BPS Skyrme models

Andrzej Wereszczyński

Jagiellonian University

Cracow School of Theoretical Physics, Zakopane

イロト イヨト イヨト イ

Contents

- Effective QCD Skyrme models
- BPS Skyrme models
- Symmetries, Integrability, Bogomolny bound

く 伺 と く ヨ と く ヨ と …

- Exact solutions
- Some phenomenology of nuclei
- Conclusions

Skyrme models

- Low energy effective theory of hadrons currently unknown
- Degrees of freedom of QCD:
 - high energy: quarks and gluons
 - Iow energy: hadrons
- One proposal: Skyrme model Skyrme (61), Adkins, Nappi, Witten (83)
 - primary fields are mesons
 - baryons (hadrons and nuclei) are realized as solitons
 - realizes unbroken symmetries
 - simplest case (two flavors): target space = SU(2) (isospin) matrix U

▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ -

topological charge = baryon number

Original Skyrme model:

• Skyrme field *U*:

$$x^{\mu}
ightarrow U(x): \mathbb{R}^3 imes \mathbb{R}
ightarrow SU(2)$$

• Lagrangian:

$$L = L_2 + L_4 + L_0$$

• Sigma model term:

$$L_2=-rac{f_\pi^2}{4} \; {
m Tr} \; (U^\dagger \partial_\mu U \; U^\dagger \partial^\mu U)$$

pion kinetic term

• quartic Skyrme term:

$$L_4 = -rac{1}{32e^2} \operatorname{Tr} \left([U^\dagger \partial_\mu U, U^\dagger \partial_
u U]^2
ight)$$

necessary to circumvent the Derrick argument L_2 , L_4 symmetric under SU(2) × SU(2), $U \rightarrow VUW^{\dagger}$

Potential term:

$$L_0(=-\mu^2 V(U,U^{\dagger})) = -\mu^2 V(\operatorname{tr} U)$$

イロト イ理ト イヨト イヨト

Symmetric under diagonal SU(2), $U \rightarrow VUV^{\dagger}$

Generalized Skyrme models:

 $QCD \Rightarrow$ Chiral effective meson/baryon theory (true at $N \rightarrow \infty$) t'Hooft (74), Witten (79)

↓ derivative expansion Simic (85)

 \mathcal{L}_{sk} + higher order terms Jackson et. al. (85), Oka (87), Li, Yan (92)... \Downarrow (?) Integrable (BPS) soliton model physical interpretation

Need for BPS soliton model

- mathematical reasons
 - solvable model, exact solutions
 - analytical calculations: impact of values of parameters, testing potentials

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

- approximate methods for non-integrable models
- physical reasons
 - too big binding energy
 - shell or crystal like densities

Simplest proposals

- $L_2 + L_0$ excluded by the Derrick
- $L_4 + L_0$ -excluded by dynamics: no topological solitons

Among higher order terms is the following sextic term

$$L_6 = \frac{\lambda^2}{24^2} \, \left[\text{Tr} \left(\epsilon^{\mu\nu\rho\sigma} U^{\dagger} \partial_{\mu} U \, U^{\dagger} \partial_{\nu} U \, U^{\dagger} \partial_{\rho} U \right) \right]^2$$

 Quadratic in time derivatives ⇒ standard hamiltonian formulation Square of the topological (baryon) current

$$L_6 = \lambda^2 \pi^4 \mathbb{B}_{\mu} \mathbb{B}^{\mu}$$

where

$$\mathbb{B}^{\mu} = \frac{1}{24\pi^2} \text{Tr} \left(\epsilon^{\mu\nu\rho\sigma} U^{\dagger} \partial_{\nu} U \ U^{\dagger} \partial_{\rho} U \ U^{\dagger} \partial_{\sigma} U \right)$$

is the topological (baryon) current

- Phenomenologically induced by a massive vector meson coupled to the baryon density. Adkins, Nappi (84), Sutcliffe (09)
- Improves phenomenological results of Skyrme model

BPS Skyrme model:

Propose following limit of generalized Skyrme models

$$L_{06} = L_6 + L_0$$

- ∞ many symmetries
- Integrable: ∞ many conservation laws
- BPS (Bogomolny) bound
- ullet ∞ many exact solutions saturating the BPS bound

