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Quantum Chromodynamics (QCD)

QCD: Currently the best known theory to describe the strong interaction.

SU(3) gauge theory with fermions in fundamental representation.
Fundamental degrees of freedom:

@ gluons: Aj, a=1,...,8

@ quarks: 1, 3(color) x 4(spin) x 6(flavor) components

1 — .
Laoo = —7 F,F# + 0D, = myo,

pure gauge part fermionic part
where
F2, = 0,A2 — 9,A2 + gfa AL AC field strength
a .
D, =9, + gA? 5 Covariant derivative — gives quark—gluon

interaction
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SU(3) group

SU(3): group of 3 x 3 unitary matrices with unit determinant:
Q@ UUM =13,3, thatis, U™'=U",

U € SU(3)
Q detU=1.
8 generators:  Gell-Mann matrices X2 (a=1,...,8)
a
Lie algebra of SU(3): Linear combinations A= A? %

@ Hermitean: AT = A,
@ traceless: TrA=0.

a
U = exp(iA) = exp (iA"i )é) : elements of group SU(3).

a
[A, B] = ifdeAbBe % fabe:  structure coefficients.
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Quantum Chromodynamics (2)

Lqcp is invariant under local gauge transformations:
i
AL (x) = G)AL(X)G(x)! ~ g (0.G(x)) G(x)'

¥'(x) = G(x)i(x)
&' (x) = $(x)G' (x)

Only gauge invariant quantities are physical.

Properties of QCD:
@ Asymptotic freedom:
Coupling constant g — 0 when energy scale y — .

— Perturbation theory can be used at high energies.
@ Confinement:

Coupling constant is large at low energies.
—> Nonperturbative methods are required.



Quantum Chromodynamics (3)

Quantization using Feynman path integral:

[T 194,101(3) - On(a) #1541
(0] T[O1(x1) - - On(Xn)] 0) = ~ .
vl faa,) 6505

'S oscillates — hard to evaluate integrals.
Wick rotation:  t — —it analytic continuation to Euclidean spacetime.
— €S — e 5, where

1 _
Se = /d“x Lg = /d“x [4’:;qu511 + p(DAH + m)y
positive definite Euclidean action.
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Quantum Chromodynamics (4)

Vector components: ©=0,1,23 — u=1,234
Euclidean correlator
/ (0] [A0] [dA.] O (X) -+~ On(xn) € Sel¥74]

(0[ O1(x1) - - - On(xn) [0)g = —
- E I

Expectation value of  O1(x1) - - - On(Xn) B
with respect to positive definit measure  [dy] [d¢] [dA,] e~ .
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Lattice

Lattice regularization

"Most sytematic" nonperturbative approach:
lattice QFT

Take a finite segment of spacetime,
put fields at vertices of hypercubic lattice with lattice spacing a:

00 &0® Usual boundary conditions:
& &) Bosons:

m—2) m—2)

Periodic in all directions

Fermions:

Time direction: antiperiodic

Space directions: periodic
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Lattice

Lattice regularization (2)

We have to discretize the action:
intagral over spacetime [ d*x — sumoversites a*>,
derivatives 0, — finite differences

Momentum p < 2 = natural UV cutoff.

At finite "a" results differ from the continuum value.
Rlatt. — Rcont. + O(au)

for some dimensionless quantity R.

To get physical results, need to perform:
@ Infinite volume limit  (V — o),
© Continuum limit  (a — 0).
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Yang-Mills

Yang—Mills theories on the lattice

Regularization has to maintain lattice version of gauge invariance.

Gauge fields — on links connecting neighboring sites.
@ Continuum: A,, elements of Lie algebra of SU(3).
o Lattice: U, = €3, elements of group SU(3) itself.

