ANDAL ANDAL ANDAL ANDAL ANDAL AND ANDAL ANDAL ANDAL ANDAL ANDAL ANDAL ANDAL ANDAL ANDA

Kolmogorov Spectrum in the Glasma

ALINE AL

Kenji Fukushima (Department of Physics, Keio University)

based on the works with Francois Gelis

Talk Contents

Lecture Part I

Introduction to the Color Glass Condensate and the McLerran-Venugopalan (MV) model

- □ Kinematics in the high-energy QCD processes
- Gluon saturation and the MV model
- □ MV model setup for the heavy-ion collisions

Lecture Part II

Introduction to the Glasma and its instability and the resulting spectrum

- □ Notion of the Glasma and its instability
- □ Fluctuations, Cascade, and Kolmogorov spectrum

Part I

Introduction to the Color Glass Condensate and the McLerran-Venugopalan model

Kinematics in the high-energy QCD processes Common Kinematic Variables

June 17, 18, 2011 @ Zakopane

Kinematics in the high-energy QCD processes de Mende **Elastic Parton Scattering** $0 \simeq (\xi P + q)^2 \simeq 2\xi P \cdot q - Q^2$ $\rightarrow \xi \simeq \frac{Q^2}{2P \cdot a} = x$ ξP **Momentum Fraction Light-cone Variables** $x^{\pm} = \frac{1}{\sqrt{2}}(t \pm z), \quad p^{\pm} = \frac{1}{\sqrt{2}}(E \pm p^{z})$ x^+ : time x^{-} : longitudinal coordinate p^+ : longitudinal momentum p^- : energy

Partons live long in the IMFs \rightarrow Parton Picture

Breit Frame

Physical Meaning of Two Variables

Transverse Momentum Q

Transverse size of partons (quark-antiquark ~ gluon) Bjorken x

Longitudinal fraction of parton momentum

June 17, 18, 2011 @ Zakopane

Parton Distribution Function

Valence and Sea Quarks and Gluons

proton

valence quark constituent

BFKL – Smaller x with Fixed Q² Gluon increases with (nearly) fixed transverse area:

small- $x \rightarrow$ Dense Gluon Matter

DGLAP – Larger Q² with Fixed x Gluon slowly increases with decreasing area:

Graphical representation:

large $Q \rightarrow$ Dilute Gluon Matter

Data from HERA

Quantum Evolution of PDFs at fixed Q²

As x goes smaller than $\sim 10^{-2}$ gluon is dominant.

High energy (large *s* and small *t*) processes are dominated by abundant **gluons**.

June 17, 18, 2011 @ Zakopane

Data from HERA

Quantum Evolution of PDFs at various Q^2

are and are and are

As Q^2 goes larger gluon grows slowly.

Saturation

ಲ್ಲಿ ಮಾಡಿದ್ದಾರೆ. ಮಾಡಿದ ಮಾಡಿದ್ದಾರೆ, ಮಾಡಿದ್ದಾರೆ, ಮಾಡಿ

Gluons eventually cover the transverse area:

Area
$$\sim \pi R^2 \sim 75 \text{ GeV}^2$$
 (proton)
Crammed density $\sim \frac{(N_c^2 - 1)Q^2}{\alpha_s N_c} \pi R^2 \sim 600$
(for $Q^2 = 1 \text{ GeV}^2$)

Naive condition for saturation:

$$xg(x,Q)/(N_c^2-1)Q^2\pi R^2 \sim \frac{1}{\alpha_s N_c} \sim 1$$

Overlapping Factor

No need to achieve such complete saturation

Scaling Behavior

Dipole Cross Section in a Saturation Model

$$\sigma_{\gamma^* p}(x, Q^2) \rightarrow \sigma_{\gamma^* p}(Q^2/Q_s^2(x))$$

$$Q_s^2(x) = Q_0^2(x/x_0)^{-\lambda}$$

Golec-Biernat-Wuesthoff Stasto-Golec-Biernat-Kwiecinski Plot Geometric Scaling Q_s as a function of x is fixed $Q_0=1$ GeV $x_0=3.04 \times 10^{-4}$

$$\lambda = 0.288$$

Saturation is sufficient for scaling, but not necessary to it.

Saturation?

Let us put some numbers: $x = 10^{-4} \rightarrow Q_s^2 = 1.38 \,\text{GeV}^2$ $\frac{x \, g(x, Q_s)}{(N_s^2 - 1) Q_s^2 \pi R^2} \sim \frac{10}{8 \cdot 1.38 \cdot 75} \sim 0.01$ No need to take it seriously Don't have to realize saturation

Scaling is consistent with pQCD:

CGC = saturation + p**QCD**

BFKL (dilute regime) can fix the parameters:

June 17, 18, 2011 @ Zakopane

for the saturation physics!