Parametrization for U

$$U = e^{i\xi\vec{n}\cdot\vec{\sigma}} = \cos\xi + i\sin\xi\vec{n}\cdot\vec{\sigma} \qquad \vec{n}^2 = 1$$

and stereographic projection

$$\vec{n} = rac{1}{1+|u|^2} \left(u + ar{u}, -i(u-ar{u}), 1-|u|^2
ight)$$

$$\Rightarrow \quad L_{06} = -\frac{\lambda^2 \sin^4 \xi}{(1+|u|^2)^4} \left(\epsilon^{\mu\nu\rho\sigma} \xi_\nu u_\rho \bar{u}_\sigma\right)^2 - \mu^2 V(\xi)$$

▲ロト★輝ト★直ト★直ト 直 のへの

Symmetries

- Poincare Symmetries
- ullet ∞ many target space diffeomorphisms
 - L_6 is square of pullback of the volume form in target space SU(2) $\sim S^3$,

$$dV = -irac{\sin^2\xi}{(1+|u|^2)^2}d\xi dudar{u}$$

 \Rightarrow has all volume-preserving diffeomorphisms on target space S^3 as symmetries.

 L₀ = −μ²V(ξ) respects some of them: the ones that act nontrivially only on u, ū ⇒ area-preserving diffeos on target space S² spanned by u, but may depend on ξ as a parameter:

$$\xi \to \xi$$
, $u \to \tilde{u}(u, \bar{u}, \xi)$, $(1 + |\tilde{u}|^2)^{-2} d\xi d\tilde{u} d\bar{\tilde{u}} = (1 + |u|^2)^{-2} d\xi d\tilde{u} d\bar{u}$

 Volume-preserving base space diffeos. Energy functional for static fields:

$$E = \int d^3x \left(\frac{\lambda^2 \sin^4 \xi}{(1+|u|^2)^4} (\epsilon^{mnl} i\xi_m u_n \bar{u}_l)^2 + \mu^2 V \right)$$

Both d^3x and $\epsilon^{ijk}\partial_i\partial_j\partial_k$ invariant under volume preserving diffeos on base space \mathbb{R}^3 . NOT a Noether symmetry.

Integrability - ∞ many conservation laws

Target space symmetries \Rightarrow conserved currents

$$egin{array}{rcl} J^{\mu}_{G}&=&G_{ar{u}}ar{\mathcal{K}}^{\mu}-G_{u}\mathcal{K}^{\mu}, &G=G(u,ar{u},\xi) \ \mathcal{K}^{\mu}&\equiv&rac{1}{(1+|u|^{2})^{2}}rac{\partial(\epsilon^{lpha
u
ho\sigma}\xi_{
u}u_{
ho}ar{u}_{\sigma})^{2}}{\partialar{u}_{\mu}} \end{array}$$

$$\begin{array}{lll} \partial_{\mu}J_{G}^{\mu} & = & G_{\bar{u}\bar{u}}\bar{u}_{\mu}\bar{\mathcal{K}}^{\mu}+G_{\bar{u}u}u_{\mu}\bar{\mathcal{K}}^{\mu}-G_{u\bar{u}}\bar{u}_{\mu}\mathcal{K}^{\mu}-G_{uu}u_{\mu}\mathcal{K}^{\mu} \\ & +G_{\bar{u}}\partial_{\mu}\bar{\mathcal{K}}^{\mu}-G_{u}\partial_{\mu}\mathcal{K}^{\mu}+G_{\bar{u}\xi}\xi_{\mu}\bar{\mathcal{K}}^{\mu}-G_{u\xi}\xi_{\mu}\mathcal{K}^{\mu}=0 \end{array}$$

・ロン・雪と・雪と・ ヨン・

where $u_{\mu}\mathcal{K}^{\mu} \equiv 0$, $\xi_{\mu}\mathcal{K}^{\mu} \equiv 0$, $\bar{u}_{\mu}\mathcal{K}^{\mu} \equiv u_{\mu}\bar{\mathcal{K}}^{\mu}$ and $\partial_{\mu}\mathcal{K}^{\mu} = 0$... field eq. for u