Uy+ i~ = U;;/t UX+ﬂ;—M = U;,l == U;;N
y+i '
Ux:u
X+ ji
Uy, = GeUsuGL, 5
Lattice gauge transformation: Wl = Gythx

— — T
u}x = 1/1)( Gx
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Yang-Mills

Gauge invariant quantities on the lattice

@ Giluon loops

Tr [Uxy;u Uxg +aw T Usy —¢;c]

@ Gluon lines connecting g and q

» ¢x1 UX1;u UX1+/1;V T Uané;ewxn

&0

X4
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Yang-Mills

Gauge action

Continuum gauge action:

Sgont. — /d4X _Fa Fa

4 [ 2%
Simplest gauge invariant lattice action: Wilson action

ngnson = ﬁz <1 — %Re [Px;uu]> , B= g627 ngh‘. = Sgont+o(a2)a
X

v<p

where Py.,,, is the plaquette:

X+ D X+0+0
PX:HU =Tr [UX:# UX-Hl;V U U)t l/:| P

X+0;pn

X X+ [l
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Yang-Mills

Gauge action — Symanzik improvement

Add 2 x 1 gluon loops to Wilson action:

Sg)’manzik =3 Z {1 — % (Co Re[PX;W,] + ¢y RG[P)%;;:,] + ¢4 Re[Pif,H)}
X

v<p

X+ D X+20+ 70

v

X X+ 2

=

Consistency condition: ¢y + 8¢y = 1.

¢l =—1 gives tree level improvement — S@=S85°"+O(a*)
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Fermions

Fermion doubling

Continuum fermion action

S = / A X B0, + My,
Naively discretized:

4

S =Y [ D P

2a
X N:1

Inverse propagator:

_ . sinp,a
Gna1ive(p) =y P

Extra zeros at p, =0,+£2 = 16 zeros in 13! Brillouin zone.
In d dimensions 27 fermions instead of 1 = fermion doubling.
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Fermions

Wilson fermions

. r _
S'=8" —a-zay vy
X

Wilson term
where

4
 — 2Yx +
Dd}X:Zd}x—i—; :;x Q/)xu
u=1

0 <r<1 Wison parameter, usually r=1.

G\7V1 (p) = Gnalve + 5 Z sin? (Pua/2)

p=1
Maoublers = O(a~') = doublers disappear in continuum limit.
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Fermions

Wilson fermions (2)

Work with dimensionless quantities: a2y — ¢

Z {¢x Z [ @Z’X-&-u ('7# +7r) wx—ﬂ] + (ma+ 4r) ?/))ﬂﬂx}

1 .
Rescale ¢ by v2«x, k= omater hopping parameter.
Action including gauge fields:

Z { lz wx UX uwx+;t Ex—}—ﬁ (ryu + f) U)J[;/L'(/}X

+ be}
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Fermions

Wilson fermions (3)

@ Advantages
@ Kills all doublers.

@ Disadvantages

@ No chiral symmetry at a # 0.
= Massless pions at r¢ # & .

Additive quark mass renormalization.

@ Large discretization errors:

SV = st 1 O(a)
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Fermions

Wilson fermions — Clover improvement

Sfclover _ SfW iackr Zl/}XO'uy}-x wy = Soont 0(32), Opv = i [’Yu,%]

clover term
1
fx;uu - Z (UX;H UX+[.L;VUX+V H«U;V - U; o L,U; A—Dip UX—[L—&;V Ux—z?;y“!‘
T T
+ UX"UX ;L+l/,u,UX f; VUX*ﬂFM - UX 12 U): a—oiv UX i UX*IA’”‘)

discretized version of field strength F,. .

X v
+ +
X — [t x_}x+ﬂ
X—D

Z. Fodor Introduction to and Recent Progress in Lattice QCD



Fermions

Kogut—Susskind (staggered) fermions

Fermion degrees of freedom ——  corners of hypercube.

In d dimensions:
29/2 spinor components of Dirac spinors
29 corners of hypercube
— describes 29/29/2 = 29/2 flavors (tastes).
lfd=4 = 4flavors (tastes) = 4! rooting required.
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Fermions

Kogut—Susskind (staggered) fermions (2)

3(color) x 4(spin) components 3(color) x 1(spin) components

SfS = ZYX {; Z Mx,u (Ux;uXerﬂ - U)]:—ﬁ;uXX*ﬁ) + maxx} )
X I

where »
Mx,u = (—1)25:1 v staggered phase.
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Fermions

Kogut—Susskind (staggered) fermions (3)

@ Advantages

@ Remnant chiral symmetry at a # 0
= no additive quark mass renormalization.
© O(&?) discretization errors.

