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Skyrme models

@ Low energy effective theory of hadrons - currently unknown
@ Degrees of freedom of QCD:

@ high energy: quarks and gluons

@ low energy: hadrons
) One pr0p05a|2 Skyrme mOdeI Skyrme (61), Adkins, Nappi, Witten (83)
primary fields are mesons
baryons (hadrons and nuclei) are realized as solitons
realizes unbroken symmetries
simplest case (two flavors): target space = SU(2) (isospin)
matrix U
topological charge = baryon number
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Original Skyrme model:
@ Skyrme field U:

x* 5 U(Xx): R3xR—SU(2) |

@ Lagrangian:

L=L+Ls+Lg ’
@ Sigma model term:

f2
Lo=—7T (UT9,U UTorv) |




@ quartic Skyrme term:

Ly = > Tr ([U9,U, U9, UJ?)

- 32e?

Ly, Ly symmetric under SU(2) x SU(2), U — VUW
@ Potential term:

Lo(= -2V (U,U")) = —p2V(tru) ’

Symmetric under diagonal SU(2), U — VUV f




Generalized Skyrme models:

QCD =- Chiral effective meson/baryon theory e atn — o)
~U, derivative expansion

Lsk + higher order terms

4 (?)

Integrable (BPS) soliton model physical interpretation

Need for BPS soliton model

@ mathematical reasons
@ solvable model, exact solutions
@ analytical calculations: impact of values of parameters,
testing potentials
@ approximate methods for non-integrable models
@ physical reasons

@ too big binding energy
@ shell or crystal like densities



@ Simplest proposals

@ L, + Lo - excluded by the Derrick
@ L4 + Lo -excluded by dynamics: no topological solitons

Among higher order terms is the following sextic term

A2 oo 2
Lo = 55 |Tr (¢7U'9,U U9, U u'9,u)|

@ Quadratic in time derivatives = standard hamiltonian
formulation




@ Square of the topological (baryon) current

Le = \7*B,B*

where

1
B pvpo | gt T T
B 247TzTr (e u'o,uuU'o,uU’o,U)

is the topological (baryon) current

@ Phenomenologically induced by a massive vector meson
COUp|ed tO the baryon denSI'[y Adkins, Nappi (84), Sutcliffe (09)

@ Improves phenomenological results of Skyrme model




BPS Skyrme model:

Propose following limit of generalized Skyrme models

Los = Le + Lo

@ oo many symmetries

@ Integrable: oo many conservation laws
@ BPS (Bogomolny) bound
@ oo many exact solutions saturating the BPS bound




Parametrization for U

U=e" —cos¢+isinéi-¢ n2=1 J

and stereographic projection

~ 1 _ _ 2
n:m<u+u,—|(u—u),1—|u|) J

NMsinte
= Los = _W (et qupUa)z - sz(g)




Symmetries

@ Poincare Symmetries
@ oo many target space diffeomorphisms

@ Lg is square of pullback of the volume form in target space
SU@2) ~ S3,

2
av = o< _dédudi J

(1 +[uf?)

= has all volume-preserving diffeomorphisms on target
space S® as symmetries.

o Lo = —u2V(¢) respects some of them: the ones that act
nontrivially only on u, U = area-preserving diffeos on target
space S? spanned by u, but may depend on ¢ as a
parameter:

£—¢&, u—10(u,G,¢), (1+]0?)2dedida = (1+ |uf?)~2dedada |



@ Volume-preserving base space diffeos.
Energy functional for static fields:

A2sin* ¢
3 mnl 2
/d ( 1+‘ ‘ ) ( |£mUnU|) + u V>

Both d3x and ¢%9,9,0 invariant under volume preserving
diffeos on base space R3. NOT a Noether symmetry.




Integrability - oo many conservation laws
Target space symmetries = conserved currents

Jé = GgK' — GyK*, G:G(U,D,f)
1 8(60‘”p"§,,upl]a)2
(1+ |ul?)? Uy,

) Cal—

9JE = Gggl,K* + GguuKH — Gygl, KF — Guuu,, KF
+Gd, KH — Gud, KF + Gge& KM — Gue€ KM =0

where u,K* =0, £,K* =0, U,K* = u, K+

and 9,K* =0 ... field eq. foru



Bogomolny (BPS) bound

@ Derrick scaling = Eg = Eq ... compatible with BPS

@ BPS bound
B AZsin* ¢ mnl 2
E = /d A+ 0Py ( |§munu|) + pV
2
_ /d3 (1’\:” |£ m”'igmuna.im/v>
2p)sin? £V
- /dB ,u1+| |§2 mnllfmUnU|
sin?eVV

