nt	d		0	in	n	
	ju	u				

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

A phenomenological study of helicity amplitudes of high energy exclusive leptoproduction of the ρ meson

Adrien Besse

Soltan Institute for Nuclear Studies - Laboratoire de Physique Théorique d'Orsay

Cracow School of Theoretical Physics Zakopane, June 12th 2011

arXiv:11051761.

in collaboration with I. V. Anikin (JINR, Dubna), D. Yu. Ivanov (SIM, Novossibirsk), B. Pire (CPhT, Palaiseau), L. Szymanowski (SINS, Warsaw) and S. Wallon (LPT, Orsay)

	Impact factor for exclusive processes O	Collinear factorization	Ratios of Helicity Amplitudes	Conclusion
Introduc Experimenta	t ion I data of helicity amplitudes at h	igh energy		

- Helicity amplitudes $T_{\lambda_{\rho}\lambda_{\gamma}}:\gamma^*_{\lambda_{\gamma}}+p o
 ho_{\lambda_{\rho}}+p$
- H1 and ZEUS data for Helicity Amplitudes at HERA:

Kinematics

- High energy in the center of mass $30 \, GeV < W < 180 \, GeV$
- $\bullet~$ Photon Virtuality $2.5\,GeV^2 < Q^2 < 60\,GeV^2$
- $\bullet \ |t| < 1 \, GeV^2$

$$\Rightarrow s_{\gamma^* p} = W^2 >> Q^2 >> \Lambda^2_{QCD}$$

	Impact factor for exclusive processes O	Collinear factorization	Ratios of Helicity Amplitudes	Conclusion
Introduce A Theoretice	tion Il approach within k_T factorisation	on		

• Perturbative Regge Limit :

 $\label{eq:ReggeLimit} \begin{array}{l} {\rm Regge\ Limit}: s = W^2 >> Q^2, \left| t \right|, M^2_{\rm hadron} \\ {\rm Hard\ scale}: Q >> \Lambda_{QCD} \end{array}$

• k_T factorisation

 $\mathcal{M} \propto s^{\sum \sigma_i - N + 1}$

Amplitudes with gluons exchange in t-channel dominate at large $s \; (s = W^2)$

Born order: 2 t-channel gluons

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

	Impact factor for exclusive processes O	Collinear factorization	Ratios of Helicity Amplitudes	Conclusion
Introduce A Theoretico	ction al approach			

Impact factors
$$\Phi^{\gamma^* \to \rho}$$
 and $\Phi^{P \to P}$

• ${\Phi^{\gamma^*
ightarrow
ho}}$ Light-Cone Collinear factorisation

- Twist t : Impact factor behaves as $1/Q^{t-1}$
- $T_{00} \equiv \gamma_L^* \rightarrow \rho_L$ impact factor : Dominant term at twist 2
- $T_{11} \equiv \gamma_T^* \rightarrow \rho_T$ impact factor : Dominant term at twist 3 Recently computed at $t = t_{min} \approx 0$ Nucl. Phys. B **828** (2010) 1-68. by Anikin et al.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

 \bullet Phenomenological modele for $\Phi^{P \to P}$

Introduction

Impact factor for exclusive processes

Collinear factorization

Ratios of Helicity Amplitudes

Conclusion

Impact factor for exclusive processes k_T factorisation

• Light-cone vectors p_1 and p_2 : $(p_1^2 = p_2^2 = 0, 2 p_1 \cdot p_2 = s)$ Sudakov decomposition : $\Rightarrow k = \alpha p_1 + \beta p_2 + k_{\perp}$

$$\Phi^{\gamma^* \to \rho}(\underline{k}^2) = e^{\gamma^* \mu} \frac{1}{2s} \int \frac{d\beta}{2\pi} \mathcal{S}^{\gamma^* g \to \rho g}_{\mu}(\beta, \underline{k}^2),$$

Impact factor representation of the helicity amplitudes

$$T_{\lambda_{\rho}\lambda_{\gamma}} = is \int \frac{d^2 \underline{k}}{(2\pi)^2 (\underline{k}^2)^2} \Phi^{\gamma^*(\lambda_{\gamma}) \to \rho(\lambda_{\rho})}(\underline{k}) \Phi^{P \to P}(-\underline{k})$$