Effective Theory of Saturation Effective Theory at x Integrate faster (larger x) degrees of freedom

Scattering Problem

algosi algosi algosi algosi algosi algosigosi algosi algosi algosi algosi algosi algosi algo

Scattering Amplitude in the Eikonal Approx.

Stationary-Point Approximation
Dipole Scattering Amplitude

$$S \sim \langle \sum_{\{\rho_i\}} W_x[\rho_t] \prod_{\{\rho_i\}} W \cdot V(x_{\perp}) V^{\dagger}(y_{\perp}) \rangle$$

 $= \sum_{\{\rho_i\}} W_x[\rho_t] \int_{p^{\dagger} < xP^{\dagger}} [DA] V(x_{\perp}) V^{\dagger}(y_{\perp}) \exp[iS_{YM}[A] + iS_{source}[\rho_t, W]]$
 $= \langle \langle V(x_{\perp}) V^{\dagger}(y_{\perp}) \rangle \rangle_{\rho_t}$

$$S_{\text{source}} = \frac{i}{gN_c} \int d^4 x \, \text{tr} [\rho_t \ln W] \sim -\int d^4 x \, \rho_t^a A_a^- \qquad \text{Easily solvable}$$

Large enough $\rho_t \rightarrow$ Stationary-point approx.

 $\frac{\delta S_{\rm YM}}{\delta A_a^{\mu}}\Big|_{A=A} = \delta^{\mu-} \rho_t$

Color Glass Condensate tai strai As a result of the stationary-point approx. $\langle \langle V(x_{\perp}) V^{\dagger}(y_{\perp}) \rangle \rangle_{0}$ $= \sum_{x} W_{x}[\rho_{t}] \int [DA] V(x_{\perp}) V^{\dagger}(y_{\perp}) \exp[iS_{\text{YM}}[A] + iS_{\text{source}}[\rho_{t}, W]]$ $p^+ < xP^+$ $\sim \sum_{x \in \mathcal{N}} W_{x}[\rho_{t}] V(x_{\perp}) V^{\dagger}(y_{\perp})|_{A=\mathcal{A}}[\rho_{t}]$

General expression:

Quantum corrections $\langle \langle \mathcal{O}[A] \rangle \rangle_{\rho} \sim \int D \rho_t W_x[\rho_t] \mathcal{O}[\mathcal{A}[\rho_t]]$ lead to $W_{r} \rightarrow W_{r+\delta r}$

i.e. small-x evolution

$$Dense-Dense Scattering (HIC)$$

Stationary-point is shifted:
$$S \sim \langle \sum_{[\rho_i]} W_x[\rho_t] \prod_{[\rho_i]} W \cdot \sum_{[\rho_p]} W'_{x'}[\rho_p] \prod_{[\rho_p]} V \rangle$$
$$= \sum_{\{\rho_t, \rho_p\}} W_x[\rho_t] W'_{x'}[\rho_p] \int [DA] \exp[iS_{YM} + iS_{source}[\rho_t, \rho_p, W, V]]$$
$$\sim \sum_{\{\rho_t, \rho_p\}} W_x[\rho_t] W'_{x'}[\rho_p] \int [DA] \exp[iS_{YM} - i\int d^4x (\rho_t^a A_a^- + \rho_p^a A_a^+)]$$

Stationary-point approx. is made at

$$\frac{\delta S_{\rm YM}}{\delta A_a^{\mu}}\Big|_{A=A} = \delta^{\mu-}\rho_t^a + \delta^{\mu+}\rho_p^a$$

Not solvable analytically

McLerran-Venugopalan (MV) Model Gaussian Approximation: McLerran-Venugopalan (1993)

$$W_{x}[\rho] = \exp\left[-\int d^{3}x \frac{|\rho(x)|^{2}}{2 g^{2} \mu_{x}^{2}}\right] \qquad \mu_{x} \text{ is related to } Q_{s}(x)$$

larger μ_x = larger ρ = dense gluons = larger Q_s Once A is known, observables such as the energy density are calculable in the unit of μ (scaling)

$$\langle \langle \mathcal{O}[A] \rangle \rangle_{\rho_{t}} \sim \int D \rho_{t} W_{x}[\rho_{t}] \mathcal{O}[\mathcal{A}[\rho_{t}]]$$
$$\langle \langle \mathcal{O}[A] \rangle \rangle_{\rho_{t},\rho_{p}} \sim \int D \rho_{t} D \rho_{p} W_{x}[\rho_{t}] W_{x'}[\rho_{p}] \mathcal{O}[\mathcal{A}[\rho_{t},\rho_{p}]]$$

