# Hadron physics and spectroscopy

(''decade of the revival of hadron spectroscopy'')





K.Trabelsi (karim.trabelsi@kek.jp)

**50 Cracow School of Theoretical Physics** 

Zakopane,  $15^{th}$  June, 2010

#### Belle, one of the 2 factories (see H.Palka' talk)



#### **Integrated luminosity** (**fb**<sup>-1</sup>)



data taken mostly at  $\Upsilon(4S)$  ( $\sqrt{s} = 10.58$  GeV) (but not only: largest samples of  $\Upsilon(1S)$ ,  $\Upsilon(2S)$ ,  $\Upsilon(5S)$ )

# **B-factories produce lots of c \overline{c}-like pairs**



At  $\Upsilon(4S)$  peak,  $\sigma(B\overline{B}) \sim 1.2 \text{ nb}$   $\Rightarrow \text{fb}^{-1} \equiv 10^6 \text{ B}\overline{B}$  pairs B mesons decay with a  $\sim 10^{-3}$ probability to  $c\overline{c}$  and  $K^{(*)}$ reconstruction with low bckg J<sup>PC</sup> from angular analysis initial e<sup>-</sup> and e<sup>+</sup> emit  $\gamma$  at small angles hadronic system (H) produced in  $\gamma^* \gamma^*$ has small total energy, small P<sub>t</sub> e<sup>+</sup> and e<sup>-</sup> not detected

⇒  $c\bar{c}$  states produced without additional hadrons: clean conditions

H has C=+

# **B-factories produce lots of cc-like pairs**

reconstruct one  $c\bar{c} (J/\psi)$ look at recoil mass other  $c\bar{c}$  not fully reconstructed  $\Rightarrow$  higher efficiency hard  $\gamma$  emitted by an initial e<sup>-</sup> (e<sup>+</sup>) before annihilation  $\Rightarrow$  annihilation at smaller energy ! whole continuous spectrum can be studied

 $J^{PC} = 1^{--}$  only



#### **Charmonium system**

Ten c $\overline{c}$  states found in 1974-1980:

 $\Rightarrow J/\psi, \eta_{\rm c}(1{\rm S}), \chi_{\rm c0}(1{\rm P}), \chi_{\rm c1}(1{\rm P}), \chi_{\rm c2}(1{\rm P}), \psi(2{\rm S}) \text{ below}$ 

 $\Rightarrow \psi(3770), \psi(4040), \psi(4160), \psi(4415)$  above the open charm threshold



with  $\eta_c(2S)$  (in 2002) and  $h_c(1P)$  (in 2005) the  $c\overline{c}$  system seemed understood...

#### **Predictions of Potential Model**



the only difficulties: broad resonances, expected decay modes are DD<sup>(\*)</sup> etc...

#### <u>Many (>10) states poorly consistent with quark model</u> (observed last 6 years by B-factories)

(decaying to  $c \overline{c} X$  rather than to open charm unexpectedly found)