The impact factor can be written as

$$\Phi = \int d^4 l \cdots \operatorname{tr}[\boldsymbol{H}(\boldsymbol{l}\cdots) \quad S(\boldsymbol{l}\cdots)]$$

hard part

soft part

• At the 2-body level:

$$S_{q\bar{q}}(l) = \int d^4z \, e^{-il\cdot z} \langle \rho(p) | \psi(0) \, \bar{\psi}(z) | 0 \rangle,$$

・ロト ・ 一 ト ・ 日 ト ・ 日 ト 3

1 - Momentum factorization

• Use Sudakov decomposition in the form $(p = p_1, n = 2p_2/s \Rightarrow p \cdot n = 1)$ $l_\mu = y p_\mu + l_\mu^\perp + (l \cdot p) n_\mu, \quad y = l \cdot n$ scaling: 1 1/Q 1/Q²

• decompose H(k) around the *p* direction:

$$H(l) = H(yp) + \frac{\partial H(l)}{\partial l_{\alpha}}\Big|_{l=yp} l_{\alpha}^{\perp} + \dots$$

• The twist 3 term l_{α}^{\perp} turns into a transverse derivative of the soft term \Rightarrow one will deal with $\int d^4 z \ e^{-il \cdot z} \langle \rho(p) | \psi(0) \ i \ \stackrel{\longleftrightarrow}{\partial_{\alpha^{\perp}}} \overline{\psi}(z) | 0 \rangle$

Impact factor for exclusive processes	Collinear factorization	Cond
	000000	

Collinear factorization Light-Cone Collinear approach: 2 steps of factorization (2-body case)

Momentum and spinorial factorization

• Integration over *l* of the Soft part:

$$(\tilde{S}_{q\bar{q}},\partial_{\perp}\tilde{S}_{q\bar{q}})(\boldsymbol{y}) = \int \frac{d\lambda}{2\pi} e^{-i\lambda\boldsymbol{y}} \langle \rho(\boldsymbol{p}) | \psi(0) (1, i \stackrel{\longleftrightarrow}{\partial_{\perp}}) \bar{\psi}(\lambda n) | 0 \rangle$$

Axial gauge condition for gluons, *i.e.* $n \cdot A = 0 \Rightarrow$ Wilson line = 1 • $\int dy$ performs the longitudinal momentum factorization

$$\Phi = \int d\boldsymbol{y} \left\{ \operatorname{tr} \left[H_{q\bar{q}}(\boldsymbol{y}\,p)\,S_{q\bar{q}}(\boldsymbol{y}) \right] + \operatorname{tr} \left[\partial_{\perp} H_{q\bar{q}}(\boldsymbol{y}\,p)\,\partial_{\perp} S_{q\bar{q}}(\boldsymbol{y}) \right] \right\}$$

• Spinor (and color) factorisation:

$$\begin{split} \Phi &= \int d\boldsymbol{y} \left\{ \mathrm{tr} \left[H_{q\bar{q}}(\boldsymbol{y}\,p)\,\Gamma \right] \, S_{q\bar{q}}^{\Gamma}(\boldsymbol{y}) + \mathrm{tr} \left[\partial_{\perp} H_{q\bar{q}}(\boldsymbol{y}\,p)\,\Gamma \right] \, \partial_{\perp} S_{q\bar{q}}^{\Gamma}(\boldsymbol{y}) \right\} \\ & S_{q\bar{q}}^{\Gamma}(\boldsymbol{y}) \quad = \quad \int \frac{d\lambda}{2\pi} \, e^{-i\lambda\boldsymbol{y}} \langle \rho(\boldsymbol{p}) | \bar{\psi}(\lambda\boldsymbol{n})\,\Gamma\,\psi(\boldsymbol{0}) | \boldsymbol{0} \rangle \\ & \partial_{\perp} S_{q\bar{q}}^{\Gamma}(\boldsymbol{y}) \quad = \quad \int \frac{d\lambda}{2\pi} \, e^{-i\lambda\boldsymbol{y}} \langle \rho(\boldsymbol{p}) | \bar{\psi}(\lambda\boldsymbol{n})\,\Gamma\,i \,\,\overleftrightarrow{\partial_{\perp}}\,\psi(\boldsymbol{0}) | \boldsymbol{0} \rangle \end{split}$$

