Introduction to and Recent Progress in Lattice QCD

Z. Fodor

University of Wuppertal, Forschungszentrum Juelich, Eotvos University Budapest

14 June 2011, Zakopane, Poland

Example talk: Examples to reach the physical limit (physical mass & continuum)
User’s guide to lattice QCD results

• Full lattice results have three main ingredients

1. (tech.) technically correct: control systematics (users can’t prove)
2. \((m_q)\) physical quark masses: \(m_s/m_{ud} \approx 28\) (and \(m_c/m_s \approx 12\))
3. (cont.) continuum extrapolated: at least 3 points with \(c \cdot a^n\)

only a few full results (spectrum, \(m_q\), nature, \(T_c\), EoS, curvature)

ad 1: obvious condition, otherwise forget it
ad 2: difficult (CPU demanding) to reach the physical u/d mass
BUT even with non-physical quark masses: meaningful questions
e.g. in a world with \(M_{\pi} = M_{\rho}/2\) what would be \(M_N/M_{\pi}\)
these results are universal, do not depend on the action/technique
ad 3: non-continuum results contain lattice artefacts
(they are good for methodological studies, they just "inform" you)
User’s guide to lattice QCD results

- troubleshooting

i. clarify if all three conditions were satisfied

ii. if yes: OK with any scale setting (error estimates can be tricky)

iii. if out of the above three ingredients one was missing:
 - if (1: tech.) was missing: forget it
 - if (2: m_q) was missing: reliable answer to a well defined case
 - if (3: cont.) was missing: ask to carry out the continuum limit

 show the scaling $c \cdot a^n$ in the scaling regime

 n is known from theory c is provided by the simulations

 that is why we need at least 3 different lattice spacings

iv. if out of the above three ingredients two were missing: well ...
The origin of mass of the visible Universe

source of the mass for ordinary matter (not a dark matter talk)

basic goal of LHC (Large Hadron Collider, Geneva Switzerland):

“to clarify the origin of mass”

e.g. by finding the Higgs particle, or by alternative mechanisms

order of magnitudes: 27 km tunnel and O(10) billion dollars
The vast majority of the mass of ordinary matter

ultimate (Higgs or alternative) mechanism: responsible for the mass of the leptons and for the mass of the quarks

interestingly enough: just a tiny fraction of the visible mass (such as stars, the earth, the audience, atoms) electron: almost massless, $\approx 1/2000$ of the mass of a proton quarks (in ordinary matter): also almost massless particles

the vast majority (about 95%) comes through another mechanism \Rightarrow this mechanism and this 95% will be the main topic of this talk quantum chromodynamics (QCD, strong interaction) on the lattice
QCD: need for a systematic non-perturbative method

in some cases: good perturbative convergence; in other cases: bad pressure at high temperatures converges at $T=10^{300}$ MeV
fine lattice to resolve the structure of the proton (~ 0.1 fm) few fm size is needed 50-100 points in ‘xyz/t’ directions $a \Rightarrow a/2$ means $100-200 \times$ CPU

mathematically 10^9 dimensional integrals advanced techniques, good balance and several Tflops are needed
Importance sampling

\[Z = \int \prod_{n, \mu} [dU_{\mu}(n)] e^{-S_g} \det(M[U]) \]

we do not take into account all possible gauge configuration

each of them is generated with a probability \(\propto \) its weight

importance sampling, Metropolis algorithm:
(all other algorithms are based on importance sampling)

\[P(U \to U') = \min\left[1, \exp(-\Delta S_g) \det(M[U'])/\det(M[U]) \right] \]

gauge part: trace of 3\(\times \)3 matrices (easy, without M: quenched)
fermionic part: determinant of 10\(\times \)10\(^6 \) sparse matrices (hard)

more efficient ways than direct evaluation (Mx=a), but still hard
Hadron spectroscopy in lattice QCD