Bogomolny (BPS) bound

- Derrick scaling $\Rightarrow E_6 = E_0 \dots$ compatible with BPS
- BPS bound B... top. charge (baryon number)

$$E = \int d^3x \left(\frac{\lambda^2 \sin^4 \xi}{(1+|u|^2)^4} (\epsilon^{mnl} i\xi_m u_n \bar{u}_l)^2 + \mu^2 V \right)$$

$$= \int d^3x \left(\frac{\lambda \sin^2 \xi}{(1+|u|^2)^2} \epsilon^{mnl} i\xi_m u_n \bar{u}_l \pm \mu \sqrt{V} \right)^2$$

$$\mp \int d^3x \frac{2\mu \lambda \sin^2 \xi \sqrt{V}}{(1+|u|^2)^2} \epsilon^{mnl} i\xi_m u_n \bar{u}_l$$

$$\geq \pm (2\lambda\mu\pi^2) \left[\frac{-i}{\pi^2} \int d^3x \frac{\sin^2 \xi \sqrt{V}}{(1+|u|^2)^2} \epsilon^{mnl} \xi_m u_n \bar{u}_l \right]$$

$$\equiv 2\lambda\mu\pi^2 C_1 |B|$$

◆ロ▶ ◆昼▶ ◆臣▶ ◆臣▶ ○臣 ○の≪⊙

• for $V(\xi) \rightarrow 1$... standard expression for top. charge (and $C_1 \rightarrow 1$)

$$B \equiv \frac{-i}{\pi^2} \int d^3x \frac{\sin^2 \xi}{(1+|u|^2)^2} \epsilon^{mnl} \xi_m u_n \bar{u}_l$$

equivalently: integral of pull-back of volume form on target space S^3

• Remains true with $\sqrt{V(\xi)}$ present, in terms of the new target space coordinate $\bar{\xi}(\xi)$ with

$$\sin^2\xi\sqrt{V(\xi)}\,d\xi=C_1\sin^2\bar\xi\,d\bar\xi$$

 C_1 and second integration constant C_2 ... necessary to implement $\bar{\xi}(\xi = 0) = 0$, $\bar{\xi}(\xi = \pi) = \pi$ e.g. $V = 1 - \cos \xi \Rightarrow C_1 = \frac{32\sqrt{2}}{15\pi}$

Energy density profiles

- BPS solution $\Rightarrow \mathcal{E}_6 = \mathcal{E}_0 = \frac{1}{2}\mathcal{E} \dots$ density profile detemined by potential
- One-vacuum potentials: V(r = ∞) = 0, V(r = 0) ≠ 0 ⇒ density profile of the ball type
- Two-vacua potentials: V(r = ∞) = 0, V(r = 0) = 0 ⇒ density profile of the shell type
- More complicated vacuum manifolds ⇒ more complicated profiles (may be determined by analytical arguments)
- In standard Skyrme model: similar behaviour, but results from complicated numerics Houghton, Manton, Sutcliffe (98), Atiyah, Manton (89),

Battye, Sutcliffe (97), (01), (02), (05), (06), (09)

Exact solutions

- non-trivial configuration: *u* covers full \mathbb{C} , and $\xi \in [0, \pi]$
- symmetric (hedgehog) ansatz

$$\xi = \xi(\mathbf{r}), \quad \mathbf{u}(heta, \phi) = \mathbf{g}(heta) \mathbf{e}^{\mathbf{i} \mathbf{n} \phi}$$

compatible with field eq.

