEIR OWN WAY NOT ENTIRELY

PARALLEL TO THE BEAM, AND THEIR OWN WEIZSACKER-WILLIAMS FIELDS

NOW HAVE A COMPONENT PARALLEL TO THE INITIAL BEAM DIRECTION - ”THE

LONGITUDINAL FIELDS OF GLASMA”.

THUS THE LONGITUDINAL FIELDS ARE SIMPLY THE ATTRIBUTES OF THE

SCATTERED GLUONS.



BEAM BEAM

BEFORE AFTER

FIELD
GLUON

GLUON
FIELD

Figure 8: GLUONS SCATTER OUT - LONGITUDINAL FIELDS ”TRIVIAL”.

SO LETS JUST KEEP IN MIND THAT IN THE LAB FRAME
EVERYTHING IS DESCRIBED BY A BUNCH OF INCOMING GLUONS
THAT SCATTER ON THE TARGET FIELDS



NAIVE PICTURE OF EIKONAL GLUON PRODUCTION

LONG RANGE RAPIDITY CORRELATIONS COME FOR FREE WITH BOOST

INVARIANCE

INCOMING |P > IS BOOST INVARIANT: EXACTLY THE SAME GLUON

DISTRIBUTIONS AT η1 AND η2. AND THEY SCATTER ON EXACTLY THE SAME

TARGET

WHAT HAPPENS AT η1, HAPPENS ALSO AT η2

TRUE CONFIGURATION BY CONFIGURATION IF THERE IS A ”‘CLASSICAL”’

AVERAGE FIELD IN THE PROJECTILE - FLUCTUATIONS ARE SMALL. BUT EVEN

OTHERWISE ONE CERTAINLY EXPECTS SOME LONG RANGE CORRELATIONS IN

RAPIDITY.

IF IT IS PROBABLE TO PRODUCE A GLUON AT η1, IT IS ALSO PROBABLE TO

PRODUCE GLUON AT η2



BUT EXACTLY BY THE SAME LOGIC THERE MUST BE ANGULAR

CORRELATIONS: IF THE FIRST GLUON IS MOST LIKELY TO BE SCATTERED

TO THE RIGHT, THE SECOND GLUON AT THE SAME IMPACT PARAMETER

WILL BE ALSO SCATTERED TO THE RIGHT

Figure 9: SAME IMPACT PARAMETER - SAME KICK



IN TERMS OF OUR DOMAIN TYPE CARTOON OF THE TARGET, THE PARTON

WITH CHARGE q THAT HITS AT AN IMPACT PARAMETER x PICKS UP A

MOMENTUM

∆~PT = gq

∫

dx
+ ~F

−
= gq ~E

AND THE NEXT PARTON (AT ANOTHER RAPIDITY) PICKS UP EXACTLY THE

SAME MOMENTUM, IF IT HAS THE SAME CHARGE q. BUT SINCE THE INCOMING

WAVE FUNCTION IS BOOST INVARIANT, THE TWO PARTONS VERY LIKELY WILL

HAVE THE SAME CHARGE q.

CAN WE EASILY SEE IT IN THE ACTUAL GLUON
PRODUCTION FORMULAE?



TWO GLUON INCLUSIVE PRODUCTION

WE NEGLECT THE EVOLUTION BETWEEN THE TWO PRODUCED GLUONS

AND ALSO ASSUME DILUTE PROJECTILE

(almost Bayer, A.K, Nardi, Wiedemann 2005)

dN

d2pd2kdηdξ
=< A

ab
(k, p)A

∗ab
(k, p) >P,T

WITH

A
ab
(k, p) =

∫

u,z

e
ikz+ipu

∫

x1,x2

{

gfi(z−x1) [S(x1) − S(z)]
ac

ρ
c
(x1)

}{

gfj(u−x2) [S(u) − S(x2)]
bd
ρ
d
(x2)

}

−g

2

∫

x1

fi(z − x1)fj(u − x1)
{

[S(x1) − S(z)] ρ̄(x1)
[

S
†
(u) + S

†
(x1)

]}ab

+g

∫

x1

fi(z − u)fj(u − x1)
{

(S(z) − S(u)) ρ̄(x1)S
†
(u)

}ab

.

HERE

ρ̄ ≡ T
a
ρ
a
, fi(x − y) =

(x − y)i

(x − y)2
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Figure 10: THE THREE CONTRIBUTION TO PRODUCTION AMPLITUDE.

A. IS LEADING IN THE LARGE FIELD LIMIT ρ ∝ 1
g . IT IS INDEPENDENT

EMISSION OF THE TWO GLUONS BY TWO COLOR CHARGES TWO POMERONS

B. IS THE EMISSION OF THE TWO GLUONS FROM THE SAME VALENCE



SOURCE

C. IS EMISSION OF THE GLUON ATu WHICH SUBSEQUENTLY EMITS THE

GLUON AT z

THESE CORRESPOND TO TWO GLUON PRODUCTION FROM A SINGLE

POMERON AND ARE NOT RELEVANT TO THE PRESENT DISCUSSION.