Determine the transition amplitude between:

having a “particle” at time 0 and the same “particle” at time t

⇒ Euclidean correlation function of a composite operator O:

$$C(t) = \langle 0|O(t)O^\dagger(0)|0\rangle$$

insert a complete set of eigenvectors $|i\rangle$

$$= \sum_i \langle 0|e^{Ht}O(0)e^{-Ht}|i\rangle \langle i|O^\dagger(0)|0\rangle = \sum_i |\langle 0|O^\dagger(0)|i\rangle|^2 e^{-(E_i-E_0)t},$$

where $|i\rangle$: eigenvectors of the Hamiltonian with eigenvalue E_i.

and

$$O(t) = e^{Ht}O(0)e^{-Ht}.$$

t large ⇒ lightest states (created by O) dominate: $C(t) \propto e^{-M_t t}$

t large ⇒ exponential fits or mass plateaus $M_t=\log[C(t)/C(t+1)]$
Quenched results

QCD is 35 years old ⇒ properties of hadrons (Rosenfeld table)

- non-perturbative lattice formulation (Wilson) immediately appeared
- needed 20 years even for quenched result of the spectrum (cheap)
 instead of $\text{det}(M)$ of a $10^6 \times 10^6$ matrix trace of 3×3 matrices

always at the frontiers of computer technology:
- GF11: IBM "to verify quantum chromodynamics" (10 Gflops, ’92)
- CP-PACS Japanese purpose made machine (Hitachi 614 Gflops, ’96)

the $\approx 10\%$ discrepancy was believed to be a quenching effect
Difficulties of full dynamical calculations

though the quenched result can be qualitatively correct
uncontrolled systematics ⇒ full “dynamical” studies
by two-three orders of magnitude more expensive (balance)
present day machines offer several hundreds of Tflops

no revolution but evolution in the algorithmic developments

Berlin Wall ’01: it is extremely difficult to reach small quark masses:
Scale setting and masses in lattice QCD

in meteorology, aircraft industry etc. grid spacing is set by hand
in lattice QCD we use g, m_{ud} and m_s in the Lagrangian (’a’ not)
measure e.g. the vacuum mass of a hadron in lattice units: $M_{\Omega}a$
since we know that $M_{\Omega}=1672$ MeV we obtain ’a’

masses are obtained by correlated fits (choice of fitting ranges)
illustration: mass plateaus at the smallest $M_\pi \approx 190$ MeV (noisiest)

volumes and masses for unstable particles: avoided level crossing
decay phenomena included: in finite V shifts of the energy levels
three parameters of the Lagrangian: coupling strength g, m_{ud} and m_s

asymptotic freedom: for large cutoff (small lattice spacing) g is small
in this region the results are already independent of g (scaling)

QCD predicts only dimensionless combinations (e.g. mass ratios)
\Rightarrow we can eliminate g as an input parameter by taking ratios

the pion mass M_π is particularly sensitive to m_{ud}
the kaon mass M_K is particularly sensitive to m_s

relatively easy to set the strange quark mass m_s to its physical value
it is very CPU demanding to approach the physical m_{ud}
altogether 15 points for each hadrons

![Graph showing smooth extrapolation to the physical pion mass (or m_{ud}) and small discretization effects (three lines barely distinguishable).](image)

smooth extrapolation to the physical pion mass (or m_{ud}) small discretization effects (three lines barely distinguishable)

continuum extrapolation goes as $c \cdot a^n$ and it depends on the action in principle many ways to discretize (derivative by 2,3... points) goal: have large n and small c (in this case $n = 2$ and c is small)
Final result for the hadron spectrum
Breakthrough of the Year

Proton’s Mass ‘Predicted’

Starting from a theoretical description of its innards, physicists precisely calculated the mass of the proton and other particles made of quarks and gluons. The numbers aren’t new; experimenters have been able to weigh the proton for nearly a century. But the new results show that physicists can at last make accurate calculations of the ultracomplex strong force that binds quarks.

In simplest terms, the proton comprises three quarks with gluons zipping between them to convey the strong force. Thanks to the uncertainties of quantum mechanics, however, myriad gluons and quark-antiquark pairs flit into and out of existence within a proton in a frenzy that’s nearly impossible to analyze but that produces 95% of the particle’s mass.