• Equation for $g(\theta)$

$$\partial_{ heta}\left(rac{gg_{ heta}}{(1+g^2)^2\sin heta}
ight)=0$$

with solution

$$g(heta) = anrac{ heta}{2}$$

for all n

• Equation for ξ

$$\frac{n^2\lambda^2\sin^2\xi}{2r^2}\partial_r\left(\frac{\sin^2\xi\,\xi_r}{r^2}\right)-\mu^2V_{\xi}=0$$

or with

$$z = \frac{\sqrt{2}\mu}{3|n|\lambda}r^3$$

$$\Rightarrow \quad \sin^2 \xi \ \partial_z \left(\sin^2 \xi \ \xi_z \right) - V_{\xi} = 0$$

first integral

$$\frac{1}{2}\sin^4\xi\;\xi_z^2=V$$

▲ロト ▲圖ト ▲国ト ▲国ト

æ

dim. reduced version of BPS

Compact and non-compact skyrmions

• Reduced energy functional (example $V = (1 - \cos \xi)^a$)

$$E=C\int dz\left(rac{1}{2}\sin^4\xi\xi_z^2+(1-\cos\xi)^a
ight)$$

where $C = 2\sqrt{2}\lambda\mu|n|$ with $\chi = \sqrt{1 - \cos \xi}$, $\Phi = \chi^3$

$$E = C \int dz \left(2(2-\chi^2)\chi^4\chi_z^2 + \chi^{2a} \right)$$
$$= C \int dz \left(\frac{2}{9}(2-\Phi^{\frac{2}{3}})\Phi_z^2 + \Phi^{\frac{2a}{3}} \right)$$

for $a < 3 \dots$ sublinear force law \Rightarrow compactons

Example: Skyrme potential

$$V = \frac{1}{2}$$
Tr $(1 - U) \rightarrow V(\xi) = 1 - \cos \xi$

Solution

$$\xi = \left\{egin{array}{cc} 2 rccos \sqrt[3]{rac{3z}{4}} & z \in ig[0,rac{4}{3}ig] \ 0 & z \geq rac{4}{3}. \end{array}
ight.$$

COMPACTON Rosenau et. al. (93), Arodź (02)

Energy

$$E = \frac{64\sqrt{2}\pi}{15}\mu\lambda|n|$$

・ロト ・聞 ト ・ 国 ト ・ 国 ト ・

æ

linear in |B| = |n|

energy density

$$\begin{aligned} \mathcal{E} &= 8\sqrt{2}\mu\lambda(1-|n|^{-\frac{2}{3}}\tilde{r}^2) \quad \text{for} \quad 0 \leq \tilde{r} \leq |n|^{\frac{1}{3}} \\ &= 0 \quad \text{for} \quad \tilde{r} > |n|^{\frac{1}{3}} \end{aligned}$$

where

$$\tilde{r} = \left(\frac{\mu}{4\sqrt{2}\lambda}\right)^{\frac{1}{3}} r \equiv \frac{r}{R_0}$$

rescaled radius \tilde{r} $R_0 \dots$ compacton radius for n = 1

baryon density

$$\mathcal{B} = \text{sign}(n) \frac{4}{\pi^2} (1 - |n|^{-\frac{2}{3}} \tilde{r}^2)^{\frac{1}{2}} \text{ for } 0 \le \tilde{r} \le |n|^{\frac{1}{3}}$$

= 0 for $\tilde{r} > |n|^{\frac{1}{3}}$

Figure: Normalized energy density as a function of the rescaled radius \tilde{r} , for topological charge n=1. For |n| > 1, the height of the density remains the same, whereas the radius grows like $|n|^{\frac{1}{3}}$

Figure: Normalized topological charge density as a function of the rescaled radius \tilde{r} , for topological charge n=1. For |n| > 1, the height of the density remains the same, whereas the radius grows like $|n|^{\frac{1}{3}}$

Generalized Skyrme potentials Zakrzewski (04), Karliner et. al. (08),(09)

$$V = (rac{1}{2}\mathrm{Tr}(1-U))^a \ o \ V(\xi) = (1-\cos\xi)^a$$

- Solutions:
 - Compactons for a < 3
 - exponentially localized solution for a = 3
 - power-like localized solutions for *a* > 3

Two-vacua potential - example: Zakrzewski (04)

$$V = 1 - \cos^2 \xi$$

vacua at $\xi = 0, \pi$

Solution

$$\xi = \left\{egin{arrcc} rccos \sqrt{2}z - 1 & z \in \left[0, \sqrt{2}
ight] \ 0 & z \geq \sqrt{2} \end{array}
ight.$$

compacton; $E \propto |B|$

Energy density

$$\epsilon(z) \sim \sqrt{2}z(1-\sqrt{2}z)$$

< ロ > < 同 > < 回 > < 回 > .

