Zakopane School, June 13, 2011

Hydrodynamic Approach to Relativistic Heavy Ion Collisions

Tetsufumi Hirano Sophia Univ. Tokyo 102-8554, Japan

T.H., P.Huovinen, Y.Nara, arXiv:1012.3955; arXiv:1010.6222 (Phys.Rev.C83:021902,2011); Invited review article in Progress of Particle and Nuclear Physics (in preparation)

Outline

- Introduction
- Some highlights from the hydro+cascade model so far
- Model: QGP fluid + hadronic cascade picture
 Results at RHIC:

⊔ V₂

Prediction and Postdiction at RHIC and LHC:
 v₂ in U+U collisions
 v₂ in Pb+Pb collisions
 Summary

Introduction

 Main aim: Understanding RHIC data based on a systematic analysis with QGP perfect fluid picture

 After press release of perfect fluid discovery in 2005 → Much progress: hadronic dissipation, eccentricity fluctuation, lattice EoS, CGC initial condition...

Set a baseline for viscous hydro calculations
 Prediction and "post" diction for U+U at RHIC and Pb+Pb at LHC

Importance of Hadronic Dissipation

Suppression in forward and backward rapidity Importance of hadronic viscosity

TH et al.,('05)

Mass Splitting = Hadronic effects

Mass dependence is o.k. from hydro+cascade. When mass splitting appears? Mass ordering comes from hadronic rescattering effect. Interplay btw. radial and elliptic flows. TH et al.,('08)

Violation of Mass Splitting

TH et al.,('08)

Model

- No single model to understand heavy ion collision as a whole.
- Idea: Employ "cutting edge" modules as far as possible
 - 3D ideal hydro
 - Hadronic transport model, JAM
 - Lattice EoS + resonance gas in JAM
 - Monte Carlo Glauber/KLN for initial condition

A Hybrid Approach: Initial Condition

<u>Model</u>* •MC-Glauber •MC-KLN (CGC)

ε_{part}, ε_{R.P.}
Centrality cut

*H.J.Drescher and Y.Nara (2007)

Initial Condition w.r.t. Participant Plane

Eccentricity enhanced due to fluctuation
Significant in small system, e.g., Cu+Cu, perpheal Au+Au
MC-KLN > MC-Glauber *

*See, Drescher and Nara, PRC 75, 034905 (2007).

A Hybrid Approach: Hydrodynamics

Ideal Hydrodynamics[#]
Initial time 0.6 fm/c
Lattice + HRG EoS*

[#]Hirano (2002), ^{*}Huovinen and Petreczky (2010) + JAM HRG

A Hybrid Approach: Hadronic Cascade

hadron gas QGP fluid collision axis Au Au

Interface

 Cooper-Frye formula at switching temperature *T*_{sw} = 155 MeV <u>Hadronic afterburner</u>
 Hadronic transport model based on kinetic theory → JAM*

*Y.Nara et al., (2000)

Comparison of Hydro+Cascade Results with Available Data Filled: PHENIX, PRC69, 034909 (2004), Open: Hydro+cascade From top to bottom, 0-5, 5-10, 10-15, ..., 70-80% centrality

p_T Spectra: MC-Glauber

(1) Absolute value of entropy, (2) soft/hard fraction $\alpha = 0.18$, and (3) switching temperature T_{sw} = 155 MeV.

$$\frac{dS}{d^2 x_{\perp}} \propto \left[\frac{1-\alpha}{2}\frac{dN_{\text{part}}}{d^2 x_{\perp}} + \alpha \frac{dN_{\text{coll}}}{d^2 x_{\perp}}\right]$$

Filled: PHENIX, PRC69, 034909 (2004), Open: Hydro+cascade From top to bottom, 0-5, 5-10, 10-15, ..., 70-80% centrality

p_T Spectra: MC-KLN

(1) Absolute value of saturation scale and (2) scaling parameters λ =0.28 and (3) switching temperature T_{sw} = 155 MeV

 $\overline{Q_{s,A}^2(x_\perp)} \propto t_A(x_\perp) x^{-\lambda}$

$v_2(N_{part})$

<u>MC-Glauber</u>:

Apparent reproduction. No room for QGP viscosity? <u>MC-KLN</u>: Overshoot due to larger eccentricity. How small QGP viscosity? PHOBOS, PRC72, 051901 (2005); PRL98, 242302 (2007).