To simplify matters, theorists from France, Germany, and Hungary took an approach known as “lattice quantum chromodynamics.” They modeled continuous space and time as a four-dimensional array of points—the lattice—and confined the quarks to the points and the gluons to the links between them. Using supercomputers, they reckoned the masses of the proton and other particles to a precision of about 2%—a tenth of the uncertainties a decade ago—as they reported in November.

In 2003, others reported equally precise calculations of more-esoteric quantities. But by calculating the familiar proton mass, the new work signals more broadly that physicists finally have a handle on the strong force.
physical quark masses: important for the nature of the transition

$n_f=2+1$ theory with $m_q=0$ or ∞ gives a first order transition

intermediate quark masses: we have an analytic cross over (no χPT)

F.Karsch et al., Nucl.Phys.Proc. 129 (’04) 614; G.Endrodi et al. PoS Lat’07 182(’07);

de Forcrand, S. Kim, O. Philipsen, Lat’07 178(’07)

continuum limit is important for the order of the transition:

$n_f=3$ case (standard action, $N_t=4$): critical $m_{ps}\approx 300$ MeV
different discretization error (p4 action, $N_t=4$): critical $m_{ps}\approx 70$ MeV

the physical pseudoscalar mass is just between these two values.
Lattice formulation

\[Z = \int dU d\psi d\bar{\psi} e^{-S_E} \] \hspace{1cm} (1)

\(S_E \) is the Euclidean action

Parameters (the lattice spacing does not appear explicitly):
- gauge coupling \(g \)
- quark masses \(m_i \) (\(i = 1..N_f \))
- (Chemical potentials \(\mu_i \))
- Volume (\(V \)) and temperature (\(T \))

Finite \(T \leftrightarrow \) finite temporal lattice extension

\[T = \frac{1}{N_t a} \] \hspace{1cm} (2)

Continuum limit: \(a \to 0 \iff N_t \to \infty \); CPU demand scales as \(N_t^{8-12} \)
Finite-size scaling theory

Problem with phase transitions in Monte-Carlo studies
Monte-Carlo applications for pure gauge theories ($V = 24^3 \cdot 4$)
Existence of a transition between confining and deconfining phases:
Polyakov loop exhibits rapid variation in a narrow range of β

- Theoretical prediction: SU(2) second order, SU(3) first order

\Rightarrow Polyakov loop behavior: SU(2) singular power, SU(3) jump

Data do not show such characteristics!
Finite size scaling in the quenched theory

look at the susceptibility of the Polyakov-line first order transition (Binder) \(\Longrightarrow \) peak width \(\propto 1/V \), peak height \(\propto V \)

finite size scaling shows: the transition is of first order
The nature of the QCD transition

finite size scaling study of the chiral condensate (susceptibility)

\[\chi = (T/V) \frac{\partial^2 \log Z}{\partial m^2} \]

phase transition: finite V analyticity \(V \to \infty \) increasingly singular (e.g. first order phase transition: height \(\propto V \), width \(\propto 1/V \))

for an analytic cross-over \(\chi \) does not grow with \(V \)

two steps (three volumes, four lattice spacings):

a. fix \(V \) and determine \(\chi \) in the continuum limit: \(a = 0.3, 0.2, 0.15, 0.1 \) fm

b. using the continuum extrapolated \(\chi_{\text{max}} \): finite size scaling
Approaching the continuum limit

\[a = 0.3 \text{ fm} \]

3.6 fm 4.8 fm 6 fm

\[1/N_t^2 \propto a^2 \]

\[N_s/N_t = 3 \]

\[N_s/N_t = 4 \]

\[N_s/N_t = 5 \]
Approaching the continuum limit

$a = 0.2 \text{ fm}$

3.6 fm 4.8 fm 6 fm
Approaching the continuum limit

$\mu > 0$

Final remark

Z. Fodor

$\text{Introduction to and Recent Progress in Lattice QCD}$

$a = 0.15 \text{ fm}$

3.6 fm

4.8 fm

6 fm

$\frac{1}{N_t^2} \propto a^2$

$\frac{1}{N_t^2} \propto a^2$

$\frac{1}{N_t^2} \propto a^2$
Approaching the continuum limit

$a = 0.12 \text{ fm}$

3.6 fm
4.8 fm
6 fm

T_f/fm^2a

$N_s/N_t = 3$
$N_s/N_t = 4$
$N_s/N_t = 5$

$1/N_f^2 \propto a^2$
$1/N_f^2 \propto a^2$
$1/N_f^2 \propto a^2$

Z. Fodor
Introduction to and Recent Progress in Lattice QCD
Approaching the continuum limit

3.6 fm 4.8 fm 6 fm

\[T^4 / (m^2 a^4) \]