One Source Problem hagi dilangi dilangi dilangi dilangi di **One-source problem is solvable:** $\alpha_{i}^{(1)}(x_{\perp})$ $A^+ = A^- = 0$ (gauge choice) $A_i = \alpha_i^{(1)} = -\frac{1}{ig} V(x_\perp) \partial_i V^{\dagger}(x_\perp)$ $V^{+}(x_{\perp}) = P \exp\left[-ig \int dz^{-} \frac{1}{\partial_{\perp}^{2}} \rho_{t}(x_{\perp}) \delta(z^{-})\right]$ c.f. in EM static (time dilation) $\partial^2_{\perp} \phi = -\rho$ (Poisson eq) $\delta^{\mu+} \delta(x^{-}) \rho_{t}(x_{\perp})$ $\rightarrow \phi' = 0$ (Gauge trans) thin $\rightarrow A'_{i} = \frac{1}{ie} e^{ie\phi} \partial_{i} e^{-ie\phi} (= -\partial_{i}\phi)$ (Lorentz contract) First solved by Kovchegov

June 17, 18, 2011 @ Zakopane

Relation between μ and Q_s

ĸĊŢŗĸĊĸĔĊŢŗĸĊĸĔĊŢŗĸĊĸĔĊŢŗĸĊĸĔĊŢŗĸĊĸĔĊŢŗĔĊĔŢŗĸĊĸĔĊŢŗĸĊĸĔĊŢŗĸĊĸĔĊŢŗĸĊĸĔĊŢŗĸĊĸĔĊŢŗĸĊĸĔĊ

Rough Relationship (dipole amplitude)

 $Q_s^2 \sim (g^2 \mu)^2 \ln[Q_s^2 a]$ (*a* : infrared regulator)

It is extremely difficult to fix μ directly from this...

Gluon Density

$$\left\langle V_{A}^{\dagger ca}(x_{\perp}) V_{A}^{\dagger cb}(y_{\perp}) \right\rangle = \delta^{ab} \mu^{2} C_{adj}(x_{\perp} - y_{\perp})$$

a	m	$g^2 \mu_A$
10	$0.64Q_s$	$1.65Q_{s}$
25	$0.36Q_s$	$1.46Q_{s}$
100	$0.14Q_{s}$	$1.13Q_{s}$
500	$0.050Q_{s}$	$0.90Q_{s}$

Peak position fixes Q_s

Lappi (2007) Fujii-KF-Hidaka (2008)

Heavy-Ion Collisions **Space-Time Evolution of the Little Bang** z = -tz = tPerfect Fluid Quark Gluon Plasma → Hadronization $\tau \sim 1 - 10 \text{ fm/c}$ Instability **Topological Excitations** \rightarrow thermalization Glasma → Density Fluctuations, Thermalization $\tau \sim 0.1 - 1 \text{ fm/c}$ **Quantum Fluctuations** Event Horizon **Initial Singularity** → **Quantum Fluctuations** after collision $\tau \sim 0 - 0.1 \text{ fm/c}$ → 7. **Quantum Fluctuations Initial Nuclei as CGC** → **Coherent, High-density Gluons** before collision

Fluctuations (seeds) -> Instability -> Thermalization

June 17, 18, 2011 @ Zakopane

Lecture Part II

Bjorken (Expanding) Coordinates Proper Time and (space-time) Rapidity

$$\tau = \sqrt{t^2 - z^2}, \qquad \eta = \frac{1}{2} \ln \left[\frac{t+z}{t-z} \right]$$

June 17, 18, 2011 @ Zakopane

Fields from the Other Source
Similar to the one source problem

$$x^{-} \qquad \alpha_i^{(2)}(x_{\perp})$$

 $A^+ = A^- = 0$
 $A_i = \alpha_i^{(2)} = -\frac{1}{ig} W(x_{\perp}) \partial_i W^{\dagger}(x_{\perp})$
 $W^+(x_{\perp}) = P \exp\left[-ig \int dz^+ \frac{1}{\partial_{\perp}^2} \rho_p(x_{\perp}) \delta(z^+)\right]$
 $\delta^{\mu-} \delta(x^+) \rho_p(x_{\perp})$

