lattice field theory talk
examples to reach the physical limit (physical mass & continuum)
Outline

1. Quantum Chromodynamics
2. Lattice Regularization
3. Yang–Mills theories on the lattice
4. Fermions on the lattice
5. Algorithms
6. Setting the scale
Quantum Chromodynamics (QCD)

QCD: Currently the best known theory to describe the strong interaction.

SU(3) gauge theory with fermions in fundamental representation.

Fundamental degrees of freedom:

- **gluons:** A^a_μ, $a = 1, \ldots, 8$
- **quarks:** ψ, 3(color) \times 4(spin) \times 6(flavor) components

\[
\mathcal{L}_{\text{QCD}} = -\frac{1}{4} F^a_{\mu\nu} F^{a\mu\nu} + \bar{\psi} (iD_\mu \gamma^\mu - m) \psi,
\]

where

\[
F^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g f^{abc} A^b_\mu A^c_\nu \quad \text{field strength}
\]

\[
D_\mu = \partial_\mu + g A^a_\mu \frac{\lambda^a}{2i} \quad \text{covariant derivative} \quad \rightarrow \quad \text{gives quark–gluon interaction}
\]
SU(3) group

SU(3): group of 3×3 unitary matrices with unit determinant:

$$U \in \text{SU}(3) \iff UU^\dagger = 1_{3 \times 3}, \quad \text{that is,} \quad U^{-1} = U^\dagger,$$

$$\det U = 1.$$

8 generators: Gell–Mann matrices $\lambda^a \quad (a = 1, \ldots, 8)$

Lie algebra of $SU(3)$: Linear combinations $A = A^a \frac{\lambda^a}{2}$

1. Hermitean: $A^\dagger = A,$
2. Traceless: $\text{Tr} A = 0.$

$$U = \exp(iA) = \exp \left(iA^a \frac{\lambda^a}{2} \right): \quad \text{elements of group SU(3)}.$$

$$[A, B] = i f^{abc} A^b B^c \frac{\lambda^a}{2}, \quad f^{abc}: \quad \text{structure coefficients.}$$
Quantum Chromodynamics (2)

L_{QCD} is invariant under local gauge transformations:

\[A'_\mu(x) = G(x) A_\mu(x) G(x)^\dagger - \frac{i}{g} (\partial_\mu G(x)) G(x)^\dagger \]

\[\psi'(x) = G(x) \psi(x) \]

\[\overline{\psi}'(x) = \overline{\psi}(x) G^\dagger(x) \]

Only gauge invariant quantities are physical.

Properties of QCD:

- **Asymptotic freedom:**

 Coupling constant $g \to 0$ when energy scale $\mu \to \infty$.

 \[\implies \text{Perturbation theory can be used at high energies.} \]

- **Confinement:**

 Coupling constant is large at low energies.

 \[\implies \text{Nonperturbative methods are required.} \]
Quantum Chromodynamics (3)

Quantization using Feynman path integral:

\[
\langle 0 | T[O_1(x_1) \cdots O_n(x_n)] | 0 \rangle = \frac{\int [d\psi] [d\bar{\psi}] [dA_\mu] O_1(x_1) \cdots O_n(x_n) e^{iS[\psi, \bar{\psi}, A_\mu]} \int [d\psi] [d\bar{\psi}] [dA_\mu] e^{iS[\psi, \bar{\psi}, A_\mu]} }{\int [d\psi] [d\bar{\psi}] [dA_\mu] e^{iS[\psi, \bar{\psi}, A_\mu]}}
\]

\(e^{iS} \) oscillates \(\rightarrow \) hard to evaluate integrals.

Wick rotation: \(t \rightarrow -it \) analytic continuation to Euclidean spacetime.

\[e^{iS} \rightarrow e^{-S_E}, \text{ where} \]

\[
S_E = \int d^4x \ L_E = \int d^4x \left[\frac{1}{4} F_{\mu\nu}^a F_{\mu\nu}^a + \bar{\psi} (D_\mu \gamma^\mu + m) \psi \right]
\]

positive definite Euclidean action.
Quantum Chromodynamics (4)

Vector components: \(\mu = 0, 1, 2, 3 \rightarrow \mu = 1, 2, 3, 4 \)