\[\frac{1}{N_t^2} \propto a^2 \]

\[\frac{1}{N_s^2} \propto a^2 \]

\[\frac{1}{N_t^2} \propto a^2 \]

Z. Fodor

Introduction to and Recent Progress in Lattice QCD
The nature of the QCD transition: analytic

- finite size scaling analysis with continuum extrapolated $T^4/m^2 \Delta \chi$

the result is consistent with an approximately constant behavior for a factor of 5 difference within the volume range

cance probability for $1/V$ is 10^{-19} for O(4) is $7 \cdot 10^{-13}$

continuum result with physical quark masses in staggered QCD:

the QCD transition is a cross-over

The nature of the QCD transition

analytic transition (cross-over) \Rightarrow it has no unique T_c:
examples: melting of butter (not ice) & water-steam transition

above the critical point c_ρ and $d\rho/dT$ give different T_cs.
QCD: chiral & quark number susceptibilities or Polyakov loop
they result in different T_c values \Rightarrow physical difference
Possible first order scenario with critical bubbles
Reality: smooth analytic transition (cross-over)
Literature: discrepancies between T_c

Bielefeld-Brookhaven-Riken-Columbia Collaboration:

T_c from $\chi_{\bar{\psi}\psi}$ and Polyakov loop, from both quantities:

$$T_c = 192(7)(4)\text{ MeV}$$

Bielefeld-Brookhaven-Riken-Columbia merged with MILC: ‘hotQCD’

Wuppertal-Budapest group: WB

chiral susceptibility:

$$T_c = 151(3)(3)\text{ MeV}$$

Polyakov and strange susceptibility:

$$T_c = 175(2)(4)\text{ MeV}$$

‘chiral T_c’: ≈ 40 MeV; ‘confinement T_c’: ≈ 15 MeV difference

both groups give continuum extrapolated results with physical m_π
Literature: discrepancies between T dependencies

Reason: shoulders, inflection points are difficult to define? Answer: no, the whole temperature dependence is shifted

for $\Delta_l,s \approx 35$ MeV; for the strange susceptibility ≈ 15 MeV
this discrepancy would appear in all quantities (eos, fluctuations)
Discretization errors in the transition region

we always have discretization errors: nothing wrong with it as long as
a. result: close enough to the continuum value (error subdominant)
b. we are in the scaling regime (a^2 in staggered)

various types of discretization errors \Rightarrow we improve on them (costs)

we are speaking about the transition temperature region
interplay between hadronic and quark-gluon plasma physics
smooth cross-over: one of them takes over the other around T_c

both regimes (low T and high T) are equally important
improving for one: $T \gg T_c$, doesn’t mean improving for the other: $T < T_c$

example: ’expansion’ around a Stefan-Boltzmann gas (van der Waals)
for water: it is a fairly good description for $T \gtrsim 300^\circ$
claculate the boiling point: more accuracy needed for the liquid phase
Examples for improvements, consequences

how fast can we reach the continuum pressure at $T=\infty$?

$p4$ action is essentially designed for this quantity $T \gg T_c$

asqtad designed mostly for $T=0$ physics (but good at high T, too)

stout-smeared one-link converges slower but in the a^2 scaling regime (e.g. extrapolation from $N_t=8,10$ provides a result within about 1%)
Choice of the action

no consensus: which action offers the most cost effective approach

our choice: tree-level $O(a^2)$-improved Symanzik gauge action

\[V = P \left[\rightarrow + \rho \left(\rightarrow + \nearrow + \downarrow \right) \right] \]