Two Source Problem

Two-source problem is not solvable analytically

Initial condition is known on the light-cone

$$\mathcal{A}_{i} = \alpha_{i}^{(1)} + \alpha_{i}^{(2)}$$
$$\mathcal{A}_{\eta} = 0$$
$$\mathcal{E}^{i} = 0$$
$$\mathcal{E}^{\eta} = ig[\alpha_{i}^{(1)}, \alpha_{i}^{(2)}]$$

Kovner-McLerran-Weigert (1995)

Equations of Motion to be Solved ್ಷೆ ಮಾಡಿದ್ದಾರೆ. ಮಾಡಿದ್ದಾರೆ, ಮಾಡಿದ ಮಾಡಿದ್ದಾರೆ, ಮಾಡಿದ್ದ **Coordinates** proper time $\tau = \sqrt{t^2 - z^2}$ rapidity $\eta = \frac{1}{2} \ln \left[(t+z)/(t-z) \right]$ Equations to be solved (in $A_{\tau}=0$ gauge) $E^{i} = \tau \partial_{\tau} A_{i}, \qquad E^{\eta} = \tau^{-1} \partial_{\tau} A_{\eta}$ $\partial_{\tau} E^{i} = \tau^{-1} D_{n} F_{ni} + \tau D_{i} F_{ii}$ $\partial_{\tau} E^{\eta} = \tau^{-1} D_{i} F_{i\eta}$

June 17, 18, 2011 @ Zakopane

Initial Condition

Chromo-Electric and Magnetic fields

$$\begin{split} E_{(0)}^{i} &= 0 \,, \\ E_{(0)}^{\eta} &= ig \left(\left[\alpha_{1}^{(1)}, \alpha_{1}^{(2)} \right] + \left[\alpha_{2}^{(1)}, \alpha_{2}^{(2)} \right] \right) \\ B_{(0)}^{i} &= 0 \,, \qquad B_{(0)}^{\eta} = F_{12(0)} \\ F_{ij(0)} &= -ig \left(\left[\alpha_{i}^{(1)}, \alpha_{j}^{(2)} \right] + \left[\alpha_{i}^{(2)}, \alpha_{j}^{(1)} \right] \right) \end{split}$$

After the collision only the longitudinal fields dominate. This is "very" non-trivial initial condition...

Before Collision

ೆ ಬೆಳೆದಲ್ಲಿ ಬೆಳೆದಲ್ಲೇ ಬೆಳೆದ ಬೆಳೆದಲ್ಲೇ ಬೆಳೆದಲ್ಲೇ ಬೆಳೆದಲ್ಲೇ

Two sources do not talk to each other Just one-source problem

No longitudinal fields but only transverse fields attached on the nucleus sheet

June 17, 18, 2011 @ Zakopane

After Collision

ೆ. ಚಿತ್ರಿಯಲ್ಲಿ ಚಿತ್ರಿಯಲ್ಲಿ ಚಿತ್ರಿಯ ಚಿತ್ರಿಯಲ್ಲಿ ಚಿತ್ರಿಯಲ್ಲಿ ಚಿತ್ರಿಯಲ್ಲಿ ಪ್ರ

Longitudinal Fields between Nucleus Sheets

Numerical Method

Lattice Discretization

 $A_{\mu}(x) \rightarrow U = e^{-igaA_{\mu}(x)}$ (Link Variable)

Why link variables than naïve discretization?

Formal Answer:

Gauss law is not compatible with the time evolution. It becomes more and more violated at later time.

Practical Answer:

Keeping numerical stability is very important. It is very sensitive to the order of the discretization. The correct ordering is guaranteed in the lattice formulation.

EoM on the Lattice

Canonical Momenta

$$U_i(\tau'') = \exp\left[-2\Delta\tau \cdot \mathrm{i}g E^i(\tau')/\tau'\right] U_i(\tau) ,$$

$$U_\eta(\tau'') = \exp\left[-2\Delta\tau \cdot \mathrm{i}g a_\eta \tau' E^\eta(\tau')\right] U_\eta(\tau)$$

Leap-frog Method

$$\tau' = \tau + \Delta \tau$$

 $\tau'' = \tau + 2\Delta \tau$

Krasnitz, Venugopalan Nara, Lappi, Romatschke

Equations of Motion

$$E^{i}(\tau') = E^{i}(\tau - \Delta\tau) + 2\Delta\tau \frac{i}{2ga_{\eta}^{2}\tau} \Big[U_{\eta i}(x) + U_{-\eta i}(x) - (h.c.) \Big]_{\tau} + 2\Delta\tau \frac{i\tau}{2g} \sum_{i \neq i} \Big[U_{ji}(x) + U_{-ji}(x) - (h.c.) \Big]_{\tau} ,$$
$$E^{\eta}(\tau') = E^{\eta}(\tau - \Delta\tau) + 2\Delta\tau \frac{i}{2ga_{\eta}\tau} \sum_{j=x,y} \Big[U_{j\eta}(x) + U_{-j\eta}(x) - (h.c.) \Big]_{\tau}$$