Euclidean correlator

\[
\langle 0 | \mathcal{O}_1(x_1) \cdots \mathcal{O}_n(x_n) | 0 \rangle_E = \frac{\int [d\psi] [d\overline{\psi}] [dA_\mu] \mathcal{O}_1(x_1) \cdots \mathcal{O}_n(x_n) e^{-S_E[\psi, \overline{\psi}, A_\mu]}}{\int [d\psi] [d\overline{\psi}] [dA_\mu] e^{-S_E[\psi, \overline{\psi}, A_\mu]}}
\]

Expectation value of \(\mathcal{O}_1(x_1) \cdots \mathcal{O}_n(x_n) \) with respect to positive definite measure \([d\psi] [d\overline{\psi}] [dA_\mu] e^{-S_E} \).
"Most systematic" nonperturbative approach: lattice QFT

Take a finite segment of spacetime, put fields at vertices of hypercubic lattice with lattice spacing a:

Usual boundary conditions:
- **Bosons:** Periodic in all directions

- **Fermions:**
 - Time direction: antiperiodic
 - Space directions: periodic
Lattice regularization (2)

We have to discretize the action:

\[\int d^4 x \rightarrow \text{sum over sites} \quad a^4 \sum_x\]

\[\partial_\mu \rightarrow \text{finite differences}\]

Integral over spacetime: \(\int d^4 x\)

Derivatives: \(\partial_\mu\)

Momentum \(p \leq \frac{\pi}{a}\) \(\Rightarrow\) natural UV cutoff.

At finite "a" results differ from the continuum value.

\[R^{\text{latt.}} = R^{\text{cont.}} + O(a^\nu)\]

for some dimensionless quantity \(R\).

To get physical results, need to perform:

1. Infinite volume limit \((V \rightarrow \infty)\),
2. Continuum limit \((a \rightarrow 0)\).
Yang–Mills theories on the lattice

Regularization has to maintain lattice version of gauge invariance.

Gauge fields \rightarrow on links connecting neighboring sites.
- Continuum: A_μ, elements of Lie algebra of SU(3).
- Lattice: $U_\mu = e^{iagA_\mu}$, elements of group SU(3) itself.

Lattice gauge transformation:

$$U_{x+\hat{\mu};-\mu} = U_{x;\mu}^{-1} = U_{x;\mu}^\dagger$$

$$U'_{x;\mu} = G_x U_{x;\mu} G_{x+\hat{\mu}}^\dagger$$

$$\psi'_x = G_x \psi_x$$

$$\bar{\psi}'_x = \bar{\psi}_x G_x^\dagger$$
Gauge invariant quantities on the lattice

- **Gluon loops**

\[
\text{Tr} \left[U_{x_1;\mu} U_{x_1+\hat{\mu};\nu} \cdots U_{x_1-\hat{\epsilon};\epsilon} \right]
\]

- **Gluon lines connecting} \, q \text{ and } \overline{q}$$

\[
\overline{\psi}_{x_1;\mu} U_{x_1+\hat{\mu};\nu} \cdots U_{x_n-\hat{\epsilon};\epsilon} \psi_{x_n}
\]
Gauge action

Continuum gauge action:

\[S_{g}^{\text{cont.}} = \int d^4 x \frac{1}{4} F_{\mu \nu}^a F_{\mu \nu}^a \]

Simplest gauge invariant lattice action: Wilson action

\[S_{g}^{\text{Wilson}} = \beta \sum_{x} \left(1 - \frac{1}{3} \text{Re} \left[P_{x; \mu \nu} \right] \right), \quad \beta = \frac{6}{g^2}, \quad S_{g}^{\text{latt.}} = S_{g}^{\text{cont}} + O(a^2), \]

where \(P_{x; \mu \nu} \) is the plaquette:

\[P_{x; \mu \nu} = \text{Tr} \left[U_{x; \mu} U_{x+\hat{\mu}; \nu} U_{x+\hat{\nu}; \mu} U_{x; \nu} \right] \]
Gauge action – Symanzik improvement

Add 2×1 gluon loops to Wilson action:

$$S_g^{\text{Symanzik}} = \beta \sum_{x} \left\{ 1 - \frac{1}{3} \left(c_0 \ \text{Re}[P_{x;\mu\nu}] + c_1 \ \text{Re}[P_{x;\mu\nu}^{2\times1}] + c_1 \ \text{Re}[P_{x;\nu\mu}^{2\times1}] \right) \right\}$$

Consistency condition: $c_0 + 8c_1 = 1$.