э

Figure: Two-vacua potential - shell structure: normalized energy density as a function of the rescaled radius \tilde{r} , for topological charge n=1. For |n| > 1, the height of the maximum remains the same, whereas the radius grows like $|n|^{\frac{1}{3}}$

Sutcliffe's BPS Skyrme model

original Skyrme model coupled with an infinite tower of the vector mesons

⚠

dimensional reduction of 5dim YM

- nice realization of the vector meson domination
- no potential term

Some phenomenology of nuclei

for standard Skyrme potential

$$V = 1 - \cos \xi$$

▲ロト▲舂▶▲酒▶▲酒▶ 酒 のへで

A) Classical solitons

Linear mass - baryon number relation:

- BPS bound $\Rightarrow E = 64\sqrt{2}\mu\lambda|B|/15 \equiv E_0|B|$
- well-known relation for nuclei

В	E_{BPS}	Evec Skyrme	E _{Skyrme}	Eexperiment
1	931.75	996	1024	939
2	1863.5	1999	1937	1876
3	2795.25	2913	2836	2809
4	3727	3727	3727	3727
6	5590.5	-	5520	5601
8	7454	-	7327	7455
10	9317.5	-	9113	9327

Table: Energies of the solutions in the BPS Skyrme model, compared with masses for the vector-Skyrme and massive Skyrme models, as well as with the experimental values. Numbers in MeV

- No binding energy
 - BPS solutions \Rightarrow zero binding energy
 - binding energies for physical nuclei small $\leq 1\%$
 - in standard Skyrme model significantly bigger
- No forces between solitons
 - BPS and compactons \Rightarrow no forces
 - physical nuclei: very short range interaction
- radii of nuclei
 - Compacton: definite radius
 - $R = (2\sqrt{2}\lambda|B|/\mu)^{(1/3)} \equiv R_0 \sqrt[3]{|B|}$
 - reproduces phenomenological relation $R \sim 1.25 \sqrt[3]{|B|}$ fm

- Incompressible fluid
 - Static energy functional: volume-preserving diffeos (VPDs)
 - Symmetries of an incompressible fluid where surface energy is neglected
 - Physical nuclei do not have this symmetry: have definite shape, deformations cost energy
 - But: volume-preserving deformations cost less energy ... liquid drop model of nuclei
- ⇒ classical model reproduces some features of the nuclear liquid drop model (mass prop to volume, strictly finite size, VPDs)
 - Clearly too naive (no pions ⇒ no interactions, no pion cloud; no quantum corrections)

B) Soliton quantization

work in progress; top. charge Q = 1 (nucleon)

- Collective coordinate quantization: Quantize symmetry transformations which are NOT symmetries of the soliton (=lightest d.o.f.)
- Example: rotations (equivalent to isospin = diagonal target space SU(2), because SO(3)_b× SU(2)_{diag} IS symmetry of hedgehog
- ⇒ Rigid rotor quantization (=undeformed rotating soliton, quantized angular momentum)
 - Well-known procedure

- E.g. for isospin: Insert $U(t) = A(t)U_0A^{\dagger}(t)$ into action ($U_0 = Q = 1$ soliton (hedgehog)
- Promote the three time-dependent parameters in A(t) to quantum mechanical variables
- Result:

$$E = E_0 + rac{1}{2I}\vec{J}^2 = E_0 + rac{1}{2I}\vec{S}^2$$

 \vec{J} ... isospin, \vec{S} ... spin, E_0 ... soliton energy (mass) I... moment of inertia of the soliton (rigid rotor)