	Impact factor for exclusive processes O	Collinear factorization	Ratios of Helicity Amplitudes	Conclusion
Collinea	r factorization	torization (3-body car		

Factorization of 3-body contributions

- 3-body contributions start at genuine twist 3 ⇒ no need for Taylor expansion
- Factorisation goes in the same way as for 2-body case

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

	Impact factor for exclusive processes O	Collinear factorization	Ratios of Helicity Amplitudes	Conclusion
Collinear Parametrizatio	r factorization	trix elements (DAs)		

2-body and 3-body non-local correlators

- Lorentz and Parity analysis ⇒ relevant parametrisation of the non-local correlators
- vector correlator $\Gamma = \gamma_{\mu}$

$$\langle \rho(p) | \bar{\psi}(z) \gamma_{\mu} \psi(0) | 0 \rangle = \int dy \, e^{-i(yp) \cdot z} m_{\rho} \, f_{\rho} \, \left[\varphi_1(y) \, (e^* \cdot n) p_{\mu} + \varphi_3(y) \, e_{\mu}^{*T} \right]$$

• \Rightarrow 5 2-body DAs { $\varphi_1, \varphi_A, \varphi_3, \varphi_{1T}, \varphi_{AT}$ }

- \Rightarrow 2 3-body DAs { $B(y_1, y_2), D(y_1, y_2)$ }
- Relations between DAs : Equation of motion and n-independence \Rightarrow 3 independent DAs : { $\varphi_1, B(y_1, y_2), D(y_1, y_2)$ }

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

	Impact factor for exclusive processes	Collinear factorization		Conclusion
		0000000	0000	
Colline Wandzura-V	or factorization Vilczek and Genuine contributior	าร		

• Solution in the Wandzura-Wilczek Approximation (WW)

 $\boldsymbol{\varphi_1} \Rightarrow \{\varphi_3^{WW}(y), \varphi_A^{WW}(y), \varphi_{1T}^{WW}(y), \varphi_{AT}^{WW}(y)\}$

Genuine solutions

 $\{B(y_1, y_2), D(y_1, y_2)\} \Rightarrow \{\varphi_3^{gen}(y), \varphi_A^{gen}(y), \varphi_{1T}^{gen}(y), \varphi_{AT}^{gen}(y)\}$

• Evolution of the DAs P. Ball, V.M. Braun, Y. Koike, K. Tanaka
$$\begin{split} \varphi_1(y,\mu^2) &= 6y\bar{y}(1+a_2(\mu^2)\frac{3}{2}(5(y-\bar{y})^2-1)) \\ B(y_1,y_2;\mu^2) &= -5040y_1\bar{y_2}(y_1-\bar{y_2})(y_2-y_1) \\ D(y_1,y_2;\mu^2) &= -360y_1\bar{y_2}(y_2-y_1)(1+\frac{\omega_{\{1,0\}}^A(\mu^2)}{2}(7(y_2-y_1)-3)) \\ \text{with } \mu^2 \approx Q^2 \text{ the collinear factorisation scale} \end{split}$$

	Impact factor for exclusive processes O	Collinear factorization ○○○○○○●	Ratios of Helicity Amplitudes	Conclusion
Collinear DAs depende	factorisation μ^2			

nt	d		0	in	n	
	ju	u				

Collinear factorization

Ratios of Helicity Amplitudes A modele for the proton impact factor

•
$$T_{\lambda_{\rho}\lambda_{\gamma}}(Q,M) = is \int \frac{d^2\underline{k}}{(2\pi)^2} \frac{1}{(\underline{k}^2)^2} \Phi^{P \to P}(\underline{k}; M^2) \Phi^{\gamma^*(\lambda_{\gamma}) \to \rho(\lambda_{\rho})}(\underline{k}; Q^2)$$

 ${\ensuremath{\bullet}}$ Phenomenological Modele for $\Phi^{P \to P}$

$$\Phi^{P o P}(\underline{k}; M^2) \propto \left[\frac{1}{M^2} - \frac{1}{M^2 + \underline{k}^2}
ight]$$
 J.F Gunion, D.E Soper