$v_2(p_T)$ for PID Particles

Results based on MC-Glauber initialization
Mass splitting pattern OK
A little bit overshoot even in low p_T region
→ Centrality dependence (next slide)?

v₂(p_T) for PID Particles: Centrality Dependence

•Hydro+cascade with **MC-Glauber at work** in 0-20% centrality Need QGP viscosity •Or, need jet or recombination/coalescence components? MC-KLN results not available yet due to less statistics

v₂(p_T) for Charged Particles: Cu+Cu

Tendency is the same as that in Au+Au collisions

PHENIX, PRL98, 162301 (2007). STAR, PRC81, 044902 (2010).

MC-KLN vs. MC-Glauber

Slope of $v_2(p_T)$ steeper in MC-KLN than in MC-Glauber $\leftarrow v_{2,MC-KLN} > v_{2,MC-Glauber}$

 p_T dependent viscous correction at T=T_{sw} might interpret the data
 Extracted transport coefficients depend on initial condition

Predictions and Postdiction from Hydro+Cascade Model

Collisions of Deformed Nuclei at RHIC

How v₂/ɛ behaves as increasing multiplicity?*
Saturate?
Still enhance?

U+U collision in run12 at RHIC(?)More multiplicityLarger eccentricity

*U.Heinz and A. Kuhlman, PRL94, 132301 (2005).

STAR, PRC66, 034904 (2002)

Eccentricity in U+U Collisions at RHIC

Larger eccentricity
Finite eccentricity at zero impact parameter body-body collision
Unable to control configuration → Need Monte-Carlo study and event selection*

0-5%→ 0.146 (MC-Glauber), 0.148 (MC-KLN)

*See, e.g., P.Filip et al. PRC80, 054903 (2009).

v_2 in U+U Collisions

•v₂ increases due to deformation of colliding nuclei.
•v₂/ε scales with transverse density.
•Maximum transverse density increases only by ~10% in central U+U collisions.

Prediction at LHC

Eccentricity does not change from RHIC to LHC! Change due solely to size

 v_2/ϵ does not follow RHIC scaling curve

"Post"diction at LHC

Centrality Dependence of Multiplicity

MC-KLN: Default, MC-Glauber: alpha = 0.08 ALICE, arXiv:1012.1657

p_T Spectra of Charged Hadrons

Spectra at LHC get harder than at RHIC

Integrated v₂

If the Nature chooses MC-KLN, viscous effects would be larger at LHC than at RHIC.

→ Importance of understanding initial conditions ALICE, PRL105, 0252302(2010).

Differential v₂

• $v_2(p_T)$ at LHC is almost identical to $v_2(p_T)$ at RHIC, in particular, in MC-Glauber. •Steeper slope in MC-CGC leads to larger v_2 even if increase of mean p_T in MC-CGC is identical to that in MC-Glauber. ALICE, PRL105, 0252302(2010).

Comparison with Latest Results

Caveats: $dN/dy \neq dN/deta$ $v_2(y) \neq v_2(eta)$

Summary

- Current status of the hybrid approach
 - Elliptic flow
 - MC-Glauber initialization gives a reasonable agreement with data in very central collisions.
 - Results deviate from data as moving away from central collisions.
 - QGP viscosity
 - Prediction
 - Results in U+U collisions follow scaling behavior, extend (1/S)dN_{ch}/dη by ~10%
 - v_2/ϵ at LHC does not follow scaling seen at RHIC

Summary (contd.)

Postdiction

QGP viscosity at LHC (higher T) is larger than at RHIC (lower T) in MC-KLN?

Understanding of transverse dynamics and initial state is important.

BACKUP SLIDES

p_T Spectra in STAR and PHENIX

Central: Consistent btw. STAR and PHENIX

Peripheral: (STAR) > (PHENIX) STAR data are 50 % larger than PHENIX data

STAR, PRC 79, 034909 (2009) PHENIX, PRC69, 034909 (2004)

Steeper Transverse Profile in CGC

Closer to hard sphere than Glauber

Note: Original KLN model (not fKLN)

Event Distributions from Monte Carlo

Correlation btw. N_{part} and N_{coll}

Eccentricity Fluctuation

Adopted from D.Hofman(PHOBOS), talk at QM2006

A sample event from Monte Carlo Glauber model

Interaction points of participants vary event by event.