$c_1 = -\frac{1}{12}$ gives tree level improvement $\implies S_g^{\text{cont.}} = S_g^{\text{latt.}} + O(a^4)$
Fermion doubling

Continuum fermion action

\[S_f = \int d^4x \bar{\psi}(\gamma^\mu \partial_\mu + m)\psi. \]

Naively discretized:

\[S_{f, \text{naive}} = a^4 \sum_x \sum_{\mu=1}^{4} \left[\bar{\psi}_x \frac{\gamma_\mu \psi_{x+\hat{\mu}} - \psi_{x-\hat{\mu}}}{2a} + m \bar{\psi}_x \psi_x \right] \]

Inverse propagator:

\[G_{f, \text{naive}}^{-1}(p) = i \gamma_\mu \frac{\sin p_\mu a}{a} + m. \]

Extra zeros at \(p_\mu = 0, \pm \frac{\pi}{a} \) \(\Rightarrow \) 16 zeros in 1st Brillouin zone.

In \(d \) dimensions \(2^d \) fermions instead of 1 \(\Rightarrow \) fermion doubling.
Wilson fermions

\[
S_f^W = S_f^{\text{naive}} - a \cdot \frac{r}{2} a^4 \sum_x \bar{\psi}_x \Box \psi_x,
\]

where

\[
\Box \psi_x = \sum_{\mu=1}^4 \frac{\psi_{x+\hat{\mu}} - 2\psi_x + \psi_{x-\hat{\mu}}}{a^2}.
\]

0 < r ≤ 1 Wilson parameter, usually r = 1.

\[
G_W^{-1}(p) = G_{\text{naive}}^{-1}(p) + \frac{2r}{a} \sum_{\mu=1}^4 \sin^2 \left(p_{\mu} a / 2 \right)
\]

\[
m_{\text{doublers}} = O(a^{-1}) \quad \Rightarrow \quad \text{doublers disappear in continuum limit.}
\]
Wilson fermions (2)

Work with dimensionless quantities: \(a^{3/2} \psi \rightarrow \psi \)

\[
S^W_f = \sum_x \left\{ \bar{\psi}_x \sum_\mu \left[(\gamma_\mu - r) \psi_{x+\hat{\mu}} - (\gamma_\mu + r) \psi_{x-\hat{\mu}} \right] + (ma + 4r) \bar{\psi}_x \psi_x \right\}
\]

Rescale \(\psi \) by \(\sqrt{2\kappa} \),

\(\kappa = \frac{1}{2ma + 8r} \)

hopping parameter.

Action including gauge fields:

\[
S^W_f = \sum_x \left\{ \kappa \left[\sum_\mu \bar{\psi}_x (\gamma_\mu - r) U_{x;\mu} \psi_{x+\hat{\mu}} - \bar{\psi}_{x+\hat{\mu}} (\gamma_\mu + r) U_{x;\mu}^\dagger \psi_x \right] + \bar{\psi}_x \psi_x \right\}
\]
Wilson fermions (3)

Advantages

1. Kills all doublers.

Disadvantages

1. No chiral symmetry at $a \neq 0$.

 \Rightarrow Massless pions at $\kappa_c \neq \frac{1}{8r}$.

 Additive quark mass renormalization.

2. Large discretization errors:

 $S_f^W = S_f^{\text{cont.}} + O(a)$
Wilson fermions – Clover improvement

\[S_f^{\text{clover}} = S_f^W - \frac{i a c_k r}{4} \sum_x \psi_x \sigma_{\mu\nu} F_{x;\mu\nu} \psi_x = S_f^{\text{cont.}} + O(a^2), \]

\[\sigma_{\mu\nu} = \frac{i}{4} [\gamma_\mu, \gamma_\nu] \]

clover term

\[F_{x;\mu\nu} = \frac{1}{4} \left(U_{x;\mu} U_{x+\hat{\mu};\nu} U_{x+\hat{\nu};\mu} U_{x;\nu} - U_{x-\hat{\nu};\nu} U_{x-\hat{\mu}-\hat{\nu};\mu} U_{x-\hat{\mu};\nu} U_{x-\hat{\nu};\nu} + U_{x;\nu} U_{x-\hat{\mu}+\hat{\nu};\mu} U_{x-\hat{\mu};\nu} U_{x-\hat{\mu};\nu} - U_{x;\mu} U_{x+\hat{\mu}-\hat{\nu};\nu} U_{x-\hat{\nu};\mu} U_{x-\hat{\nu};\nu} \right) \]

discretized version of field strength \(F_{\mu\nu} \).
Kogut–Susskind (staggered) fermions

Fermion degrees of freedom \rightarrow corners of hypercube.