SQUARING THE AMPLITUDE OF COURSE LEADS TO ZILLIONS OF TERMS -

BUT WE WILL ONLY LOOK EXPLICITLY AT ONE OF THEM

σ
4
=

∫

z,z̄,u,ū,x1,x̄1,x2x̄2

e
ik(z−z̄)+ip(u−ū)

α
2
s
~f(z̄− x̄1) · ~f(x1−z) ~f(ū− x̄2) · ~f(x2−u)

×
{

ρ(x1)[S
†
(x1) − S

†
(z)][S(x̄1) − S(z)]ρ(x̄1)

}{

ρ(x2)[S
†
(u) − S

†
(x2)][S(ū) − S(x̄2)ρ(x̄2)

}



ROBUST CORRELATION

σ
4
= 〈σ1(k)σ1(p) >

CONFIGURATION BY CONFIGURATION (FOR FIXED CONFIGURATION OF

PROJECTILE CHARGES ρ AND FIXED TARGET FIELDS S)

σ1(k) =

∫

z,z̄,x1,x̄1

e
ik(z−z̄)

αs
~f(z̄−x̄1)·~f(x1−z)

{

ρ(x1)[S
†
(x1) − S

†
(z)][S(x̄1) − S(z)]ρ(x̄1)

}

σ1(k) IS A SINGLE GLUON EMISSION PROBABILITY FOR A GIVEN

CONFIGURATION OF COLOR CHARGES IN THE PROJECTILE AND A GIVEN

CONFIGURATION OF TARGET FIELDS

σ1(k) IS A NONTRIVIAL REAL FUNCTION OF k, WHICH HAS A MAXIMUM

AT SOME VALUE k = q0. CLEARLY THEN THE TWO GLUON PRODUCTION

PROBABILITY CONFIGURATION BY CONFIGURATION HAS A MAXIMUM AT

k = p = q0

THE VALUE OF q0 DEPENDS ON CONFIGURATION, BUT THE FACT THAT k AND

p ARE THE SAME DOES NOT.



IS THE MAXIMUM OF σ1 UNIQUE?

σ1(k) = a(k)a
∗
(k)= a(k)a(−k)

a(k) =

∫

z,x1,

e
ikz

g ~f(x1 − z) [S(x1) − S(z)]ρ(x1)

THUS σ1 IS SYMMETRIC UNDER k → −k AND IS DOUBLY DEGENERATE -

WITH MAXIMA AT q0 AND −q0

THIS MEANS THAT σ4 HAS A SYMMETRY k, p → −k, p AND THEREFORE

HAS MAXIMA AT TWO RELATIVE ANGLES φ = 0 AND φ = π

THE MAXIMUM AT φ = π IS OF COURSE VERY DIFFICULT TO DISTINGUISH

EXPERIMENTALLY

ALL THESE FEATURES REMAIN TRUE FOR THE LEADING TERM BEYOND

THE WEAK SOURCE APPROXIMATION, SINCE THE TWO GLUON INCLUSIVE

PRODUCTION PROBABILITY IS STILL CONFIGURATION BY CONFIGURATION A

SQUARE OF A SINGLE GLUON INCLUSIVE PRODUCTION PROBABLITY, WHICH IS

A SQUARE OF A REAL CLASSICAL FIELD (AMPLITUDE).



DEGENERACY IS EASY TO UNDERSTAND IN OUR SIMPLE PICTURE.

THE FIELDS ARE COLORED AND THE PARTONS ARE GLUONS - ALSO

COLORED.

SUPPOSE THE TARGET ELECTRIC FIELD IS IN THE THIRD DIRECTION IN

COLOR SPACE, E3
i ; AND INCOMING GLUON FIELD HAS INDEX 1, b1i .

WITH RESPECT TO THE THIRD DIRECTION SUCH A GLUON FIELD HAS

EQUAL NUMBER OF POSITIVELY AND NEGATIVELY CHARGED PARTONS W1 =

W+ + W−.

THUS PROBABILITY TO BE SCATTERED PARALLEL AND ANTIPARALLEL TO

THE FIELD ARE EQUAL, DUR TO REALITY OF THE ADJOINT REPRESENTATION.

THE DEGENERACY THUS DOES NOT HOLD FOR QUARKS, AND ONE EXPECTS

SHARPER CORRELATION AT VANISHING AZYMUTHAL ANGLE.



WHAT ABOUT ”NONCLASSICAL” TERMS?