2-level (stout) smeared improved staggered fermions

best known way to improve on taste symmetry violation
Chiral symmetry/pions

transition temperature for remnant of the chiral transition:
balance between the f’s of the chirally broken & symmetric sectors
chiral symmetry breaking: 3 pions are the pseudo-Goldstone bosons

staggered QCD: $1\left(\frac{3}{16}\right)$ pseudo-Goldstone instead of 3 (taste violation)
staggered lattice artefact \Rightarrow splitting disappears in the continuum limit
WB: stout-smeared improvement is designed to reduce this artefact
progress in the transition temperature

Wuppertal-Budapest: physical quark masses \((m_s/m_{ud} \approx 28)\)
gauge configs: \(N_t=8,10\) in 2006 \(\Rightarrow\) \(N_t=12\) in 2009 \(\Rightarrow\) \(N_t=16\) in 2010

hotQCD 2009: realistic quark masses \((m_s/m_{ud} = 10)\)
hotQCD 2010: preliminary: physical quark masses \((m_s/m_{ud} = 20)\)
progress in the transition temperature

Wuppertal-Budapest: physical quark masses \((m_s/m_{ud} \approx 28) \)
gauge configs: \(N_t=8,10 \) in 2006 \(\Rightarrow N_t=12 \) in 2009 \(\Rightarrow N_t=16 \) in 2010

hotQCD 2009: realistic quark masses \((m_s/m_{ud} = 10) \)
hotQCD 2010: preliminary: physical quark masses \((m_s/m_{ud} = 20) \)
progress in the transition temperature

Wuppertal-Budapest: physical quark masses \((m_s/m_{ud} \approx 28) \)
gauge configs: \(N_t = 8, 10 \) in 2006 \(\Rightarrow \) \(N_t = 12 \) in 2009 \(\Rightarrow \) \(N_t = 16 \) in 2010

hotQCD 2009: realistic quark masses \((m_s/m_{ud} = 10) \)
hotQCD 2010: preliminary: physical quark masses \((m_s/m_{ud} = 20) \)
progress in the transition temperature

Wuppertal-Budapest: physical quark masses \((m_s/m_{ud} \approx 28)\)
gauge configs: \(N_t=8,10\) in 2006 \(\Rightarrow\) \(N_t=12\) in 2009 \(\Rightarrow\) \(N_t=16\) in 2010

hotQCD 2009: realistic quark masses \((m_s/m_{ud} =10)\)
hotQCD 2010: preliminary: physical quark masses \((m_s/m_{ud} =20)\)
progress in the transition temperature

Wuppertal-Budapest: physical quark masses \((m_s/m_{ud} \approx 28)\)
gauge configs: \(N_t=8,10\) in 2006 \(\Rightarrow\) \(N_t=12\) in 2009 \(\Rightarrow\) \(N_t=16\) in 2010

hotQCD 2009: realistic quark masses \((m_s/m_{ud} = 10)\)
hotQCD 2010: preliminary: physical quark masses \((m_s/m_{ud} = 20)\)
progress in the transition temperature

Wuppertal-Budapest: physical quark masses \((m_s/m_{ud} \approx 28) \)
gauge configs: \(N_t=8,10 \) in 2006 \(\Rightarrow N_t=12 \) in 2009 \(\Rightarrow N_t=16 \) in 2010

hotQCD 2009: realistic quark masses \((m_s/m_{ud} =10) \)
hotQCD 2010: preliminary: physical quark masses \((m_s/m_{ud} =20) \)
progress in transition temperature

Wuppertal-Budapest: physical quark masses \((m_s/m_{ud} \approx 28) \)
gauge configs: \(N_t=8,10 \) in 2006 \(\Rightarrow N_t=12 \) in 2009 \(\Rightarrow N_t=16 \) in 2010

hotQCD 2009: realistic quark masses \((m_s/m_{ud} = 10) \)
hotQCD 2010: preliminary: physical quark masses \((m_s/m_{ud} = 20) \)
on the lattice the dimensionless pressure is given by

\[p^{\text{lat}}(\beta, m_q) = (N_t N_s^3)^{-1} \log Z(\beta, m_q) \]

not accessible using conventional algorithms, only its derivatives

\[p^{\text{lat}}(\beta, m_q) - p^{\text{lat}}(\beta^0, m_q^0) = (N_t N_s^3)^{-1} \int^{(\beta, m_q)}_{(\beta^0, m_q^0)} \left(d\beta \frac{\partial \log Z}{\partial \beta} + dm_q \frac{\partial \log Z}{\partial m_q} \right) \]

first term: gauge action & second term: chiral condensate

the pressure has to be renormalized: subtraction at T=0 (or T>0)