Initial Configurations

ಎಸ್. ಮಾಡಿಎಸ್. ಮಾಡಿಎಸ್. ಮಾಡಿದ ಮಾಡಿಎಸ್. ಮ

One Configuration

Flux-tube missing MV should be improved by JIMWLK

Spatial distribution of the solution of the Poisson eq.

 $\partial_{\perp}^2 \Lambda^{(m)}(\boldsymbol{x}_{\perp}) = -\rho^{(m)}(\boldsymbol{x}_{\perp})$

Spatial distribution of the gauge field

 $e^{-ig\Lambda(\boldsymbol{x}_{\perp})}e^{ig\Lambda(\boldsymbol{x}_{\perp}+\hat{i})} = \exp[-ig\alpha_i(\boldsymbol{x}_{\perp})]$

Parameter Fixing

Model Parameters

Saturation Scale Parameter

 $g^{2}\mu L = 120 - g^{2}\mu R_{A} = 67.7 \text{ with } \pi R_{A}^{2} = L^{2}$ $g^{2}\mu \approx 2 \text{ GeV with } R_{A} \approx 7 \text{ fm}$ g = 2

Physics should not depend on the transverse size N

Check the robustness with various N's

Longitudinal Size

Physics should not depend on the longitudinal size N_{η} When the boost inv. is not broken, the continuum limit is easily taken $(a_{\eta} \rightarrow 0)$

Merit and Demerit of HIC

Merit

- The largest merit is that Q_s is multiplied by $A^{1/6}$ In the Au-Au case $A^{1/6} \sim 2.4$
- c.f. RHIC (200GeV) \rightarrow LHC (5.5TeV) Energy is 27 times bigger, but Q_s only 2.6 times.

Demerit

Bjorken *x* is not fixed uniquely Dirty environment unlike *ep* or *eH*

Chromo-Electric and Magnetic Fields

NEPAS NE

Longitudinal and Transverse Fields

Time evolution of fields after averaging over 30 configurations

June 17, 18, 2011 @ Zakopane

Ultra-violet Stability

ಸ್ವಾನಿ, ಸಚಿವ್ರಾನಿ, ಸಚಿವ್ರಾನಿ, ಸಚಿವ ಸಚಿವ್ರಾನಿ, ಸಚಿವ್ರಾನಿ, ಸಚಿವ್ರಾನಿ, ಸಚಿವ

Numerical results for different site-number N

Summary of Part I

ALLAND ALLAND

The idea and the formalism of the Color Glass Condensate (CGC) was introduced.

Gaussian approximation for the CGC weight is the McLerran-Venugopalan model.

The initial condition right after the heavy-ion collision is given by the CGC which describes boost-invariant longitudinal fields.

How to reach thermalization??? \rightarrow Lecture II Answer is not known yet, but some progresses

Part II

Introduction to the Glasma and its instability and the resulting spectrum

Glasma

Glasma = (Color) **Glass** (Condensate) + **Plasma**

Initial State ~0.1fm/c

Color Glass Condensate

Coherent (pure) state far from thermal equilibrium

Transient State – CGC decaying to Plasma Microscopic mechanism for thermalization **Still lacks a clear understanding**

Plasma

Local thermal equilibrium (mixed state) realized

Larry's Picture

Melting Colored Glass = Glasma

June 17, 18, 2011 @ Zakopane

Glasma Characteristics

Very Strong Longitudinal Fields Negative longitudinal pressure

. ಮತ್ತಿದ್ದಾರೆ, ಮತ್ತಿದ್ದಾರೆ, ಮತ್ತಿದ ಮತ್ತಿದ್ದಾರೆ, ಮತ್ತಿದ್ದಾರೆ,

Topological charge density \rightarrow Chiral magnetic effect

June 17, 18, 2011 @ Zakopane

Anomaly Relations

Induced N_5 by **Topological Effects**

$$\frac{dN_5}{dt} = -\frac{g^2 N_f}{8\pi^2} \int d^3 x \, \text{tr} \, F_{\mu\nu} \widetilde{F}^{\mu\nu} \qquad \text{QCD Anomaly Relation}$$