FIRST OFF, THERE IS NO ANGULAR DEGENERACY

THE AMPLITUDE DOES NOT FACTORIZE, SO ITS REALITY MEANS ONLY

PARITY SYMMETRY k, p → −k,−p

IS THERE POSITIVE CORRELATION AT φ = 0?

Au emits z = g

∫

x1

fi(z − u)fj(u − x1)
{

(S(z) − S(u)) ρ̄(x1)S
†
(u)

}ab

FOR z TO DECOHERE FROM u, AND THEREFORE BE EMITTED, THE TWO

GLUONS MUST PREFERRABLY HIT AT DIFFERENT IMPACT PARAMETERS. WHEN

EMITTED AT THE SAME IMPACT PARAMETER THE TWO GLUONS WILL HAVE

OPPOSITE TRANSVERSE MOMENTA DUE TO CORRELATIONS IN THE INITITAL

STATE - LARGE AWAY SIDE RAPIDITY INDEPENDENT MAXIMUM AT ∆φ = π



Ax emits u and z = −g

2

∫

x1

fi(z−x1)fj(u−x1)
{

[S(x1) − S(z)] ρ̄(x1)
[

S
†
(u) + S

†
(x1)

]}ab

HERE z HAS TO HIT FAR FROM x, BUT u LIKES TO BE CLOSE TO x IN FACT THIS

TERM PROBABLY PRODUCES ONE GLUON AT RELATIVELY LARGE pT - GREATER

THAN qs WITH THE BALANCING MOMENTUM APPEARING AT MORE FORWARD

RAPIDITY



HOW BIG IS THE EFFECT?

TRANSVERSE CORRELATION LENGTH IN THE HADRON L = 1
Qs

TO BE CORRELATED THE TWO GLUONS HAVE TO BE IN THE SAME INCOMING

STATE AND HAVE TO SCATTER OF THE SAME TARGET FIELD HAVE TO SIT

WITHIN ∆X < Lmin OF EACH OTHER.

THE CORRELATED PRODUCTION ∝ S/Q2
s,

WHILE THE TOTAL MULTIPLICITY ∝ S

[

d2N

d2pd2k
− dN

d2k

dN

d2p

]

/
dN

d2k

dN

d2p
∼ 1

(Qmax
s )2Smin

.



IS IT Nc SUPPRESSED?

THE CALCULATIONS OF THE BNL GROUP ARE BASED ON FACTORIZATION.

AT LARGE Nc THE LEADING CONTRIBUTION IS WHEN THE CHARGE

DENSITIES ARE PAIRWISE IN COLOR SINGLETS. HAVE TO AVERAGE OVER THE

PROJECTILE AND TARGET WAVE FUNCTIONS

〈ρa
(x1)ρ

a
(x̄1)ρ

b
(x2)ρ

b
(x̄2)〉P

×〈Tr
{

[S
†
(x1) − S

†
(z)][S(x̄1) − S(z̄)]

}

Tr
{

[S
†
(x2) − S

†
(u)][S(x̄2) − S(ū)]

}

〉T .

THE SIMPLEST APPROACH (BNL ”GLASMA FLUX TUBES”)

EXPAND ALL S = 1 + α ; KEEP ONLY LEADING TERM

N ∝ {ρααρ}(k){ρααρ}(p)

NOW AVERAGE WITH GAUSSIAN WEIGHTS

< ρρρρ >= 3 < ρρ >< ρρ >; < αααα >= 3 < αα >< αα >



TAKE < ρρ >= ΦBK AND THE SAME FOR < αα > GIVES

N ∝ 9Φ
P
BKΦ

P
BKΦ

T
BKΦ

T
BK

WITH GAUSSIAN AVERAGING

〈ρa
(x1)ρ

a
(x̄1)ρ

b
(x2)ρ

b
(x̄2)〉Gauss and leading Nc = 〈ρa

(x1)ρ
a
(x̄1)〉Gauss〈ρb

(x2)ρ
b
(x̄2)〉Gauss .

AND THE SAME FACTORIZATION FOR THE TARGET AVERAGES OF S’s

AND SO
d2N

d2pd2k
=

dN

d2k

dN

d2p

WITHIN GAUSSIAN (FACTORIZABLE) APPROXIMATION CORRELATIONS ARE

SUBLEADING IN 1/Nc



BUT IT DOES NOT HAVE TO BE LIKE THIS!

WHEN IS FACTORIZABLE AVERAGING GOOD? WHEN THE POINTS ARE FAR

AWAY IN SPACE

〈ρa
(x1)ρ

a
(x̄1)ρ

b
(x2)ρ

b
(x̄2)〉

IF (x1, x̄1) IS FAR FROM (x2, x̄2) THEY DON’T KNOW ABOUT EACH OTHER

AND THE AVERAGE FACTORIZES.