| State         | M (MeV)                            | Γ (MeV)            | J <sup>PC</sup> | Decay Modes                                             | Production Modes                                     |
|---------------|------------------------------------|--------------------|-----------------|---------------------------------------------------------|------------------------------------------------------|
| $Y_{s}(2175)$ | $2175\pm8$                         | $58\pm26$          | 1               | $\phi f_0(980)$                                         | $e^+e^-$ (ISR)<br>$J/\psi  ightarrow \eta Y_s(2175)$ |
| X(3872)       | $\textbf{3871.4} \pm \textbf{0.6}$ | < 2.3              | 1++             | $\pi^+\pi^- J/\psi$ ,<br>$\gamma J/\psi$ , $D\bar{D^*}$ | $B \rightarrow KX(3872), p\bar{p}$                   |
| X(3915)       | $3914\pm4$                         | $23 \pm 9$         | $0/2^{++}$      | $\omega J/\psi$                                         | $\gamma\gamma \rightarrow X(3915)$                   |
| Z(3930)       | $3929 \pm 5$                       | $29\pm10$          | 2++             | DD                                                      | $\gamma\gamma \rightarrow Z(3940)$                   |
| X(3940)       | $3942\pm9$                         | $37\pm17$          | 0 <sup>?+</sup> | $Dar{D^*}$ (not $Dar{D}$ or $\omega J/\psi)$            | $e^+e^- \rightarrow J/\psi X(3940)$                  |
| Y(3940)       | $3943 \pm 17$                      | $87 \pm 34$        | ??+             | $\omega J/\psi$ (not $D\bar{D^*}$ )                     | $B \rightarrow KY(3940)$                             |
| Y(4008)       | $4008_{-49}^{+82}$                 | $226^{+97}_{-80}$  | 1               | $\pi^+\pi^- J/\psi$                                     | $e^+e^-(ISR)$                                        |
| X(4160)       | $4156 \pm 29$                      | $139^{+113}_{-65}$ | 0 <sup>?+</sup> | $D^* \bar{D^*}$ (not $D\bar{D}$ )                       | $e^+e^-  ightarrow J/\psi X(4160)$                   |
| Y(4260)       | $4264 \pm 12$                      | $83 \pm 22$        | 1               | $\pi^+\pi^- J/\psi$                                     | e <sup>+</sup> e <sup>-</sup> (ISR)                  |
| Y(4350)       | $4361 \pm 13$                      | $74 \pm 18$        | 1               | $\pi^+\pi^-\psi'$                                       | $e^+e^-(ISR)$                                        |
| X(4630)       | $4634^{+9}_{-11}$                  | $92^{+41}_{-32}$   | 1               | $\Lambda_c^+\Lambda_c^-$                                | $e^+e^-(ISR)$                                        |
| Y(4660)       | $4664 \pm 12$                      | $48\pm15$          | 1               | $\pi^+\pi^-\psi'$                                       | e <sup>+</sup> e <sup>-</sup> (ISR)                  |
| Z(4050)       | $4051^{+24}_{-23}$                 | $82^{+51}_{-29}$   | ?               | $\pi^{\pm}\chi_{c1}$                                    | $B \rightarrow KZ^{\pm}(4050)$                       |
| Z(4250)       | $4248^{+185}_{-45}$                | $177^{+320}_{-72}$ | ?               | $\pi^{\pm}\chi_{c1}$                                    | $B \rightarrow KZ^{\pm}(4250)$                       |
| Z(4430)       | $4433\pm5$                         | $45^{+35}_{-18}$   | ?               | $\pi^{\pm}\psi'$                                        | $B \rightarrow KZ^{\pm}(4430)$                       |
| $Y_b(10890)$  | $10,890\pm3$                       | $55\pm9$           | 1               | $\pi^+\pi^-\Upsilon(1,2,3S)$                            | $e^+e^-  ightarrow Y_b$                              |

# A typical example : reconstruct $\mathbf{B} \rightarrow \mathbf{K}(\mathbf{K}_{\mathbf{S}}\mathbf{K}^{-}\pi^{+})$

 $PRL89, 102001\,(2002)$ 

Fit  $M_{bc}$  in bins of  $K_S K^- \pi^+$  invariant mass of  $40 \text{ MeV/c}^2$ 



# $B \rightarrow KK_{S}K^{-}\pi^{+}$ to see $\eta_{c}(2S)$

#### PRL89,102001(2002)



## **X(3872) first observation** PRL91,262001(2003)

## $B \rightarrow K \pi^+ \pi^- J/\psi$ using $140 \, \text{fb}^{-1}$



#### X(3872) confirmed by 3 other experiments



# Is it a cc meson ?



# **Non observation of** $X(3872) \rightarrow \chi_{cI} \gamma$ **decays**

#### $PRL91\,, 262001\,(2003)$

The radiative decays to  $X_{cJ}\gamma$  expected to be large for some charmonium states... but not found



 $\mathbf{B}(\mathbf{X} \rightarrow \boldsymbol{\chi}_{c1} \boldsymbol{\gamma}) / \mathbf{B}(\mathbf{X} \rightarrow \mathbf{J} \boldsymbol{\psi} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}) < \mathbf{0.9} \text{ at } \mathbf{90\% CL} \quad \mathbf{X} \equiv \boldsymbol{\psi}_{2} \text{ expect} > \mathbf{1.6}$   $[potential/\boldsymbol{\psi}'' \text{ Wigner-Eckart}]$ 

 $B(X \rightarrow \chi_{c2} \gamma)/B(X \rightarrow J \psi \pi^+ \pi^-) < 1.1 \text{ at } 90\% CL \ X \equiv \psi_3 \text{ expect} > 3.5$ 