In d dimensions:

- $2^{d/2}$ spinor components of Dirac spinors
- 2^d corners of hypercube

\Rightarrow describes $2^d/2^{d/2} = 2^{d/2}$ flavors (tastes).

If $d = 4 \Rightarrow 4$ flavors (tastes) $\Rightarrow 4^{\text{th}}$ rooting required.
Kogut–Susskind (staggered) fermions (2)

3(color) × 4(spin) components \rightarrow 3(color) × 1(spin) components

$$S_f^S = \sum_x \bar{\chi}_x \left\{ \frac{1}{2} \sum_{\mu} \eta_{x,\mu} \left(U_{x;\mu} \chi_x + \hat{\mu} - \bar{U}_{x-\hat{\mu};\mu} \chi_x - \hat{\mu} \right) + ma\chi_x \right\},$$

where

$$\eta_{x,\mu} = (-1)^{\sum_{\nu=1}^{\mu-1} x_{\nu}}$$

staggered phase.
Kogut–Susskind (staggered) fermions (3)

Advantages

1. Remnant chiral symmetry at \(a \neq 0 \)
 \[\Rightarrow \] no additive quark mass renormalization.

2. \(O(a^2) \) discretization errors.

3. Fast.

Disadvantages

1. 4 tastes (flavors) instead of 1
 \[\Rightarrow \] rooting trick required.

2. Taste symmetry breaking.
Integral over fermions

Full lattice QCD action

\[S(U, \psi, \bar{\psi}) = S_g(U) - \bar{\psi} M(U) \psi \]

Fermions are described by Grassmann variables \(\longrightarrow \) have to integrate out analytically.

\[\int [dU] [d\bar{\psi}] [d\psi] e^{-S_g(U) + \bar{\psi} M(U) \psi} = \int [dU] e^{-S_g(U)} \det M(U) \]

\(\longrightarrow \) Effective action for gluons

\[S_{\text{eff.}}(U) = S_g(U) - \ln (\det M(U)) . \]

Staggered fermion matrix describes 4 tastes.

Rooting trick: for \(n_f \) flavors, take power \(\frac{n_f}{4} \) of determinant:

\[S_{\text{eff.}}^S(U) = S_g(U) - \ln \left(\det M(U)^{n_f/4} \right) = S_g(U) - \frac{n_f}{4} \ln (\det M(U)) \]
Expectation values of fermionic quantities

\[\mathcal{O}(x, y) = \left(\overline{\psi}_u \psi^d \right)_y \left(\overline{\psi}^d \psi^u \right)_x \quad \text{fermionic operator} \]

\[
\langle 0 | \mathcal{O}(x, y) | 0 \rangle = \frac{\int \left[dU \right] \left[d\overline{\psi} \right] \left[d\psi \right] \overline{\psi}^u, a \psi^d, a \overline{\psi}^d, b \psi^u, b e^{-S_g(U) + \overline{\psi} M(U) \psi} \chi}{\int \left[dU \right] \left[d\overline{\psi} \right] \left[d\psi \right] e^{-S_g(U) + \overline{\psi} M(U) \psi}} = \\
= \frac{\int \left[dU \right] \left[M^{-1}_{x,y} U \right]^{ab} \left[M_{y,x}^{-1} U \right]^{ba} \det M(U) e^{-S_g(U)}}{\int \left[dU \right] \det M(U) e^{-S_g(U)}} = \\
= \int \left[dU \right] \text{Tr}_{\text{color,spin}} \left[\left(M^{-1}_{x,y} U \right) \left(M_{y,x}^{-1} U \right) \right] e^{-S_{\text{eff.}}(U)}
\]

\[= \int \left[dU \right] e^{-S_{\text{eff.}}(U)} \]
Expectation values of fermionic quantities (2)

Expectation value of

\[\mathcal{O} = \left(\overline{\psi}^u \psi^d \right)_y \left(\overline{\psi}^d \psi^u \right)_x \]

with respect to action

\[S(U, \psi, \overline{\psi}) = S_g(U) - \overline{\psi} M(U) \psi. \]

\[\Rightarrow \]

