Gluon condensate as a part of a hadron

dedicated to Wanda Doborzyńska-Głazek and Jerzy Głazek, my late parents

Stanisław D. Głazek
Institute of Theoretical Physics, University of Warsaw

A simplified mean-field approximation to a renormalization group treatment of light-front Hamiltonian formulation of QCD suggests that quarks may be bound through condensation of gluons inside hadrons. In a hadron rest frame, the approximate picture of mesons and baryons closely resembles constituent quark models with harmonic oscillator potentials, but the picture differs from the models by the option of a systematic analysis in QCD.
S. D. Głazek, Reinterpretation of gluon condensate in dynamics of hadronic constituents, IFT/11/05.

Time-honored plan:

$$
\begin{aligned}
\mathcal{L}_{Q C D} & \rightarrow \mathcal{H}_{Q C D} \\
H_{Q C D} & =\int d^{3} x \mathcal{H}_{Q C D} \\
H_{Q C D}|\psi\rangle & =E|\psi\rangle \\
E & =\sqrt{m_{h}^{2}+\vec{p}^{2}} \\
|\psi\rangle & =|h\rangle \\
U\left(t_{2}, t_{1}\right) & =e^{-i H\left(t_{2}-t_{1}\right)}
\end{aligned}
$$

etc.

Time-honored problem:

$$
\begin{array}{rlll}
H & & \rightarrow & \\
H^{R}+C T^{R} & \rightarrow & R G & \rightarrow
\end{array} H_{\lambda}^{R}+C T^{R}
$$

Input:

RG \rightarrow SRG \rightarrow RGPEP \rightarrow PT + NPT

Wilson 1964
Głazek-Wilson 1993
Acta Phys. Polon. 1998 . . .

RG "integrate out" high energies (small den.) SRG "rotate in" high energies (den. $>\lambda$) $\mathrm{RGPEP} \quad \leftrightarrow \quad q_{s}=U_{s} q_{0} U_{s}^{\dagger}, \quad s=1 / \lambda^{2}$

NPT RGPEP \leftrightarrow

$$
\begin{aligned}
& \frac{d}{d s} H_{s}=\left[\left[H_{\text {free }}, H_{s P}\right], H_{s}\right] \\
& H_{0}=H^{R}+C T^{R}
\end{aligned}
$$

$$
\begin{array}{rlll}
\text { IMF } \leftrightarrow \mathrm{CMS} & \leftrightarrow & & \text { Light Front, Dirac } 1949 \\
|\Omega\rangle & = & |0\rangle \\
\varphi^{2}=\langle\Omega| \frac{\alpha_{s}}{\pi} G^{2}|\Omega\rangle & = & ? \quad \text { (cosmology?) }
\end{array}
$$

$\mathbf{R G P E P}=$ Renormalization Group Procedure for Effective Particles

Fork space convergence ?

$$
\left[H^{R}+C T^{R}\right]\left(q_{0}\right)=\sum_{I} c_{0 I} \prod_{i \in I} q_{0 i}
$$

RGPEP form factors $H_{s}\left(q_{s}\right)=\sum_{I} f_{s} c_{s I} \prod_{i \in I} q_{s i}$

$$
U_{s} q_{0} U_{s}^{\dagger}=q_{s}
$$

quantum fields $\quad \psi\left(q_{0}\right), A\left(q_{0}\right) \quad \rightarrow \quad \psi\left(q_{s}\right), A\left(q_{s}\right)$

$$
\begin{aligned}
|h\rangle=\sum_{I} \phi_{h 0}(I) \prod_{i \in I} q_{0 i}^{\dagger}|0\rangle & \rightarrow|h\rangle=\sum_{I} \phi_{h s}(I) \prod_{i \in I} q_{s i}^{\dagger}|0\rangle \\
U_{s_{1}}, \quad U_{s_{2}}, \quad W_{s_{2} s_{1}} & =U_{s_{2}} U_{s_{1}}^{\dagger} \\
q_{s_{2}} & =W_{s_{2} s_{1}} q_{s_{1}} W_{s_{2} s_{1}}^{\dagger}
\end{aligned}
$$

equations for scale-evolution in s

Constituent Quark Model hypothesis in QCD
$s_{c} \sim 1 / \Lambda_{Q C D}^{2}:$

$$
\begin{aligned}
|M\rangle_{s_{c}} & =\sum_{12} \psi_{s_{c}}(12)|12\rangle_{s_{c}} \\
|B\rangle_{s_{c}} & =\sum_{123} \psi_{s_{c}}(123)|123\rangle_{s_{c}}
\end{aligned}
$$

$s \lesssim s_{c}: \quad|12 G\rangle_{s}=W_{s s_{c}}|12\rangle_{s_{c}}, \quad|123 G\rangle_{s}=W_{s s_{c}}|123\rangle_{s_{c}}$

$$
\begin{aligned}
|M\rangle_{s} & =\sum_{12 G} \psi_{s}(12 G)|12 G\rangle_{s} \\
|B\rangle_{s} & =\sum_{123 G} \psi_{s}(123 G)|123 G\rangle_{s}
\end{aligned}
$$

drawings

Effective eigenvalue problem

$$
\begin{aligned}
H_{s}|h\rangle_{s} & =E|h\rangle_{s} \\
{ }_{s}\langle 12 G| H_{s}|M\rangle_{s} & =E_{M} \psi_{s}(12 G) \\
{ }_{s}\langle 123 G| H_{s}|B\rangle_{s} & =E_{B} \psi_{s}(123 G)
\end{aligned}
$$

$H_{s}=? \quad$ NR gauge symmetry $\quad m+\frac{-i \vec{\nabla}^{2}}{2 m} \rightarrow m+\frac{\left(-i \vec{\nabla}-g_{s} \vec{A}\right)^{2}}{2 m}$