# <u>ccassignment</u>?



# $M_{\pi\pi}$ looks like a $\rho$

# $\begin{array}{l} \text{concentration} \rightarrow high \; M(\pi^{+}\pi^{-}) \; favouring \; X(3872) \rightarrow \rho \; J/\psi \\ \text{ and hence } C = +1 \end{array}$



charmonium states all Isosinglets decay charmonium  $\rightarrow \rho J/\psi$  violates isospin (should be strongly suppressed)

see also angular analysis [hep-ex/0505038] disfavouring  $0^{++}$ ,  $0^{-+}$ 

see also angular analysis [PRL98, 132002 (2007)]

rules out  $h_c$ ',  $\psi_J$ ...

reinforces X(3872) $\rightarrow \rho J/\psi$  (L=0), J<sup>PC</sup> = 1<sup>++</sup> interpretation

puts L=1,  $J^{PC}=2^{-+}$  possibility back in play:  $\eta_{c2}$ ... but  $\Gamma(\eta_{c2} \rightarrow \pi^{+}\pi^{-}\eta_{c}) \operatorname{sh}^{d} \operatorname{be} \gg \Gamma(\eta_{c2} \rightarrow \pi^{+}\pi^{-}J/\psi)$ 

## **Possible exotic interpretations...**



# Latest update with 605 fb<sup>-1</sup>

ArXiv:0809.1224

 $B^{\pm} \rightarrow X(3872)K^{\pm}$  and  $B^{0} \rightarrow X(3872)K^{0}_{S}$ 



distributions for  $\psi'$  and X(3872) are fitted simultaneously:

detector resolution effect is automatically calibrated by  $\psi$  '



First observation of  $B^0 \rightarrow X(3872)K_s^0$ 

### $\mathbf{B}^{\pm} \rightarrow \mathbf{X}(\mathbf{3872}) \mathbf{K}^{\pm} \text{ and } \mathbf{B}^{\mathbf{0}} \rightarrow \mathbf{X}(\mathbf{3872}) \mathbf{K}^{\mathbf{0}}$

 $\circ \ R = \frac{BR(B^0 \rightarrow X(3872)K^0)}{BR(B^{\pm} \rightarrow X(3872)K^{\pm})} = 0.82 \pm 0.22 \pm 0.05$ 

charged and neutral B mesons decay into X(3872) with comparable BR  $% A_{\rm s}^{\rm A}$ 

ArXiv:0809.1224





5.250 5.200

5.250

5.200

5.250

5.200

\_\_\_\_\_ 5.300

# No obvious $c\bar{c}$ assignment if $T^{PC} = 1^{++}$



hep-ex/0407033

 $\eta_{c}$  '' M too low and  $\Gamma$  too small

**h**<sub>c</sub>' angular dist rules out 1<sup>+-</sup>

 $\chi_{c1}' \quad \Gamma(\gamma J/\psi)$  way too small

 $\psi_2 \quad \Gamma(\gamma \chi_{c1}) \text{ too small} \\ \mathbf{M}(\pi^+ \pi^-) \text{ wrong}$ 

 $\eta_{c2} = \pi \pi \eta_c$  should dominate

 $\psi_3 \quad \Gamma(\gamma \chi_{c2} \& \& D \overline{D}) \text{ too small}$ 

# **BaBar confirms** $X(3872) \rightarrow J/\psi \gamma$



inconsistent with a purely  $\overline{D}^0 D^{*0}$  molecular interpretation  $\Rightarrow$  significant mixture with  $c\overline{c}$  component ?

#### X(3872) radiative decays (update)



No signal observed in  $X(3872) \rightarrow \psi' \gamma !!$ 





Large isospin violation

for  $M(\pi^+\pi^-\pi^0) > 750 \text{ MeV/c}^2$ 

## **BaBar confirms** $X(3872) \rightarrow J/\psi \omega$

 $\begin{array}{c} arXiv\!:\!1005.5190 \\ (426\ fb^{-1}) \end{array}$ 



 $\Rightarrow$  Belle will update soon this analysis ( $\times$  3 data)

# threshold enhancement in $D^0 \overline{D}^0 \pi^0$

PRL97, 162002 (2006)