Expectation value of

\[\mathcal{O}' = \text{Tr}_{\text{color,spin}} \left[\left(M^{-1, u}_{x, y} \right) \left(M^{-1, d}_{y, x} \right) \right] \]

with respect to action

\[S_{\text{eff.}}(U) = S_g(U) - \ln \det(M(U)). \]

\[\langle 0 | \mathcal{O} | 0 \rangle = \frac{\int [dU] [d\overline{\psi}] [d\psi] \mathcal{O} e^{-S(U, \psi, \overline{\psi})}}{\int [dU] [d\overline{\psi}] [d\psi] e^{-S(U, \psi, \overline{\psi})}} = \frac{\int [dU] \mathcal{O}' e^{-S_{\text{eff.}}(U)}}{\int [dU] e^{-S_{\text{eff.}}(U)}} \]
Importance sampling

Monte Carlo simulation: calculate \(\langle 0 | \mathcal{O} | 0 \rangle \) stochastically.

Naive way: take random gauge configurations \(U_\alpha \) according to the uniform distribution and calculate the weighed average:

\[
\langle 0 | \mathcal{O} | 0 \rangle = \frac{\sum_\alpha \mathcal{O}_\alpha e^{-S_\alpha}}{\sum_\alpha e^{-S_\alpha}}
\]

\(S_\alpha \): value of \(S_{\text{eff.}} \) at \(U_\alpha \),
\(\mathcal{O}_\alpha \): value of \(\mathcal{O} \) at \(U_\alpha \).

\(S_\alpha \) large for most configurations \(\rightarrow \) small portion of configurations give significant contribution.

Importance sampling: generate configurations with probability based on their importance \(\rightarrow \) probability of \(U_\alpha \) is proportional to \(e^{-S_\alpha} \).

Then

\[
\langle 0 | \mathcal{O} | 0 \rangle = \frac{1}{N} \sum_{\alpha=1}^{N} \mathcal{O}_\alpha \quad \text{with relative error} \quad \frac{1}{\sqrt{N}}.
\]
Importance sampling (2)

Simplest method: Metropolis algorithm.
Choose an initial configuration U_0.

1. Generate U_{k+1} from U_k with a small random change.
2. Measure the change ΔS in the action.
3. If $\Delta S \leq 0$, keep U_{k+1}.
4. If $\Delta S > 0$, keep U_{k+1} with a probability of $e^{-\Delta S}$.

- U_0 is far from the region where e^{-S} is significant.
 \Rightarrow Many steps required to reach equilibrium distribution: Thermalization time.
- $U_k \rightarrow U_{k+1}$ by small change.
 \Rightarrow Subsequent configurations are not independent.
 Number of steps required to reach next independent configuration: Autocorrelation time.
Setting the scale

All quantities in the calculation are in lattice units
\(\rightarrow \) lattice spacing \(a \) has to be determined.

Process of obtaining \(a \):

1. Choose physical quantity \(A \) such that
 - experimental value \(A_{\text{exp.}} \) is well known,
 - easily measurable on the lattice,
 - not sensitive to discretization errors,
 - \([A] = (\text{GeV})^\nu\), \(\nu \neq 0 \).

2. Measure dimensionless \(A'_{\text{latt.}} = A_{\text{latt.}} \cdot a^\nu \) on the lattice.

3. Setting \(A_{\text{latt.}} = A_{\text{exp.}} \) yields
 \[a = \left(\frac{A'_{\text{latt.}}}{A_{\text{exp.}}} \right)^{1/\nu}. \]
A = \sigma \text{ string tension}

\sigma = \lim_{R \to \infty} \frac{dV(R)}{dR}

Experimental value: \sqrt{\sigma} = 465 \text{ MeV}

V(R) = -\lim_{T \to \infty} \frac{1}{T} \ln[W(R, T)], \quad W(R, T) = \ldots

Static q–\bar{q} potential
Setting the scale (3)

2 \(A = r_0 \) Sommer parameter,

\[
R^2 \cdot \left. \frac{dV(R)}{dR} \right|_{R=r_0} = 1.65
\]

Experimental value: \(r_0 = 0.469(7) \text{ fm} \)

3 \(A = F_K \) leptonic decay constant of Kaon

Experimental value: \(f_K = 159.8 \text{ MeV} \)