• $\gamma_L^* \rightarrow \rho_L$ helicity amplitude:

$$\begin{split} T_{00} & \propto \quad \frac{is}{(2\pi)} \int_{\lambda^2}^{\infty} d\underline{k}^2 \, \frac{1}{(\underline{k}^2)^2} \left(\frac{1}{M^2} - \frac{1}{\underline{k}^2 + M^2} \right) \\ & \frac{1}{Q} \int_0^1 dy \, \varphi_1(y, \mu^2) \frac{\underline{k}^2}{\underline{k}^2 + y \bar{y} Q^2} \end{split}$$

• The WW contribution:

$$\begin{split} T_{11}^{WW} &\propto \quad \frac{is}{2\pi} \, \int_{\lambda^2}^{\infty} d(\underline{k}^2) \, \frac{1}{(\underline{k}^2)^2} \left(\frac{1}{M^2} - \frac{1}{\underline{k}^2 + M^2} \right) \\ & \left(\frac{(\epsilon_{\gamma}, \epsilon_{\rho}^*) m_{\rho}}{Q^2} \int_0^1 du \frac{\varphi_1(u; \mu^2)}{u} \int_0^u dy \frac{\underline{k}^2 (\underline{k}^2 + 2y \bar{y} Q^2)}{(\underline{k}^2 + y \bar{y} Q^2)^2} \right) \\ & + \square + d\overline{Q} \, \mathbb{E} \, \mathbb{E} \, \mathbb{E} \, \mathbb{E} \, \mathbb{E} \, \mathcal{O} \end{split}$$

• Genuine and Wandzura-Wilczek Contributions at M = 1 GeV T_{11}

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

< ロ > < 同 > < 回 > < 回 >

э

• Soft gluon effect : λ IR cut-off on k_T integrals

• T_{01}/T_{00} at $M = 1 \, GeV$, Dependence on $\mu^2 M = 1 GeV$: T_{01} T_{00} 0.20 0.15 AS Q^{2} 0.10 ----- $2 Q^2$ $----Q^2/2$ 0.05 $Q^2 = 8.6 \,{\rm GeV}^2$ M=1 GeV 0.0 0.5 1.0 1.5 2.0

◆ロト ◆御 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○の久(で)

- Good agreement with Experimental data
 - reasonable values of $M \approx M_p$ and $\lambda \approx 0 \, GeV$
 - weak sensitivity

- Perspectives :
 - Extend the kinematic to $t \neq t_{min}$
 - Passage in coordinate space : Link with the Dipole modele

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Implementation of Saturation effects

Impact factor for exclusive processes O	Collinear factorization	Ratios of Helicity Amplitudes	Conclusion

Comparison of r_{00}^{04} in the S-Channel Helicity Conservation approximation with ZEUS and H1 data:

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Impact factor for exclusive processes	Collinear factorization	Conclusion

Impact representation $\underline{k} = \text{Eucl.} \leftrightarrow k_{\perp} = \text{Mink.}$

$$\mathcal{M} = is \int \frac{d^2 \underline{k}}{(2\pi)^2 \underline{k}^2 (\underline{r} - \underline{k})^2} \Phi^{\gamma^*(q_1) \to \rho(p_1^{\rho})}(\underline{k}, \underline{r} - \underline{k}) \Phi^{\gamma^*(q_2) \to \rho(p_2^{\rho})}(-\underline{k}, -\underline{r} + \underline{k})$$

With $\gamma_{L,T}^*(q)g(k_1) \rightarrow \rho_{L,T} g(k_2)$ impact factor:

$$\Phi^{\gamma^* \to \rho}(\underline{k}^2) = e^{\gamma^* \mu} \frac{1}{2s} \int \frac{d\kappa}{2\pi} \operatorname{Disc}_{\kappa} \mathcal{S}_{\mu}^{\gamma^* g \to \rho g}(\underline{k}^2),$$

with $\kappa = (q+k)^2 = \beta \, s - Q^2 - \underline{k}^2$

Impact factor for exclusive processes	Collinear factorization	Conclusion

3-body non-local correlators

genuine twist 3

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

• vector correlator

 $\langle \rho(p)|\bar{\psi}(z_1)\gamma_{\mu}gA_{\alpha}^T(z_2)\psi(0)|0\rangle \stackrel{\mathcal{F}_2}{=} m_{\rho} f_3^V B(y_1,y_2) p_{\mu} e_{\alpha}^{*T},$