Introduce μ_5 to describe induced N_5

Induced J by the presence of N_5 and B

Charge Separation

, Alexandre and Alexandre and Alexandre Alexandre and a strain a strain a strain a strain a strain a strain a s

"Former" Evidence

ANDAL ANDAL ANDAL ANDAL ANDAL AND ANDAL ANDAL ANDAL ANDAL ANDAL ANDAL ANDAL ANDAL ANDA

No longer a clear evidence...

$$\langle\!\langle \cos(\Delta\phi_{\alpha} + \Delta\phi_{\beta}) \rangle\!\rangle \equiv \left\langle\!\left\langle \frac{1}{N_{\alpha}N_{\beta}} \sum_{i=1}^{N_{\alpha}} \sum_{j=1}^{N_{\beta}} \cos(\Delta\phi_{\alpha,i} + \Delta\phi_{\beta,j}) \right\rangle\!\right\rangle = \left\langle\!\langle \cos\Delta\phi_{\alpha}\cos\Delta\phi_{\beta} \rangle\!\rangle - \left\langle\!\langle \sin\Delta\phi_{\alpha}\sin\Delta\phi_{\beta} \rangle\!\right\rangle = \left(\left\langle\!\langle v_{1,\alpha}v_{1,\beta} \rangle\!\right\rangle + B_{\alpha\beta}^{\rm in}\right) - \left(\left\langle\!\langle a_{\alpha}a_{\beta} \rangle\!\right\rangle + B_{\alpha\beta}^{\rm out}\right).$$

June 17, 18, 2011 @ Zakopane

Unstable Glasma

Important Hint – Glasma Instability

Instability time-scale is too slow System size dep. not under control

Romatschke-Venugopalan (2005)

Boost Inv. Violation

Boost-invariant Glasma sits on the top of the potential maximum (seemingly stable without any perturbation)

r, the are the are the are the all and the are the are the are the are the

 η -dependent fluctuations

Isotropization does not necessarily mean thermalization. If thermalized, the system must be isotropic.

Cosmology Analogue

allow allow

Quantum Fluctuations

Inflation (Instability)

Reheating (Thermalization)

Fluctuations and Instability

ŎġĸĊĸĸĔŎġĸĊĸĸĔŎġĸĊĸĸĔŎġĸĊĸĸĔŎġĸĔĊĸĔŎġĸĔĸĸĔŎġĸĊĸĸĔŎġĸĊĸĸĔŎġĸĊĸĸĔŎġĸĊĸĸĔŎġĸĔĸĸĔŎġĸ

Time Evolution of Fluctuations under Instability

Formulation

Computed Physical Observables

$$\langle \mathcal{O} \rangle_{\tau} = \int \left[\mathrm{d}a_i \, \mathrm{d}a_\eta \, \mathrm{d}e^i \, \mathrm{d}e^\eta \right] \frac{W[a,e]}{W[a,e]} \mathcal{O} \left[\mathcal{A}[\mathcal{A}_i + a_i, a_\eta, e^i, \mathcal{E}^\eta + e^\eta; \tau] \right]$$

Fluctuation
Spectrum
Boost-inv. CGC Backgrounds

Microscopically derived by Gelis-Lappi-Venugopalan

Time Evolution

$$\begin{aligned} \mathcal{E}^{i} &= \tau \partial_{\tau} \mathcal{A}_{i} & \mathcal{E}^{\eta} = \tau^{-1} \partial_{\tau} \mathcal{A}_{\eta} \\ \partial_{\tau} \mathcal{E}^{i} &= -\frac{\delta(\tau H)}{\delta \mathcal{A}_{i}} = \frac{1}{\tau} \mathcal{D}_{\eta} \mathcal{F}_{\eta i} + \tau \mathcal{D}_{j} \mathcal{F}_{j i} , \\ \partial_{\tau} \mathcal{E}^{\eta} &= -\frac{\delta(\tau H)}{\delta \mathcal{A}_{\eta}} = -\frac{1}{\tau} \mathcal{D}_{j} \mathcal{F}_{\eta j} - \frac{\tau}{2} \left[\frac{1}{x^{+}} \rho_{1} \, \delta(x^{-}) - \frac{1}{x^{-}} \rho_{2} \, \delta(x^{+}) \right] \end{aligned}$$

Collision Singularity

KF-Gelis-McLerran (2006)