BUT WE ARE INTERESTED PRECISELY IN THE OPPOSITE SITUATION - WHEN

ALL FOUR POINTS ARE WITHIN THE CORRELATION LENGTH, AND THEREFORE

WE ARE SAMPLING CONFIGURATIONS WHICH AT ALL POINTS ARE SIMILAR

FACTORIZABILITY IS NOT AN INHERENT PROPERTY OF THE LARGE N LIMIT.

E.G. FOR ”DIPOLE DENSITY”

n(x1, x̄1) =
(

ρ
a
(x1) − ρ

a
(x̄1)

)2

.

IN BFKL EVOLVED WAVE FUNCTION OF A SINGLE DIPOLE (PARENT DIPOLE

LARGER THAN DAUGHTERS)



〈n(x1, x̄1)n(x2, x̄2)〉 − 〈n(x1, x̄1)〉〈n(x2, x̄2)〉 ∼ 〈n(x1, x̄1)〉〈n(x2, x̄2)〉
(

b

x

)−λ

THERE IS NO REASON AT ALL TO BELIEVE THAT THE AVERAGES FACTORIZE.

THUS VERY LIKELY THERE IS A CONTRIBUTION TO THE CORRELATED

PRODUCTION ALREADY IN THE LEADING ORDER IN LARGE NC



CONCLUSIONS

GLUON PRODUCTION AT HIGH ENERGY LEADS NATURALLY TO RAPIDITY

CORRELATIONS (TRIVIALLY) AND ANGULAR CORRELATIONS (A LITTLE LESS

TRIVIALLY). THERE JUST HAVE TO BE MANY GLUONS SO THAT MORE THAN

ONE IS PRODUCED AT FIXED IMPACT PARAMETER (WITHIN ∆b ∼ 1
Qs

(- HOT

SPOTS, HIGH MILTIPLICITY EVENTS?))

CORRELATIONS EXIST CONFIGURATION BY CONFIGURATION AND

THEREFORE GAUSSIAN AVERAGING VERY LIKELY UNDERESTIMATES THEM.

THERE IS NO REASON NOT TO HAVE CORRELATIONS AT LEADING ORDER

IN 1/NC.

THIS MEANS WE HAVE TO UNDERSTAND HOW TO EVOLVE IN RAPIDITY

OBJECTS MORE COMPLICATED THAN ”DIPOLES” - BUT IT IS ESSENTIAL TO

UNDERSTAND THE ANGULAR CORRELATIONS.

”‘CLASSICAL”’ TERM LEADS TO THE STRONGEST CORRELATIONS - THUS

THE CORRELATIONS SHOULD BE STRONGEST FOR NUCLEUS PROJECTILE

WHERE IT DOMINATES. ON THE OTHER HAND EFFECT BECOMES WEAKER

WITH INCREASING QS. SO MAYBE ACTUALLY THE OTHER WAY ROUND - IT IS

STRONGEST FOR p − p IN A LIMITED RANGE OF ENERGIES?



LECTURE II - ON FORWARD SUPPRESSION

DATA IS FIT REASONABLY WELL.
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Figure 11: Negatively charged hadron and π0 yields in proton-proton (at pseudo-rapidities

(2.2, 3.2) and (3.3, 3.8 and 4)) and deuteron-gold (at pseudo-rapidities (2.2, 3.2) and 4)

collisions at
√
sNN = 200 GeV. Data by the BRAHMS and STAR collaborations. (From

Albacete and Marquet)



BUT A CURIOUSLY SLOW APPROACH TO PERTURBATIVE REGIME (OR

RATHER THE LACK THEREOF)
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Figure 12: Nuclear modification factors for h± production in p+Pb collisions, Rh±
pPb, for

collision energies
√
sNN = 8.8 (left) and 6.2 TeV (right) and for rapidities yh = 2, 4,

and 6. For comparison, the red dashed line corresponds to the same quantity calculated in

the kt-factorization scheme. (From Albacete and Marquet)



WHAT GOES INTO THIS CALCULATION?

”HYBRID FORMALISM” OF DUMITRU, HAYASHIGAKI, JALILIAN-MARIAN

VERY INTUITIVE
dN

d2kdη
=

1

(2π)2

∫ 1

xF

dz

z2

[

x1fg(x1, Q
2
)NA(x2,

k

z
)Dh/g(z,Q) + Σqx1fq(x1, Q

2
)NF (x2,

k

z
)Dh/q(z,Q)

]

WITH

xF =
k

√
sNN

e
η
; x1 =

xF

z
; x2 = x1e

−2η

SOME QUESTIONS:

DOES IT TAKE INTO ACCOUNT ALL LEADING TWIST CONTRIBUTIONS

IMPORTANT AT HIGH kT?

HOW IS IT RELATED TO kT FACTORIZED APPROACH?



LETS ACTUALLY DERIVE IT.