axial correlator

$$\langle \rho(p) | \bar{\psi}(z_1) \gamma_5 \gamma_{\mu} g A^T_{\alpha}(z_2) \psi(0) | 0 \rangle \stackrel{\mathcal{F}_2}{=} m_{\rho} f_3^A \, i \, D(y_1, y_2) \, p_{\mu} \, \varepsilon_{\alpha \lambda \beta \delta} \, e_{\lambda}^{*T} \, p_{\beta} \, n_{\delta},$$

where y_1 , \bar{y}_2 , $y_2 - y_1$ = quark, antiquark, gluon momentum fraction

and
$$\stackrel{\mathcal{F}_2}{=} \int_{0}^{1} dy_1 \int_{0}^{1} dy_2 \exp[iy_1 p \cdot z_1 + i(y_2 - y_1) p \cdot z_2]$$
, with $z_{1,2} = \lambda n$
 $\Rightarrow 2$ 3-body DAs

Impact factor for exclusive processes	Collinear factorization	Conclusion

Equations of motion

• Dirac equation leads to

twist 2 kinematical twist 3 (WW) genuine twist 3 genuine + kinematical twist 3

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

$$\langle i(\vec{D} \ (0)\psi(0))_{\alpha}\,\bar{\psi}_{\beta}(z)\rangle = 0 \qquad (i\,\vec{D}_{\mu} = i\,\vec{\partial}_{\mu} + g\,A_{\mu})$$

 \Rightarrow 2 Equations of motion:

$$\begin{split} \bar{y}_{1} \,\varphi_{3}(y_{1}) &+ \bar{y}_{1} \,\varphi_{A}(y_{1}) + \varphi_{1}^{T}(y_{1}) + \varphi_{A}^{T}(y_{1}) \\ &+ \int dy_{2} \left[\zeta_{3}^{V} \,B(y_{1}, \,y_{2}) + \zeta_{3}^{A} \,D(y_{1}, \,y_{2}) \right] = 0 \qquad \text{and} \ (\bar{y}_{1} \leftrightarrow y_{1}) \end{split}$$

A minimal set of DAs

independence of the full amplitude with respect to the light-cone vector n

vector correlators

$$\frac{d}{dy_1}\varphi_1^T(y_1) = -\varphi_1(y_1) + \varphi_3(y_1)$$
$$-\zeta_3^V \int_0^1 \frac{dy_2}{y_2 - y_1} \left(B(y_1, y_2) + B(y_2, y_1) \right)$$

axial correlators

$$\frac{d}{dy_1}\varphi_A^T(y_1) = \varphi_A(y_1) - \zeta_3^A \int_0^1 \frac{dy_2}{y_2 - y_1} \left(D(y_1, y_2) + D(y_2, y_1) \right)$$

 $\begin{array}{ll} \phi_1(y) & \leftarrow 2 \text{ body twist } 2 \text{ correlator} \\ B(y_1, y_2) & \leftarrow 3 \text{ body genuine twist } 3 \text{ vector correlator} \\ D(y_1, y_2) & \leftarrow 3 \text{ body genuine twist } 3 \text{ axial correlator} \end{array}$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲ 團 - 釣ぬ⊙

Impact factor for exclusive processes	Collinear factorization	Conclusion

$\gamma_L^* \to \rho_L$ impact factor

$$\Phi^{\gamma_L^* \to \rho_L}(\underline{k}^2) = \frac{2 e g^2 f_{\rho}}{Q} \frac{\delta^{ab}}{2 N_c} \int dy \,\varphi_1(y) \frac{\underline{k}^2}{y \,\overline{y} \,Q^2 + k^2}$$

pure twist 2 scaling (from ρ -factorization point of view)

I.F. Ginzburg, S.L. Panfil, V.G. Serbo (1987)