Quantum Fluctuations before Singularity Zero-Point Oscillation of Empty Steady State from Infinite Past Linearized Schroedinger Equation

$$\int \mathrm{d}\eta \,\mathrm{d}^2 x_{\perp} \,\mathrm{tr} \left\{ -\frac{1}{\tau} \frac{\delta^2}{\delta a_i^2} - \tau \frac{\delta^2}{\delta a_\eta^2} + \frac{1}{\tau} (\partial_\eta a_i - \mathcal{D}_i a_\eta)^2 \right. \\ \left. + \frac{\tau}{2} \Big[(\mathcal{D}_i a_j - \mathcal{D}_j a_i)^2 - 2\mathrm{i}g \mathcal{F}_{ij}[a_i, a_j] \Big] \right\} \Psi_-[A] = E \Psi_-[A]$$

Ground-state Wavefunction (without background $A_i=0$ **)**

$$\Psi_{-}[A] = N \exp\left\{-\int d\eta \, d^2 x_{\perp} \operatorname{tr}\left[a_i \, \tau \sqrt{-\left(\frac{\partial_{\eta}}{\tau}\right)^2 - \partial_{\perp}^2} \left(\delta_{ij} - \frac{\partial_i \partial_j}{\left(\frac{\partial_{\eta}}{\tau}\right)^2 + \partial_{\perp}^2}\right) a_j\right]\right\}$$

Gauss Law $E^{\eta} = -\frac{1}{\partial_{\eta}} D_i E^i$
Zero-Point Oscillation Spectrum
KF-Gelis-McLerran (2006)

June 17, 18, 2011 @ Zakopane

Fluctuations and Instability అవి, దోలిఅవి, దోలిఅవి, దోలిఅవి, దోలిఅదిలించి, దోలిఅవి, దోలిఅవి, దోలిఅవి, దోలిఅవి, దోలిఅవి, దోలిఅన **Time Evolution of Fluctuations under Instability** Stable Known This is what we want $t = t_F > t_I$ $t = t_T$ Classical Evolution Gaussian Fluctuation **Instability** Known Collision **Known Singularity** June 17, 18, 2011 @ Zakopane 57

Quantum Fluctuations after Singularity

Collision singularity simply shifts the fields by the CGC backgrounds

p. Altan Altan Altan Altan Altan Alta Altan Altan Altan Altan Altan Altan Altan A

$$\begin{split} W[a,e] \\ &= N \int \left[\mathrm{d}\delta a \right] \Psi_{+}^{*}[a - \frac{1}{2}\delta a] \Psi_{+}[a + \frac{1}{2}\delta a] \,\mathrm{e}^{-\mathrm{i}\int \mathrm{d}\eta \,\mathrm{d}^{2}\boldsymbol{x}_{\perp} \, 2\mathrm{tr}[e^{i}\delta a_{i}]} \\ &= N \exp\left\{ - \int \mathrm{d}\eta \,\mathrm{d}^{2}\boldsymbol{x}_{\perp} \, 2\mathrm{tr}\left[a_{i} \,\tau \sqrt{-(\partial_{\eta}/\tau)^{2} - \partial_{\perp}^{2}} \left(\delta_{ij} - \frac{\partial_{i}\partial_{j}}{(\partial_{\eta}/\tau)^{2} + \partial_{\perp}^{2}} \right) a_{j} \right. \\ &\left. + e^{i} \frac{1}{\tau \sqrt{-(\partial_{\eta}/\tau)^{2} - \partial_{\perp}^{2}}} \left(\delta_{ij} + \frac{\partial_{i}\partial_{j}}{(\partial_{\eta}/\tau)^{2}} \right) e^{j} \right] \right\} \quad \mathbf{Uncertainty Principle} \\ &\times \delta[a_{\eta}] \,\delta\left[e^{\eta} - e_{0}^{\eta} + \int_{\eta_{0}}^{\eta} \mathrm{d}\eta \, \mathcal{D}_{i} e^{i} \right], \quad \mathbf{Gauss Law} \end{split}$$

Continuous Spectrum \rightarrow **Ultraviolet Divergence** Rebhan et al...