> 2)\,u77 /d3 1+ |u|2 emn fmUnUI]
= 2\umCy|B|

o



@ forV(¢) — 1... standard expression for top. charge (and

Cl — l)
3 SII’] 5 mnI

equivalently. integral of pull-back of volume form on target
space S°

@ Remains true with /V (§) present, in terms of the new
target space coordinate £(¢) with

sin® 6V (§)d¢ = Cysin*£d€ J

C; and second integration constant C, ... necessary to
implement (¢ =0)=0,é(¢6=7) =7



Energy density profiles

@ BPS solution = & =& = %5 ... density profile detemined
by potential

@ One-vacuum potentials: V(r =o0) =0,V (r =0) #0 =
density profile of the ball type

@ Two-vacua potentials: V(r =) =0,V(r=0)=0=
density profile of the shell type

@ More complicated vacuum manifolds = more complicated
profiles (may be determined by analytical arguments)

@ In standard Skyrme model: similar behaviour, but results
from C0mp|lcated numel’ICS Houghton, Manton, Sutcliffe (98), Atiyah, Manton (89)

Battye, Sutcliffe (97), (01), (02), (05), (06), (09)



Exact solutions

@ non-trivial configuration: u covers full C, and ¢ € [0, «]
@ symmetric (hedgehog) ansatz

E=£(r), u(0,9)=g(0)e" |
compatible with field eq.
@ Equation for g(0)

990 .
% <(1 + g2)2sin 9) =0 ’

with solution

9
g(t9)_tanE ’

for all n



@ Equation for £

212 ain? i 2
n<\<sin §ar (smrzggr) —M2V§:O J

2r2

or with

Z= \/Eur?’
3in|A

= sin’¢ o, (sinzg 52) —V;=0 I

first integral

%sin“ggzz =V ’




Compact and non-compact skyrmions

@ Reduced energy functional (example V = (1 — cos¢)?)

E = C/dz <% sin*e€2 + (1 —cosf)a) J

with y = /T —cos¢&, & = 3

E= C/dz 2(2—x2)x4xi+xza)

= C/dz( )<D2—|—<D3>

for a < 3 ... sublinear force law = compactons



Example: Skyrme potential

V = }Tr(l -U) —» V() =1-cos¢

@ Solution
€:{ 2arccos {/3% z € |0,3]

4

0 z >4

CompaCton Rosenau et. al. (93), Arodz (02)
@ Energy
64+/2n
E = Aln

75 HAIN| ’

linear in |B| = |n|
e



@ energy density

Wik

£ = 8V2uA1—|n|"3f%) for 0<TF<|n|
= 0 for r>|n|3

where

Wl
=
——

r= <L> r=—
42 Ro
rescaled radius
@ baryon density

B = sign()4(1—|n|§ )

NI

for O

:q
IN
it}
IN
=3
“wie

= 0 for F>\n|§
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Figure: Normalized energy density as a function of the rescaled
radius T, for topological charge n=1. For |n| > 1, the height of the
density remains the same, whereas the radius grows like |n|3
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Figure: Normalized topological charge density as a function of the
rescaled radius , for topological charge n=1. For |n| > 1, the height
of the density remains the same, whereas the radius grows like |n|3



Generallzed Skyrme pOtentlals Zakrzewski (04), Karliner et. al. (08),(09)

V:(%Tr(l—u))a — V() = (1—cos&)?

@ Solutions:

@ Compactons fora < 3
@ exponentially localized solution fora = 3
@ power-like localized solutions for a > 3




Two-vacua potential - example:  cus o

V =1-cos’¢ |

@ Solution
¢ = { arccosv2z —1 z € [0,\/5]

o z2>42

compacton; E « |B|
@ Energy density

(2) ~V22(1-V22) |
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Figure: Two-vacua potential - shell structure: normalized energy
density as a function of the rescaled radius , for topological charge
n=1. For |n| > 1, the height of the maximum remains the same,

whereas the radius grows like |n|3



Sutcliffe’s BPS Skyrme model

@ original Skyrme model coupled with an infinite tower of the
vector mesons

)

dimensional reduction of 5dim YM
@ nice realization of the vector meson domination
@ no potential term




Some phenomenology of nuclei

for standard Skyrme potential

V =1-cos¢ ]




A) Classical solitons

@ Linear mass - baryon number relation:
@ BPS bound = E = 64/2u\|B|/15 = Eo|B|
@ well-known relation for nuclei

B EBPS Evec Skyrme ESkyrme Eexperiment
1 931.75 996 1024 939
2 1863.5 1999 1937 1876
3 | 2795.25 2913 2836 2809
4 3727 3727 3727 3727
6 5590.5 - 5520 5601
8 7454 - 7327 7455
10 | 9317.5 - 9113 9327

Table: Energies of the solutions in the BPS Skyrme model,
compared with masses for the vector-Skyrme and massive
Skyrme models, as well as with the experimental values.
Numbers in MeV