< □ > < 同 > < 回 > <

$$I = \frac{4\pi}{3} \int dr \sin^4 \xi \, \xi_r^2$$

• Classical result: $E = E_0 + \frac{1}{2l}\vec{L}^2$ \vec{L} ... angular momentum Concretely for Q = 1 soliton (compacton)

$$I = \frac{2^8 \sqrt{2}\pi}{15 \cdot 7} \lambda \mu \left(\frac{\lambda}{\mu}\right)^{\frac{2}{3}}, \quad E_0 = \frac{64\sqrt{2}\pi}{15} \lambda \mu$$

$$E=E_0+\frac{1}{2I}\hbar^2 s(s+1)$$

• Now fit to the proton mass (spin $s = \frac{1}{2}$, $M_p = 938.9$ MeV) and Δ resonance mass ($s = \frac{3}{2}$, $M_{\Delta} = 1232$ MeV) and use $\hbar = 197.3$ MeV fm then

$$\lambda\mu=$$
 45.70*MeV*, $\frac{\lambda}{\mu}=$ 0.1523*fm*³

may now be used to "predict" other nucleon quantities

Isoscalar and isovector charge densities (per unit length)

$$\rho_0 = \frac{2}{\pi} \sin^2 \xi \, \xi_r \,, \quad \rho_1 = \frac{1}{I} \frac{4\pi}{3} \lambda^2 \sin^4 \xi \, \xi_r^2$$

 Corresponding proton (neutron) electric charge densities are

$$\rho_{p(n)} = \frac{1}{2}(\rho_0 + (-)\rho_1)$$

Resulting isoscalar and isovector mean square electric radii

$$< r^{2} >_{e,0} \equiv \int dr r^{2} \rho_{0} = \left(\frac{\lambda}{\mu}\right)^{\frac{2}{3}}$$
$$< r^{2} >_{e,1} \equiv \int dr r^{2} \rho_{1} = \frac{10}{9} \left(\frac{\lambda}{\mu}\right)^{\frac{2}{3}}$$

・ロト・聞ト・回ト・回ト 回 のぐの

• Isoscalar magnetic mean square radius

$$< r^{2} >_{m,0} = \frac{\int dr r^{4} \sin^{2} \xi \xi_{r}}{\int dr r^{2} \sin^{2} \xi \xi_{r}} = \frac{5}{2} \left(\frac{\lambda}{\mu}\right)^{\frac{2}{3}}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Numerical values

radius	BPS Skyrme	massive Skyrme	experiment
compacton	0.755	-	-
r _{e,0}	0.534	0.68	0.72
r _{e,1}	0.563	1.04	0.88
<i>r</i> _{<i>m</i>,0}	0.597	0.95	0.81

Table: Charge radii. Numbers in fm

- ⇒ Radii too small; not so surprising (no pion cloud)
 - should be better for ratios of radii

ratios	BPS Skyrme	massive Skyrme	experiment
$r_{e,1}/r_{e,0}$	1.054	1.529	1.222
$r_{m,0}/r_{e,0}$	1.118	1.397	1.125
$r_{e,1}/r_{m,0}$	0.943	1.095	1.086

Table: Charge ratios. Numbers in fm

Magnetic moments

$$\mu_{p(n)} = 2M_N \left(\frac{1}{12I} < r^2 >_{e,0} + (-)\frac{I}{6\hbar^2} \right)$$

Numerical values

	BPS Skyrme	massive Skyrme	experiment
μ_{p}	1.827	1.97	2.79
μ_n	-1.379	-1.24	-1.91
$ \mu_{p}/\mu_{e} $	1.325	1.59	1.46

・ロン・雪と・雪と・ ヨン・

E 990

Table: Magnetic moments

Conclusions

- Interesting field theory: ∞ symmetries, integrable, BPS bound, ∞ exact solutions
- limit of generalized Skyrme models
 - integrable
 - nontrivial " $m_{\pi}
 ightarrow \infty$ " or liquid droplet limit
- Phenomenology of nuclei
 - reproduces qualitatively some properties of nuclei \Rightarrow reasonable approximation under some conditions
 - essentially topological, no pion propagation, no two-body interaction ⇒ in some circumstances collective contributions seem to be the most important ones
 - Quantization: some first results; much more detailed study necessary

Future

- more applications
 - topological d.o.f. dominate
 - perfect (incompressible) fluid
- mesons
 - nonlinear perturbations
 - integrability \Rightarrow stable non-topological (oscillating) solutions

・ 同 ト ・ ヨ ト ・ ヨ ト

derivation of the BPS Skyrme model form QCD