T\neq0 simulations can’t go below T\approx100 \text{ MeV} (lattice spacing is large)

physical HRG gives here 5\% contribution of SB ⇒ path of \(M_\pi = 720 \text{ MeV} \) ⇒ distorted HRG no contribution at T=100 \text{ MeV}
Finite volume and discretization effects

finite V: $N_s/N_t=3$ and 6 (8 times larger volume): no sizable difference

finite a: trace anomaly for three T-s: high T, transition T, low T
improvement program of lattice QCD (action & observables)
tree-level improvement for p (thermodynamic relations fix the others)
continuum limit $N_t=6,8,10,12$: same with or without improvement

improvement strongly reduces cutoff effects: slope ≈ 0 (1-2\(\sigma\) level)
ϵ normalized to the Stefan-Boltzmann limit: $\epsilon(T \rightarrow \infty) = 15.7$

at 1000 MeV still 20% difference to the Stefan-Boltzmann value

essentially perfect scaling, lines/points are lying on top of each other
Speed of sound & parametrization

c_s minimum value is about 0.13 at $T \approx 145$ MeV

'smaller than error' parametrization $T=100...1000$ MeV ($t=T/200$ MeV)

$$\frac{I(T)}{T^4} = \exp\left(-\frac{h_1}{t} - \frac{h_2}{t^2}\right) \cdot \left(h_0 + \frac{f_0 \cdot \left[\tanh(f_1 \cdot t + f_2) + 1\right]}{1 + g_1 \cdot t + g_2 \cdot t^2} \right)$$

<table>
<thead>
<tr>
<th>h_0</th>
<th>h_1</th>
<th>h_2</th>
<th>f_0</th>
<th>f_1</th>
<th>f_2</th>
<th>g_1</th>
<th>g_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1396</td>
<td>-0.1800</td>
<td>0.0350</td>
<td>2.76</td>
<td>6.79</td>
<td>-5.29</td>
<td>-0.47</td>
<td>1.04</td>
</tr>
</tbody>
</table>
two pion masses: $M_\pi \approx 720$ MeV ($R=1$) and $M_\pi = 135$ MeV (R^{phys})

good agreement with the HRG model up to the transition region

quark mass dependence disappears for high T

good agreement with perturbation theory

comparison with the published results of the hotQCD collaboration

discrepancy: peak at ≈ 20 MeV larger T and $\approx 70, 50, 40\%$ higher
two pion masses: $M_\pi \approx 720$ MeV ($R=1$) and $M_\pi = 135$ MeV (R^{phys})

good agreement with the HRG model up to the transition region

quark mass dependence disappears for high T

good agreement with perturbation theory

comparison with the published results of the hotQCD collaboration

discrepancy: peak at ≈ 20 MeV larger T and ≈ 70, 50, 40% higher
Finite chemical potential: the sign problem

at $\mu=0$ the fermion matrix is γ_5 hermitian: $M^\dagger = \gamma_5 M \gamma_5$

easy to check \implies eigenvalues: either real or conjugate pairs

det(M) is real, which is not true any more for non-vanishing μ

importance sampling (algorithms) for complex det(M) does not work

$P(U \rightarrow U') = \min \left[1, \exp(-\Delta S_g) \frac{\det(M[U'])}{\det(M[U])} \right]$

sign problem \Rightarrow until 2001: "lattice QCD can not say anything for $\mu>0$"