SMAILL PERTURBATIVE PROJECTILE |P 〉 SCATTERS ON A LARGE DENSE

TARGET 〈T |.

<T|| P>

|P 〉 IS CALCULATED PERTURBATIVELY KEEPING EXACT KINEMATICS (NO

SOFT APPROXIMATION).

|T 〉 IS MODELLED AS DISTRIBUTION OF CLASSICAL COLOR FIELDS

THE SCATTERING IS APPROXIMATED BY EIKONAL (NO RECOIL) SCATTERING

OF THE PROJECTILE PARTONS ON THE FIELDS OF THE TARGET.



WE START BY CONSIDERING GLUONS ONLY - INCLUDING QUARKS IS

STRAIGHTFORWARD AND WILL BE DONE LATER.

THE INCOMING PROJECTILE WAVE FUNCTION

|Ψ〉in = Ω|v〉

|v〉 - ZERO ORDER PERTURBATIVE WAVE FUNCTION

Ω DIAGONALIZES QCD HAMILTONIAN

Ω
†
HQCDΩ = Hdiag

OUTGOING WAVE FUNCTION

|Ψ〉out = S|Ψ〉in



THE NUMBER OF PRODUCED GLUONS:

dN

d2kdk+
=

1

(2π)3
〈v|Ω†

S
†
Ωa

†
(k, k

+
)a(k, k

+
)Ω

†
SΩ|v〉

WHY? BECAUSE:

HΩ|v〉 = EvΩ|v〉 → H[Ωa
†
(k)Ω

†
]Ω|v〉 = [Ev + ω(k)][Ωa

†
(k)Ω

†
]Ω|v〉

THUS THE OPERATOR Ωa†(k)Ω† CREATES A DRESSED GLUON - AN

EIGENSTATE OF INTERACTING HAMILTONIAN!

DIAGRAMMATICALLY THIS IS EQUIVALENT TO TAKING INTO ACCOUNT THE

FINAL STATE EMISSION...

ITS JUST THE USUAL PERTURBATIVE DEFINITION OF OBSERVABLE,

JUST IN DIFFERENT NOTATIONS...



PERTURBATIVELY WE FIND

Ω = e
−iG

= 1 − iG + ...

WITH

G = −gfabc
∫

k,p,k+,p+>0
1√

2k+p+(k++p+)

1
ωp+k−ωp−ωk

{

−
[

p+

k+
ki − pi

]

ab
i(k

+, k)ac
j(p

+, p)aa†
j (k+ + p+, k + p)

+ p+

p++k+
kja

b
i(k

+, k)ac
i(p

+, p)aa†
j (k+ + p+, k + p)

}

+ h.c.

AND THE SINGLE INCLUSIVE GLUON SPECTRUM

dN

d2kdk+
=

1

(2π)3
〈v|

[

Ŝ
†
G − GŜ

†
]

a
a†
k (k

+
, k)a

a
k(k

+
, k)

[

GŜ − ŜG
]

|v〉

FOR EIKONAL SCATTERING Ŝ†aa
i (q

+, v)Ŝ = Sab(v)ab
i(q

+, v)



AT THIS POINT WE ARE SORT OF AT A CROSSROADS. WE HAVE TERMS OF

THE TYPE:

〈v|a†
(p

+
+ k

+
)a(p

+
)a

†
(q

+
)a(q

+
+ k

+
)|v〉

NEGLECTING k+ IS THE SOFT LIMIT. IT LEADS TO CORRELATOR OF THE

COLOR CHARGE DENSITIES

〈v|ρa
(x)ρ

b
(y)|v〉

ON THE OTHER HAND ”PARTONIC LIMIT” (EXPANSION IN NUMBER OF

PARTONS IN THE PROJECTILE) IS WRITING THIS AS

δ(p
+−q

+
)〈v|a†

(p
+
+k

+
)a(p

+
+k

+
)|v〉+〈v|a†

(p
+
+k

+
)a

†
(q

+
)a(p

+
)a(q

+
+k

+
)|v〉

AND NEGLECTING THE SECOND TERM

THE ”HYBRID” FORMALISM OF DHJ IS PARTONIC IN NATURE AND

CORRESPONDS TO THE SECOND OPTION



THEN

dN

d2kdk+
=

αs

2π2

1

(2π)2
1

N2
c − 1

∫ 1

x

dξ

ξ

1

k+
e
ik(z−z̄) 2

(1 − ξ)

[

(1−ξ)
2
+ξ

2
+(1−ξ)

2
ξ
2

]

(v − z̄)i

(v − z̄)2
(v − z)i

(v − z)2

×tr

{[

S
†
((1 − ξ)v + ξz̄)T

a
S((1 − ξ)v + ξz̄) − S

†
vT

a
Sz̄

]

×
[

S
†
((1 − ξ)v + ξz)T

a
S((1 − ξ)v + ξz) − S

†
zT

a
Sv

]}

× k+

2πξ
〈ab†

j (
k+

ξ
, (1 − ξ)v + ξz̄)a

b
j(
k+

ξ
, (1 − ξ)v + ξz)〉

ROUGHLY: NUMBER OF GLUONS IN THE LEADING ORDER STATE×
PROBABILITY TO EMIT THE GLUON WITH LONGITUDINAL MOMENTUM

FRACTION ξ × SCATTERING PROBABILITY OF THE PARTONIC SYSTEM



THE SOFT LIMIT.