© Fast.
@ Disadvantages

@ 4 tastes (flavors) instead of 1
= rooting trick required.

@ Taste symmetry breaking.

Z. Fodor Introduction to and Recent Progress in Lattice QCD



Algorithms

Integral over fermions

Full lattice QCD action

—— ——
gluonic part  fermionic part

Fermions are described by Grassmann variables — have to integrate out
analytically.

/ [AU] [d] [d] e~ Se(V+T M) v / [dU] =5V det M(U)
— Effective action for gluons
Seft. (U) = Sg(U) — In (det M(U)).

Staggered fermion matrix describes 4 tastes.
Rooting trick: for ny flavors, take power % of determinant:

SS. (U) = Sy(U) —In (det M(U)”f/“) = Sy(U) — % In (det M(U))



Algorithms

Expectation values of fermionic quantities

O(x,y) = <Euwd>y (@dwu)x fermionic operator

U 0T i e s
(0]O(x,y)10) = _
/ [AU] [d] [du] e~ Se (V)5 M)
/[dU] {Mx_,}’u(U) {My_}’d(U)r det M(U) e=S:(V)
) / [dU] det M(U) e~ S(U)
/[dU] Trcolorspin [(M)Z;/u) (M;;’d)} e*seff.(U)

/ [dU) e~ 5V)
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Algorithms

Expectation values of fermionic quantities (2)

[Expectation valueof  O= (@”wd)y @dwu>x }

with respect to action S(U, ¢, ) = Sg(U) — ¢ M(U) 2.

!

with respect to action Seit (U) = Sy(U) — In (det M(U)).

/ [4U] [d¢] [dy] © @~ S(W4) / [dU] O’ e~ Ser (V)

0010 = :
[uui@iae s [lagesa®
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Algorithms

Importance sampling

Monte Carlo simulation: calculate (0| O |0) stochastically.

Naive way: take random gauge configurations U, according to the
uniform distribution and calculate the weighed average:

_S.,
Za Oa e S,.: value of Sy at U,,

(0]0|0) = Z o—Sa O,: value of O at U,.

S, large for most configurations — small portion of configurations
give significant contribution.

Importance sampling: generate configurations with probability based
on their |mportance — probablllty of U, is proportional to =S~

1
Then (0] O|0) O, with relative error —.
R Z VN
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Algorithms

Importance sampling (2)

Simplest method: Metropolis algorithm.
Choose an initial configuration Uj.
@ Generate Uy, 1 from Uy with a small random change.
© Measure the change AS in the action.
Q If AS <0, keep Uk, 1-
Q If AS > 0, keep Uk, 1 with a probability of e A4S,

@ Uy is far from the region where e~S is significant.
= Many steps required to reach equilibrium distribution:
Thermalization time.

@ Ui — Uk, 1 by small change.
— Subsequent configurations are not independent.
Number of steps required to reach next independent
configuration:  Autocorrelation time.
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Setting the scale

All quantities in the calculation are in lattice units
— lattice spacing a has to be determined.

Process of obtaining a:

@ Choose physical quantity A such that

e experimental value Aeyp, is well known,
e easily measurable on the lattice,

@ not sensitive to discretization errors,

o [A] = (GeV)", v #0.

© Measure dimensionless Al,, = A, - @ on the lattice.

/ 1/v
O Setting  Aptt. = Aexp.  yields a= <Iatt> .
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Setting the scale (2)

@ A = string tension

= lim dV(R)
7= R—oco dR
Experimental value: /o = 465MeV

V(R) =— Tlinoo 1 In[W(R, T)], W(R,T) =

Static g—q potential
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Setting the scale (3)

© A= ry Sommer parameter,

2 dV(R)

A dR

=1.65

RZI’O

Experimental value: rp = 0.469(7) fm

© A= Fyk leptonic decay constant of Kaon
Experimental value: fx = 159.8 MeV
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