@ No binding energy

@ BPS solutions = zero binding energy
@ binding energies for physical nuclei small < 1%
@ in standard Skyrme model significantly bigger

@ No forces between solitons

@ BPS and compactons = no forces
@ physical nuclei: very short range interaction

@ radii of nuclei

° Compacton definite radius
= (2V2)B|/u)/3) = Ro{/[B]

° reproduces phenomenological relation R ~ 1.25/|B|fm




@ Incompressible fluid

@ Static energy functional: volume-preserving diffeos (VPDs)

@ Symmetries of an incompressible fluid where surface
energy is neglected

@ Physical nuclei do not have this symmetry: have definite
shape, deformations cost energy

@ But: volume-preserving deformations cost less energy . ..
liquid drop model of nuclei

= classical model reproduces some features of the nuclear
liquid drop model (mass prop to volume, strictly finite size,
VPDs)

@ Clearly too naive (no pions = no interactions, no pion
cloud; no quantum corrections)




B) Soliton quantization

work in progress; top. charge Q = 1 (nucleon)
@ Collective coordinate quantization: Quantize symmetry

transformations which are NOT symmetries of the soliton
(=lightest d.o.f.)

@ Example: rotations (equivalent to isospin = diagonal target
space SU(2), because SO(3)px SU(2)disg IS symmetry of
hedgehog

= Rigid rotor quantization (=undeformed rotating soliton,
guantized angular momentum)

@ Well-known procedure




e E.g. forisospin: Insert U(t) = A(t)UpAf(t) into action (U =
Q = 1 soliton (hedgehog)

@ Promote the three time-dependent parameters in A(t) to
guantum mechanical variables

@ Result:

_ 1_'2_ l_'2
E—Eo+2|\] —E0+2|S J

J... isospin, S ...spin, Eg ... soliton energy (mass)
| ... moment of inertia of the soliton (rigid rotor)

I:‘%?T/drsin“gg,2 J

o Classical result: E = Eg + £L?
L ... angular momentum




@ Concretely for Q = 1 soliton (compacton)

28,/2 s 42
| = \FWAN AV g 28 \/—W)\u
15.7 M\ 4 15

1
E=Eo+ zhzs(s+1) J

@ Now fit to the proton mass (spin's = 3, M, = 938.9 MeV)

and A resonance mass (s = % Ma = 1232 MeV) and use

h =197.3 MeV fm then

A\ = 45.70MeV A_ 0.1523fm?3 J
u

may now be used to "predict” other nucleon quantities



@ Charge radii
@ Isoscalar and isovector charge densities (per unit length)

2 . 14 .
po==sin’ce&, pr= T%)\Zsm“fff J
™

@ Corresponding proton (neutron) electric charge densities
are

Pp(n) = %(Po +(=)p1) J

@ Resulting isoscalar and isovector mean square electric radii

AN 3
<r? >e,oz/drr2p0 = <—>
I

2
10 (A3
<r? >e,15/drr2p1 = —<—>
9 \u



@ Isoscalar magnetic mean square radius

[drrtsin®es 5 (A)% J

<r? >mo= "5 — 5
I

[drr2sin? ¢, 2




@ Numerical values

radius BPS Skyrme | massive Skyrme | experiment
compacton 0.755 - -
fe.o 0.534 0.68 0.72
fe.1 0.563 1.04 0.88
fm,0 0.597 0.95 0.81

Table: Charge radii. Numbers in fm

= Radii too small; not so surprising (no pion cloud)
@ should be better for ratios of radii

ratios | BPS Skyrme | massive Skyrme | experiment
le1/feo 1.054 1.529 1.222
mo/le,0 1.118 1.397 1.125
le1/fm,0 0.943 1.095 1.086

Table: Charge ratios. Numbers in fm



@ Magnetic moments

1 |
Hp(n) = 2Mn <E <r? >e.0 ‘1‘(_)@) |

@ Numerical values

BPS Skyrme | massive Skyrme | experiment
p 1.827 1.97 2.79
Ln -1.379 -1.24 -1.91
|tp/ e 1.325 1.59 1.46

Table: Magnetic moments




Conclusions

@ Interesting field theory: oo symmetries, integrable, BPS
bound, oo exact solutions
@ limit of generalized Skyrme models
@ integrable
@ nontrivial "m, — oo" or liquid droplet limit
@ Phenomenology of nuclei
@ reproduces qualitatively some properties of nuclei =
reasonable approximation under some conditions
@ essentially topological, no pion propagation, no two-body
interaction = in some circumstances collective
contributions seem to be the most important ones
@ Quantization: some first results; much more detailed study
necessary



Future

@ more applications

@ topological d.o.f. dominate
@ perfect (incompressible) fluid

@ mesons

@ nonlinear perturbations
@ integrability = stable non-topological (oscillating) solutions

@ derivation of the BPS Skyrme model form QCD