TO GET SOME INTUITION CONSIDER THE SOFT LIMIT FIRST ξ ≪ 1

dN

d2kdk+
=

αs

π2

1

(2π)2
Nc

N2
c − 1

∫

1

k+
e
ik(z−z̄) (v − z̄)i

(v − z̄)2
(z − v)i

(z − v)2
tr

{

SzS
†
z̄+1−S

†
vSz−S

†
z̄Sv

}

×〈aa†
j (k

+

ξ , v)aa
j(

k+

ξ , v)〉
C.F. STANDARD kT FACTORISED EXPRESSION:

dN

d2kdk+
=

αs

π2

1

(2π)2
1

N2
c − 1

∫

1

k+
e
ik(z−z̄) (v − z̄)i

(v − z̄)2
(z − v)i

(z − v)2
tr

{

SzS
†
z̄+1−S

†
vSz−S

†
z̄Sv

}

×〈ρa
vρ

a
v̄〉

IN THE PARTONIC APPROXIMATION, INDEED

〈ρa
(v)ρ

a
(v̄)〉 = δ

2
(v − v̄)Nc〈

∫

dp+

2π
a
†a
i (p

+
, v)a

a
i (p

+
, v)〉

SOFT LIMIT OF ”HYBRID” IS THE SAME AS PARTONIC LIMIT (INDEPENDENT

COLOR CHARGES IN THE TRANSVERSE PLANE) OF kT FACTORISED



CUSTOMARY DEFINITION OF TMD:

xfg

(

x,Q =
1

|u − v|

)

≡ p+

2π

∫

d
2
b〈aa†

i (p
+
, u)a

a
i (p

+
, v〉) =

∫

d
2
b

∫

d2p

π
e
ip·(u−v)

φ(p, b; x

≈
∫

d2b
∫

1
|u−v|2
0 dp2φ(p, b; x)

IN THE SOFT LIMIT

〈ρa
(v)ρ

a
(v̄)〉 =

1

8παs

∫

d
2
pe

ip·(v−v̄)
p
2
φP (p, b)

tr[1 − S
†
(v)S(v̄)] = 2παsNc

∫

d
2
pe

ip·(v−v̄) 1

p2
φT (p, b)

AND THE SINGLE GLUON SPECTRUM:



dN

d2bd2kdη
=

αsNc

N2
c − 1

1

k2

∫

l

φT (l + k, Y − η)φP (l, η)

=
αsNc

N2
c − 1

∫

l

[

1

(l + k)2
+

1

(l + k)2
l2

k2
+ 2

1

(l + k)2
l · k
k2

]

φT (l + k)φP (l)

IN THE LARGE PRODUCED MOMENTUM LIMIT k ≫ Qs,ΛQCD THIS IS

DOMINATED BY TWO INTEGRATION REGIONS:

A. |l| ≪ |k|: NE = αsNc
N2
c−1

1
k2
φT (k)

∫

l<Q∼k
φP (l)

THIS IS ”‘ELASTIC”’ SCATTERING OF A LOW pt GLUON WITH LARGE

MOMENTUM TRANSFER.

B. |l + k| ≪ |k|: NI
αsNc
N2
c−1

1
k2
φP (k)

∫

q<Q∼k
φT (q)

THIS IS ” INELASTIC ” SCATTERING: HIGH pt GLUON SCATTERS WITH SMALL

MOMENTUM TRANSFER.

INELASTIC - BECAUSE HIGH pT GLUONS LIVE IN THE WAVEFUNCTION ONLY

AS A PART OF THE ”UNRESOLVED STRUCTURE” OF THE NAIVE PARTON MODEL

PARTONS!