Computation and results Results: $\gamma_T^* \rightarrow \rho_T$ impact factor

 $\gamma_T^* \rightarrow \rho_T$ impact factor:

$$\Phi^{\gamma_T^* \to \rho_T}(\underline{k}^2) = \Phi_{n.f.}^{\gamma_T^* \to \rho_T}(\underline{k}^2) T_{n.f.} + \Phi_{f.}^{\gamma_T^* \to \rho_T}(\underline{k}^2) T_{f.}$$

$$T_{n.f.} = -(e_{\gamma} \cdot e^*) \Rightarrow \pm \to \pm \quad \text{and} \quad T_{f.} = \frac{(e_{\gamma} \cdot k)(e^* \cdot k)}{\underline{k}^2} + \frac{(e_{\gamma} \cdot e^*)}{2} \Rightarrow \pm \to \mp$$

$$\begin{split} \Phi_{n,f.}^{\gamma_T^* \to \rho_T}(\underline{k}^2) \\ &= -\frac{e\,g^2\,m_\rho f_\rho}{2\sqrt{2}\,Q^2} \frac{\delta^{ab}}{2\,N_c} \left\{ -2\int dy_1 \frac{\left(\underline{k}^2 + 2\,Q^2\,y_1\,(1-y_1)\right)\underline{k}^2}{y_1\,(1-y_1)\,(\underline{k}^2 + Q^2\,y_1\,(1-y_1))^2} \left[(2y_1 - 1)\,\varphi_1^T\,(y_1) + \varphi_A^T(y_1) \right] \right. \\ &+ 2\int dy_1\,dy_2 \left[\zeta_3^V \,B\,(y_1,y_2) - \zeta_3^A\,D\,(y_1,y_2) \right] \frac{y_1\,(1-y_1)\,\underline{k}^2}{\underline{k}^2 + Q^2\,y_1\,(1-y_1)} \left[\frac{(2-N_c/C_F)Q^2}{\underline{k}^2\,(y_1-y_2+1) + Q^2\,y_1\,(1-y_2)} \right. \\ &\left. - \frac{N_c}{C_F} \frac{Q^2}{y_2\underline{k}^2 + Q^2\,y_1\,(y_2-y_1)} \right] - 2\int dy_1\,dy_2 \left[\zeta_3^V \,B\,(y_1,y_2) + \zeta_3^A\,D\,(y_1,y_2) \right] \left[\frac{2+N_c/C_F}{1-y_1} \right. \\ &\left. + \frac{y_1\,Q^2}{\underline{k}^2 + Q^2\,y_1\,(1-y_1)} \left(\frac{(2-N_c/C_F)\,y_1\,\underline{k}^2}{\underline{k}^2\,(y_1-y_2+1) + Q^2\,y_1\,(1-y_2)} - 2 \right) \right. \\ &\left. + \frac{N_c}{C_F} \frac{(y_1 - y_2)\,(1-y_2)}{1-y_1} \frac{Q^2}{\underline{k}^2\,(1-y_1) + Q^2\,(y_2-y_1)\,(1-y_2)} \right] \right\} \end{split}$$

2 - Spinorial (and color) factorization

 Use Fierz decomposition of the Dirac (and color) matrices $\psi(0) \, \overline{\psi}(z)$ and $\psi(0) \, i \stackrel{\leftrightarrow}{\partial_{\perp}} \overline{\psi}(z)$: $H_{q\bar{q}}$ + $(\tilde{S}_{q\bar{q}})$ ΓΓ $\Phi = \int dy \left\{ \operatorname{tr} \left[H_{q\bar{q}}(y\,p)\,\Gamma \right] \, S_{q\bar{q}}^{\Gamma}(y) + \operatorname{tr} \left[\partial_{\perp} H_{q\bar{q}}(y\,p)\,\Gamma \right] \, \partial_{\perp} S_{q\bar{q}}^{\Gamma}(y) \right\}$ $S_{q\bar{q}}^{\Gamma}(y) = \int \frac{d\lambda}{2\pi} e^{-i\lambda y} \langle \rho(p) | \bar{\psi}(\lambda n) \, \Gamma \, \psi(0) | 0 \rangle$ $\partial_{\perp} S^{\Gamma}_{q\bar{q}}(y) = \int \frac{d\lambda}{2\pi} e^{-i\lambda y} \langle \rho(p) | \bar{\psi}(\lambda n) \, \Gamma \, i \stackrel{\longleftrightarrow}{\partial_{\perp}} \psi(0) | 0 \rangle$

• Axial gauge condition for gluons, *i.e.* $n \cdot A = 0 \Rightarrow$ Wilson line = 1

◆□ → ◆□ → ◆三 → ◆□ → ◆○ ◆