→ Apparent reaction plane also varies.
 → The effect is significant for smaller system such as Cu+Cu collisions

Event-by-Event Eccentricity

σ_x^2	=	$\langle x^2 \rangle - \langle x \rangle^2,$
σ_y^2	=	$\langle y^2 \rangle - \langle y \rangle^2,$
σ_{xy}	=	$\langle xy \rangle - \langle x \rangle \langle y \rangle$

 $\langle \cdots
angle = rac{\int d^2 x_{\perp} \cdots s_0(oldsymbol{x}_{\perp})}{\int d^2 x_{\perp} s_0(oldsymbol{x}_{\perp})},$

 $= rac{\sigma_y^2 - \sigma_x^2}{\sigma_y^2 + \sigma_x^2}$ $\varepsilon_{\mathrm{RP}}$

 $\varepsilon_{\mathrm{part}}$

$$\frac{\sqrt{(\sigma_y^2 - \sigma_x^2)^2 + 4\sigma_{xy}^2}}{\sigma_y^2 + \sigma_x^2}$$

9

$$\tan 2\Psi = \frac{\sigma_y^2 - \sigma_y^2}{2\sigma_{xy}}$$

v_2/ϵ Scales at Fixed Collision Energy

Pick up points with fixed centrality

consistent

Increase multiplicity with fixed centrality.

P.F.Kolb et al., PRC62, 054909 (2000)

The First Heavy Ion Data at LHC

Selected for a Viewpoint in *Physics* PHYSICAL REVIEW LETTERS

week ending 17 DECEMBER 2010

G

Elliptic Flow of Charged Particles in Pb-Pb Collisions at $\sqrt{s_{NN}} = 2.76$ TeV

K. Aamodt et al.*

(ALICE Collaboration)

(Received 18 November 2010; published 13 December 2010)

We report the first measurement of charged particle elliptic flow in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV with the ALICE detector at the CERN Large Hadron Collider. The measurement is performed in the central pseudorapidity region ($|\eta| < 0.8$) and transverse momentum range $0.2 < p_t < 5.0$ GeV/c. The elliptic flow signal v_2 , measured using the 4-particle correlation method, averaged over transverse momentum and pseudorapidity is $0.087 \pm 0.002(\text{stat}) \pm 0.003(\text{syst})$ in the 40%–50% centrality class. The differential elliptic flow $v_2(p_t)$ reaches a maximum of 0.2 near $p_t = 3$ GeV/c. Compared to RHIC Au-Au collisions at $\sqrt{s_{NN}} = 200$ GeV, the elliptic flow increases by about 30%. Some hydrodynamic model predictions which include viscous corrections are in agreement with the observed increase.

DOI: 10.1103/PhysRevLett.105.252302

PRL 105, 252302 (2010)

PACS numbers: 25.75.Ld, 25.75.Gz, 25.75.Nq

Congrats!!!

v_2 (centrality)

p_T cut enhances v₂ by ~10%
STAR data in Au+Au corrected by Ollitrault et al.*
v₂ w.r.t. participant plane

*J.Y.Ollitrault, A.M.Poskanzer and S.A.Voloshin, PRC80, 014904 (2009).

Eccentricity

Crossing \rightarrow Due to smearing effects

Ollitrault ('92)

Elliptic Flow How does the system respond to spatial anisotropy?

v₂(p_T) for Charged Particles: Au+Au

 Hydro+cascade with MC-Glauber at work in low p_T
 p_T region at work shrinks as moving to peripheral
 → Importance of viscosity
 PHENIX, PRC80, 024909 (2009). STAR, PRC72, 014904 (2005).

v₂(p_T) for Charged Particles: Au+Au

•Hydro+cascade with **MC-KLN** at work in central collisions

PHENIX, PRC80, 024909 (2009). STAR, PRC72, 014904 (2005).