THE INELASTIC PARTON SCATTERING

CONSIDER A STATE:

|in >=

[

|v, a > +gT
a
bcf(v, z)|v, b; z, c >

]

AFTER SCATTERING:

|out >=

[

S
ab
(v)|v, b > +gT

a
bcf(v, z)S

bd
(v)S

ce
(z)|v, d; z, e >

]

THE INELASTIC COMPONENT:

|out >inelastic= gT
a
bcf(v, z)S

bd
(v)

[

S
ce
(z)|v, d; z, e > −S

ce
(v)|v, d; z, e >

]

IF S(v) IS SLOWLY VARYING, THE HIGH MOMENTUM IN THE FINAL STATE CAN

ONLY ARISE FROM HIGH MOMENTUM COMPONENT OF THE AMPLITUDE f(v, z)

gT
a
bc

∫

d
2
ze

ik·(z−v)
f(v, z)S

bd
(v)

[

S
ce
(z) − S

ce
(v)

]



SQUARING AND INTEGRATING OVER v WITH THE GLUON DENSITY REPRODUCES

THE INELASTIC CONTRIBUTION TO THE GLUON PRODUCTION

HOW IMPORTANT IS THE INELASTIC CONTRIBUTION?

BOTH CONTRIBUTIONS ARE THE SAME ORDER IN αs (ELASTIC DENSITY IS

O(1), BUT SCATTERING PROBABILITY O(αs); INELASTIC DENISTY IS O(αs),

BUT SCATTERING PROBABILITY O(1))

ASSUME PERTURBATIVE BEHAVIOR: φ = µ2

p2
. THEN

[

dN

d2kdη

]

elastic

= αs

µ2
Pµ

2
T ln

k4

k2

Λ2
QCD

[

dN

d2kdη

]

inelastic

= αs

µ2
Pµ

2
T

k4
ln

k2

Q2
s

AT p ≫ QS IT IS NOT SUPPRESSED EVEN LOGARITHMICALLY!



BACK TO THE HYBRID FORMALISM.

dN

d2kdk+
=

αs

2π2

1

(2π)2
1

N2
c − 1

∫ 1

x

dξ

ξ

1

k+
e
ik(z−z̄) 2

(1 − ξ)

[

(1−ξ)
2
+ξ

2
+(1−ξ)

2
ξ
2

]

(v − z̄)i

(v − z̄)2
(v − z)i

(v − z)2

×tr

{[

S
†
((1 − ξ)v + ξz̄)T

a
S((1 − ξ)v + ξz̄) − S

†
vT

a
Sz̄

]

×
[

S
†
((1 − ξ)v + ξz)T

a
S((1 − ξ)v + ξz) − S

†
zT

a
Sv

]}

× k+

2πξ
〈ab†

j (
k+

ξ
, (1 − ξ)v + ξz̄)a

b
j(
k+

ξ
, (1 − ξ)v + ξz)〉

IT IS EASY TO IDENTIFY THE SAME PHYSICS IN THE HYBRID APPROACH.

ELASTIC CONTRIBUTION - ALL VARIATION IN z−z̄ IS IN THE PHASE FACTORS

INELASTIC CONTRIBUTION: THE SEPARATION |v − z| IS SMALL.

ALSO: NF (k) =
∫

d2xeikx 1
Nc

Tr[1 − S†
F (0)SF (x)]



[

dN

d2kdη

]

elastic

≃ αs

π

1

(2π)2

∫

p2<Q2

dp2

2p2

∫ 1

xF

dξ

ξ
Pg/g(ξ)xFfg(

xF

ξ
, p

2
)NA(k)+”valence”

=
1

(2π)2
xFfg(xF , Q

2
)NA(k)

[

dN

d2kdη

]

inelastic

=
αs

π2

N2
c

N2
c − 1

1

k4

∫ 1

xF

dξ

ξ

{

1 − ξ + ξ
2
}

Pg/g(ξ)xFfg(
xF

ξ
,Q)

×
∫

p2<Q2
d2p

(2π)2
p2NF (p)

COMPLETE LEADING TWIST EXPRESSION (INCLUDING FRAGMENTATION

CONTRIBUTION):

dN

d2kdη
=

∫ 1

xF

dz

z2
Dh/g(z,Q)

[

x1fg(x1, Q
2
)NA(x2,

k

z
)

+
αs

π2

N2
c

N2
c − 1

z4

k4

∫ 1

x1

dξ

ξ

{

1 − ξ + ξ
2
}

Pg/g(ξ)x1fg(
x1

ξ
,Q)

∫

p2<Q2

d2p

(2π)2
p
2
NF (x2, p)

]



QUARKS INCLUDED.

INCLUDING QUARK AND ANTIQUARK PRODUCTION IS STRAIGHTFORWARD

IF A BIT TEDIOUS.

THE FINAL RESULT FOR THE EXTRA ”INELASTIC” CONTRIBUTION IS

[

dNi

d2kdη

]

inelastic

=
αs

2π2

1

k4

∫

p2<Q2

d2p

(2π)2
p
2
NF (p)xF

∫ 1

xF

dξ

ξ
Σj=q,q̄,gwi/j(ξ)Pi/j(ξ)fj(

xF

ξ
,Q)

WITH ”INELASTIC WEIGHTS”

wg/g(ξ) = 2
N2

c

N2
c − 1

(1 − ξ + ξ
2
)

wg/q(ξ) = wg/q̄(ξ) =
N2

c

N2
c − 1

[

1 + (1 − ξ)
2 − ξ2

N2
c

]

wq/q(ξ) = wq̄/q̄(ξ) =
N2

c

N2
c − 1

[

1 + ξ
2 − (1 − ξ)2

N2
c

]

wq/g(ξ) = wq̄/g(ξ) =
1

2

[

(1 − ξ)
2
+ ξ

2 − 2ξ(1 − ξ)

N2
c − 1

]



DISCUSSION.