Fodor-Katz: multiparameter reweighting (hep-lat/0104001, PLB)
Bielefeld-Swansee: det(M) Taylor expanded (hep-lat/0204010, PRD)
de Forcrand-Philipsen: imaginary μ (hep-lat/0205016, Nucl.Phys.B)
D’Elia-Lombardo: imaginary μ (hep-lat/0209146, PRD)

the three methods look different, they are essentially the same
Overlap improving multi-parameter reweighting

one wants to calculate the following path integral

\[
Z(\alpha) = \int [dU] \exp[-S_{bos}(\alpha, U)] \det M(U, \alpha)
\]

\(\alpha\): parameter set (gauge coupling, mass, chemical potential)

for some parameters \(\alpha_0\) importance sampling can be done

\[
Z(\alpha) = \int [dU] \exp[-S_{bos}(\alpha_0, U)] \det M(U, \alpha_0)
\]

\[
\{\exp[-S_{bos}(\alpha, U) + S_{bos}(\alpha_0, U)] \det M(U, \alpha) / \det M(U, \alpha_0)\}
\]

first line: measure; curly bracket: observable (will be measured)

e.g. transition configurations are mapped to transition ones

reweighting factor (ratio of the determinants) can be expressed by the eigenvalues of the (reduced) fermion matrix: closed formula for any \(\mu\)
Glasgow method \Rightarrow multiparameter reweighting
single parameter (μ) \Rightarrow two parameters (μ and β)
purely hadronic \Rightarrow transition configurations
map transition configurations to transition ones
Equivalence of the methods (formal/numerical)

(recent lattice review at $\mu=0$ and $\mu>0$: Fodor-Katz 0908.3341)

det(M) can be given by the eigenvalues of M' (transformed) at $\mu=0$

$$\det M(\mu) = e^{-3V\mu} \prod_{i=1}^{6L^3} (e^{Lt\mu} - \lambda_i)$$

observable at $\mu>0$ or μ_I is given by the observable and λ_i at $\mu=0$

$$Pl(\beta, \mu) = \langle Pl \exp[\Delta \beta Pl] e^{-3V\mu} \prod_{i=1}^{6L^3} (e^{Lt\mu} - \lambda_i) \rangle$$

det(M) or $Pl(\beta, \mu)$ can be trivially Taylor expanded (Bielefeld-Swansee) termination of the series & stochastic determination of the coefficients \implies do not expect this method to work for as large μ as the full one

det(M)>0 for imaginary μ: impartance sampling still works determine the phase line $T_c(\mu_I)$ (e.g. use a quadratic/quartic fit) plug real μ into the same quadratic/quartic function: $c_2\mu^2 + c_4\mu^4$

formally: numerical determination of the (μ^2, μ^4) Taylor coefficients
Equivalence of the methods (formal/numerical)

⇒ for moderate μ Taylor and μ_I agree with reweighting

take $n_f=2$ setting of de Forcrand-Philipsen: $\beta_c(\mu)$ upto 4 digits

![Graph](image)

solid/dotted: imaginary μ & error; box: reweighting; circle: Taylor

for larger μ values higher order terms are getting more important

what to choose (depends on the question):
for this particular case imaginary μ has the largest CPU demand;
next one is reweighting; cheapest is Taylor (does not work for large μ)
Critical endpoint discussion (controversy?)

All results are from coarse lattices (a=0.3 fm, read our abstract!)

deForcrand-Philipsen: leading order \Rightarrow not stronger, slightly weaker
same from reweighting: $\mu I/T \approx 1−3$ (μ_{crit}: result of the higher orders)

Taylor & radius of convergence (!) only a lower bound: Lee-Yang
full answer (all the way to the continuum) needs much more CPU
Possible scenarios

Phase diagram with a transition growing stronger even turning into a first-order phase transition at a critical endpoint.
Weakening transition and no critical endpoint.