Fluctuation Spectrum Dependence HLE Results by Rebhan-Strickland-Attems

Random Noise

FGM Spectrum

Glasma Simulation

್ರಿಫ್ ಸಚೆಸ್ಟ್ ಸಚೆಸ್ಟ್ ಸಚೆಸ್ಟ್ ಸಚೆಸ್ಟ್ ಸಚೆಸ್ ಸಚೆಸ್ಟ್ ಸಚೆಸ್ಟ್ ಸಚೆಸ್ಟ್. ಸಚೆಸ್ಟ್ ಸಚೆಸ್ಟ್

Rapidity-dependent fluctuation should fulfill the Gauss law constraint:

Procedure (Romatschke-Venugopalan)

Generate random distributions on the transverse plane $\langle \xi^i(\boldsymbol{x}_{\perp})\xi^j(\boldsymbol{x}'_{\perp})\rangle = \delta^{ij}\delta^{(2)}(\boldsymbol{x}_{\perp} - \boldsymbol{x}'_{\perp})$ Generate fluctuations of chromo-electric fields $\delta E^i(\boldsymbol{x}) = a_{\eta}^{-1} \left[f(\eta - a_{\eta}) - f(\eta) \right] \xi^i(\boldsymbol{x}_{\perp}) ,$

$$\delta E^{\eta}(x) = -f(\eta) \sum_{i=x,y} \left[U_i^{\dagger}(x-\hat{i})\xi^i(\boldsymbol{x}_{\perp}-\hat{i})U_i(x-\hat{i}) - \xi^i(\boldsymbol{x}_{\perp}) \right]$$

Automatically satisfies the Gauss law

$$D_i E^i + \partial_\eta \delta E^\eta = 0$$

Why not δU ?

Choice of the η -Fluctuations రించి, దర్శించి, దర్శించి, దర్శించి, దర్శిం దర్శించి, దర్శించి, దర్శించి, దర్శించి, దర్శించి, దర్శించ Zero-Point Spectrum KF-Gelis-McLerran Suffering from UV divergences White Noise Romatschke-Venugopalan Adopted in many calculations – but why white noise? **Single Mode KF-Gelis** $f(\eta) = \Delta \cos\left(\frac{2\pi\nu_0}{L_n}\eta\right)$

Clean environment to see the instability As long as in the linear-regime (small fluctuations) any spectrum can be described by a superposition of single-mode results with different v_0 's

Single-mode Analysis

ARAN, AR

η -dependent Longitudinal Pressure

$$P_{L}(\nu) \equiv \frac{1}{L^{2}} \int \mathrm{d}^{2} \boldsymbol{x}_{\perp} \frac{1}{L_{\eta}} \int_{0}^{L_{\eta}} \mathrm{d}\eta P_{L}(\eta, \boldsymbol{x}_{\perp}) \,\mathrm{e}^{\mathrm{i}(2\pi\nu/L_{\eta})\eta}$$

This quantity does not correspond to any "physical" observable but the same as adopted in the analysis by Romatschke-Venugopalan

Mode Amplitudes

Instability spreads from lower to higher wavenumber modes (canonical to rapidity)

ೆ. ಬೆಕ್ಕೆಯಲ್ಲಿ ಬೆಕ್ಕೆಯಲ್ಲಿ ಬೆಕ್ಕೆಯ ಬೆಕ್ಕೆಯಲ್ಲೇ ಬೆಕ್ಕೆಯಲ್ಲ

June 17, 18, 2011 @ Zakopane

Longitudinal Size Dependence Completely free from artifacts

No dependence on the longitudinal size as it should not

Seed Magnitude Dependence η -fluctuations are in the linear regime

Simply proportional to the seed magnitude How to fix it in principle? Ideally fixed by the thermalization time...

Fluctuations with Multiple Wave-Numbers

Individual simulations

Simultaneous simulations

Kolmogorov Cascade Spectrum

Seen in the non-Abelian systems

June 17, 18, 2011 @ Zakopane

"Classical" Explanation

Alexis Alexi

Dimensional Analysis

c.f. $[E] = l^2 t^{-2}$

c.f. bottom-up thermalization

June 17, 18, 2011 @ Zakopane

Transverse Energy Spectrum

Kolmogorov's scaling is not manifest

Small turbulence in the transverse flow Energy source at small *k* does not remain dominant

June 17, 18, 2011 @ Zakopane

Longitudinal Energy Spectrum Kolmogorov's scaling is clearly seen

As far as we know, this is the first indication for Kolmogorov's scaling in the expanding system Dimensional Analysis $[\nu/c\tau] = l^{-1}$, $[V_{\perp}(c\tau)^2 \varepsilon_E(\nu)] = l^3 t^{-2}$, $[\psi] = l^2 t^{-3}$

Summary of Part II

is Alexis Alexis Alexis Alexis Alexis Alexis Alexis Alexis Alexis

CGC simulation is supposed to give a right description of the early-time dynamics in the heavy ion collision.

So far it is not very successful... Glasma instability too slow, no isotropization, no thermalization...

At least the Kolmogorov cascade spectrum is seen, which is a promising indication.

Something missing – quantum fluctuations on top of CGC backgrounds and JIMWLK-type evolution