SOME FEATURES OF THE RESULT:

FINAL STATES THAT CORRESPOND TO INELASTIC CONTRIBUTION ARE

PAIRS OF PARTONS (PRESUMABLY DIHADRONS) WITH LARGE BALANCING

TRANSVERSE MOMENTUM. AT FORWARD KINEMATICS THIS MUST BE

DOMINATED BY ASYMMETRIC IN RAPIDITY CONFIGURATIONS, OTHERWISE

BOTH PARTONS WOULD NEED TO CARRY LARGE FRACTIONS OF LONGITUDINAL

MOMENTUM.

HOW DOES SATURATION EXHIBIT ITSELF?

ELASTIC CONTRIBUTION DEPENDS ONLY ON N(k) AT LARGE MOMENTUM

k AND THUS SHOULD NOT BE TOO SENSITIVE TO SATURATION!

INELASTIC CONTRIBUTION IS PROPORTIONAL TO THE TARGET GLUON

DISTRIBUTION BELOW THE MEASURED MOMENTUM

∫

p2<Q2

d2p

(2π)2
p
2
NF (p, x2) ∝ ftarget(Q, x2)

THIS IS STRONGLY SUPPRESSED BY THE EVOLUTION AT SMALL x2 (FORWARD)!



THUS ONE EXPECTS THAT IT IS THE INELASTIC CONTRIBUTION THAT

ARE MOSTLY SENSITIVE TO EFFECTS OF SATURATION IN p−A (d−Au)

VERSUS p − p.

SO HOW COME ALBACETE & MARQUET OBTAIN RdA < 1, EVEN THOUGH

THEY DO NOT INCLUDE THIS PIECE?

dN

d2kdη
∼ 1

(2π)2
x1fg(x1, Q

2
)NA(x2, k)

NAIVELY IF NA(k) = ANp(k) AT INITIAL RAPIDITY, THEN THE RATIO

STAYS THE SAME AT ANY RAPIDITY IF THE RAPIDITY EVOLUTION IS

LINEAR!.

NEVERTHELESS BFKL EVOLUTION AFFECTS ELASTIC CONTRIBUTION AS

WELL THROUGH THE ”SHADOWING” INTRODUCED AT THE INITIAL RAPIDITY!

BFKL EQUATION EVOLVES ANY INITIAL CONDITION INTO THE ”GEOMETRIC

SCALING” FORM φBFKL(k, Y ) ∝ [Qs(Y )/k]2−2γ

ANOMALOUS DIMENSION γ IS A SLOWLY VARYING FUNCTION OF

TRANSVERSE MOMENTUM AND RAPIDITY, AND VARIES BETWEEN 0 IN THE

ULTRAVIOLET AND 1/2 IN THE INFRARED.



WITHIN BFKLQs IS NOT A SATURATION MOMENTUM AS SUCH, BUT RATHER

HAS THE MEANING OF MOMENTUM AT WHICH THE DIPOLE SCATTERING

PROBABILITY IS CLOSE TO UNITY. WITHIN THE BFKL EVOLUTION IT DEPENDS

EXPONENTIALLY ON RAPIDITY Q2
s(Y ) = Q2

0 exp{λY }

HERE Q2
0 IS THE SCALE IN THE INITIAL CONDITION. THE INITIAL SCALES

ARE DIFFERENT FOR THE PROTON (Λ2
QCD) AND THE NUCLEUS (A1/3Λ2

QCD)

AND THE DISCREPANCY IN SCALES IS ENHANCED BY BFKL EVOLUTION.

THUS EVEN EXCLUDING THE SATURATION EFFECTS IN THE EVOLUTION

ONE WOULD GET A NONTRIVIAL RdA SOLELY DUE TO THE BFKL ANOMALOUS

DIMENSION

RpA(Y ) =
1

Ncoll

[

QsA(Y )

Qsp(Y )

]2−2γ(Y )

=

[

Q0p

Q0A

]2γ(Y )

< 1

RECALL THAT INELASTIC CONTRIBUTION IS NOT INCLUDED IN THE

FITS AT THE MOMENT

SO WHAT WE SEE IN THE FITS IS LIKELY NOT EFFECTS OF THE

SATURATION AT ALL, BUT RATHER EFFECTS OF THE LINEAR BFKL

EVOLUTION!