Here we calculate the first non-trivial term: physical mass & $a \to 0$ (we do not expect any conclusion to the critical endpoint).
we change μ and look at the transition curve
it shifts to the left, we look at its value of a fixed C

the dimensionless curvature is defined as $
\kappa(T) = - T_c(\mu = 0) \cdot R(T)
$

$d\kappa/dT$ at T_c tells if the transition is broadening or narrowing
(a point below T_c has a larger or smaller curvature)
Observables

strange susceptibility: \(\chi_s = (T/V)\partial^2 \log Z / \partial \mu_s^2 \)

chiral condensate (bare): \(\bar{\psi}\psi = (T/V)\partial \log Z / \partial m \)
renormalize it: \(\bar{\psi}\psi_R = [\bar{\psi}\psi - \bar{\psi}\psi(T = 0)] \cdot m/M^4_\pi \)

we study how fast it moves to the left if we increased \(\mu \)
Continuum prediction for the curvature: full result

lower solid line: T_c from the chiral condensate
upper solid line: T_c from the strange susceptibility

bands (red and blue) indicate the widths of the transition lines
the widths remain in this order approximately the same
in leading order: no critical point (can be anything)
Historical background

1972 Lagrangian of QCD (H. Fritzsch, M. Gell-Mann, H. Leutwyler)

 at small distances (large energies) the theory is “free”

1974 lattice formulation (Kenneth Wilson)
 at large distances the coupling is large: non-perturbative

Nobel Prize 2008: Y. Nambu, & M. Kobayashi T. Masakawa

spontaneous symmetry breaking in quantum field theory
 strong interaction picture: mass gap is the mass of the nucleon

mass eigenstates and weak eigenstates are different
Historical background

1972 Lagrangian of QCD (H. Fritzsch, M. Gell-Mann, H. Leutwyler)

 at small distances (large energies) the theory is “free”

1974 lattice formulation (Kenneth Wilson)
 at large distances the coupling is large: non-perturbative

Nobel Prize 2008: Y. Nambu, & M. Kobayashi T. Masakawa

spontaneous symmetry breaking in quantum field theory
 strong interaction picture: mass gap is the mass of the nucleon

mass eigenstates and weak eigenstates are different
Scientific Background on the Nobel Prize in Physics 2008

“Even though QCD is the correct theory for the strong interactions, it can not be used to compute at all energy and momentum scales ... (there is) ... a region where perturbative methods do not work for QCD.”

true, but the situation is somewhat better: new era fully controlled non-perturbative approach works (took 35 years)
Scaling for the pion splitting

scaling regime is reached if a^2 scaling is observed
asymptotic scaling starts only for $N_t \gtrsim 8$ ($a \lesssim 0.15$ fm): two messages
a. $N_t=8,10$ extrapolation gives ’p’ on the $\approx 1\%$ level: good balance
b. stout-smeared improvement is designed to reduce this artefact
most other actions need even smaller ’a’ to reach scaling
Consequences of the non-scaling behaviour

for large 'a' no proper a^2 scaling (e.g. due to large m_π splitting)
how do we monitor it, how to be sure being in the scaling regime?
dimensionless combinations in the $a\to0$ limit:
$T_c r_0$ or T_c/f_K for the remnant of the chiral transition

$N_t=4,6$: inconsistent continuum limit
$N_t=6,8,10$: consistent continuum limit (stout-link improvement)

independently which quantity is taken one obtains the same T_c signal: extrapolation is safe, we are in the a^2 scaling regime
Consequences of the non-scaling behaviour

no proper a^2 scaling for large ’$a’ (e.g. due to large m_π splitting)
how do we monitor it, how to be sure being in the scaling regime?
dimensionless combinations in the $a \rightarrow 0$ limit:
$T_c r_0$ or T_c / f_K for the remnant of the chiral transition

$N_t=4,6$: inconsistent continuum limit
$N_t=6,8,10$: consistent continuum limit (stout-link improvement)

independently which quantity is taken one obtains the same T_c signal: extrapolation is safe, we are in the a^2 scaling regime
Setting the scale in lattice QCD

in meteorology, aircraft industry etc. grid spacing is set by hand
in lattice QCD we use \(g, m_{ud} \) and \(m_s \) in the Lagrangian (’a’ not)
measure e.g. the vacuum mass of a hadron in lattice units: \(M_\Omega a \)
since we know that \(M_\Omega = 1672 \text{ MeV} \) we obtain ’a’ and \(T = 1/N_t a \)

Independently which quantity is taken (we used physical masses)
\(\Rightarrow \) one obtains the same ’a’ and \(T \), result is safe