1) the Schwinger gauge $\quad A^{\mu}=\frac{1}{2}\left(x-x_{G}\right)_{\nu} G^{\nu \mu}+\ldots$
2) color-transport factors $\quad T_{i}=e^{-i g \int_{\underline{x}}^{x_{i}} d x_{\mu} A^{\mu}}$
3) crude mean field (Abelian) Głazek-Schaden 1987

$$
\langle G| g_{s}^{2} \vec{A}^{2}(\vec{x})|G\rangle \sim \frac{1}{4}\langle G| g_{s}^{2} G^{\mu \nu 2}|G\rangle\left(\vec{x}-\vec{x}_{G}\right)^{2} \quad \rightarrow \quad \varphi^{2}\left(\vec{x}-\vec{x}_{G}\right)^{2}
$$

gauge symmetry restores translational symmetry $\rightarrow \vec{x}_{G}$ drops out

Mesons

$$
\begin{gathered}
\mathcal{M}_{q \bar{q}}^{2}=4 m^{2}+4\left[\vec{k}^{2}+\frac{1}{2} m^{2}\left(\frac{\pi \varphi}{3 m}\right)^{2} \frac{1}{2}\left(i \frac{\partial}{\partial \vec{k}}\right)^{2}\right] \\
k^{\perp}=\frac{\kappa^{\perp}}{2 \sqrt{x(1-x)}} \\
k^{z}=\frac{2 x-1}{2 \sqrt{x(1-x)}} m \\
P=p_{1}+p_{2}, \quad x=p_{1}^{+} / P^{+} \\
p_{1}^{\perp}=x P^{\perp}+\kappa^{\perp}, \quad p_{2}^{\perp}=(1-x) P^{\perp}-\kappa^{\perp}
\end{gathered}
$$

Baryons

$$
\begin{aligned}
& \mathcal{M}_{3 q}^{2}=9 m^{2}+6 \vec{K}^{2}+\frac{9}{2} \vec{Q}^{2}-3 m^{2}\left(\frac{\pi \varphi}{3 m}\right)^{2} \frac{5}{8}\left(\Delta_{K}^{2} / 2+2 \Delta_{Q} / 3\right) \\
& x_{i}=p_{i}^{+} / P^{+}, \quad p_{3}^{\perp}=x_{3} P^{\perp}+q^{\perp}, \\
& p_{2}^{\perp}=x_{2} P^{\perp}-\frac{x_{2}}{1-x_{3}} q^{\perp}-\kappa^{\perp}, \quad p_{1}^{\perp}=x_{1} P^{\perp}-\frac{x_{1}}{1-x_{3}} q^{\perp}+\kappa^{\perp} \\
& Q^{\perp}=\sqrt{\frac{2}{9 x_{3}\left(1-x_{3}\right)}} q^{\perp}, \quad Q^{z}=\sqrt{\frac{2}{9 x_{3}\left(1-x_{3}\right)}}\left(2 x_{3}-x_{1}-x_{2}\right) m \\
& K^{\perp}=\sqrt{\frac{1-x_{3}}{6 x_{1} x_{2}}} \kappa^{\perp}, \quad K^{z}=\sqrt{\frac{1-x_{3}}{6 x_{1} x_{2}} \frac{x_{1}-x_{2}}{1-x_{3}} m}
\end{aligned}
$$

Right values for CQM

$$
\begin{gathered}
\omega_{M}=\frac{\pi \varphi}{3 m}, \quad \omega_{B}=\sqrt{\frac{5}{8}} \omega_{M} \\
\varphi_{\text {vacuum }}^{2}=\langle\Omega|\left(\alpha_{s} / \pi\right) G^{\mu \nu c} G_{\mu \nu}^{c}|\Omega\rangle \leftrightarrow \varphi^{2}=\frac{\langle G|\left(\alpha_{s} / \pi\right) G^{\mu \nu c} G_{\mu \nu}^{c}|G\rangle}{\langle G \mid G\rangle}
\end{gathered}
$$

LF wave functions for constituent quarks

$$
\psi_{q H}=N \exp \left\{-\frac{1}{2 n_{H} m \omega_{H}}\left[\left(\sum_{i=1}^{n_{H}} p_{i}\right)^{2}-\left(n_{H} m\right)^{2}\right]\right\}
$$

$s \sim 1 / \Lambda_{Q C D}^{2} \quad, \quad n_{M}=2 \quad, \quad n_{B}=3$

Hadron form factors at small Q^{2}

$$
\begin{aligned}
& F_{\text {quarks }}=F\left(Q^{2}\right) \\
& F_{\text {hadron }}=F_{\text {quarks } G} \sim e^{\frac{\left.1-<x_{q}\right\rangle}{\left\langle x_{q}\right\rangle} Q^{2} /\left(2 n_{H} m \omega_{H}\right)} F\left(Q^{2}\right) \quad ?
\end{aligned}
$$

Hadron structure functions

$$
W_{Q \lambda} \leftrightarrow D G L A P
$$

Comment on AdS/QCD

right variable for Brodsky-Teramond holography $\quad k^{\perp}=\frac{\kappa^{\perp}}{2 \sqrt{x(1-x)}}$
Hypotheses: 1) 5th dimension \leftrightarrow quark size \sqrt{s} in RGPEP ?
2) G-induced oscillator \leftrightarrow soft wall models in IR ?

Conclusion

- Reinterpretation of the gluon condensate (quark condensate) implications
- Constituent phenomenology including the glue (sea) component
- RGPEP method: PT and NPT
- Boosts and rotations in spectrum: new variables $\vec{k}, \vec{K}, \vec{Q}$
- LF holography and soft wall model via RGPEP scale parameter?