 $M = (3875.4 \pm 0.7^{+1.2}_{-2.0}) \text{ MeV/c}^2$ 

 $\begin{array}{l} BR(B \! \rightarrow \! XK) \! \times \! BR(X \! \rightarrow \! D^0 \overline{D}^0 \pi^0) \\ = (1.27 \! \pm \! 0.31^{+0.22}_{-0.39}) \! \times \! 10^{-4} \end{array}$ 

$$\frac{BR(X \rightarrow D^0 \overline{D}^0 \pi^0)}{BR(X \rightarrow J/\psi \pi^+ \pi^-)} \sim 10$$

 $X \rightarrow D^0 \overline{D}^{*0} / D^0 \overline{D}^0 \pi^0$  expected to be strongly suppressed for J=2

# ...and BaBar



PRD77, 011102 (2008)

 $BR(B^{0} \rightarrow XK^{0}) \times BR(X \rightarrow \overline{D}^{*0}D^{0}) = (2.22 \pm 1.05 \pm 0.42) \times 10^{-4}$ BR(B<sup>+</sup> \rightarrow XK<sup>+</sup>) \times BR(X \rightarrow \overline{D}^{\*0}D^{0}) = (1.67 \pm 0.36 \pm 0.47) \times 10^{-4}

 $M_X$  differs in  $D^0 \overline{D}^0 \pi^0$  and  $J/\psi \pi^+ \pi^-$  decays ? Is it the same X(3872) or two different X states ?

# $\frac{\text{Most recent Belle analysis (with 605 fb}^{-1})}{D^{*0} \rightarrow D^{0} \pi^{0}, D^{0} \gamma}$ PRD(RC)81, 031103 (2010)



 $BR(B^0 \to XK) \times BR(X \to \overline{D}^{*0} D^0) = (0.80 \pm 0.20 \pm 0.10) \times 10^{-4}$ 

#### **Summary for X(3872)**

- $\circ~$  narrow ( ${\it \Gamma}\,{<}2.3\,MeV$  @ 90 %C.L.) and right at  $m_{D^0}^{}+m_{D^{*0}}^{}$   $M_{_X}^{}=(3871.46\pm0.37\pm0.07)~MeV$
- no mass splitting signature
- $\circ~C=+1$  well established,  $J^{\rm PC}=1^{\scriptscriptstyle ++}$  seems likely
- first observation of  $B^0 \rightarrow X(3872)K^+\pi^-$ , but  $K^+\pi^-$  mostly non res.
- seen by Belle in  $D^0 \overline{D}^{*0}$ ,  $J/\psi \pi^+ \pi^-$ ,  $J/\psi \omega$ ,  $J/\psi \gamma$  but not in  $\psi' \gamma$
- $\circ$  recent  $D^0 \overline{D}^{*0}$  analysis:

 $M_{\rm X} = (3872.6^{+0.5}_{-0.4} {\pm}\, 0.4) \ MeV$ 

 $\rightarrow$  no good charmonium candidate ?

so what is it ? tetraquark, molecule, ...?

# Around 3940 MeV/c<sup>2</sup>

#### Another enhancement is found in $I/\psi \omega$ final state around threshold : PRL94, 182002(2005) $(253 \text{fb}^{-1})$







 $\Gamma = (87 \pm 22 \pm 26) \text{ MeV}$ 

- The mass is well above  $DD^{(*)}$  threshold and decay to  $J/\psi \omega$  should not be dominant if Y=charmonium  $\rightarrow$  **no obvious charmonium meson assignment**
- another molecule ?
  - $\rightarrow M \sim 2m_{D_s}$
  - $\rightarrow$  not seen in Y  $\rightarrow \eta$  J/ $\psi$  (BaBar, PRL93, 041801)
  - $\rightarrow$  width too large
  - $\rightarrow$  no  $\pi$  exchange for  $D_s \overline{D}_s$
- $\circ\ c\,\bar{c}\ gluon\ hybrid\ (Horn\ and\ Mandula\,, PRD\,17898(1978))$ 
  - $\rightarrow$  predicted by QCD
  - $\rightarrow$  decays to DD and DD<sup>\*</sup> are suppressed
  - $\rightarrow$  large (hadron + J/ $\psi$ ) widths predicted
  - $\rightarrow$  but masses expected to be 4.3~4.4 GeV/c<sup>2</sup>

⇒ least-believed of "XYZ" states...

## Y(3940) confirmed by BaBar !



 $\begin{array}{c} PRL101\,,082001\,(2008) \\ (348\,\,fb^{-1}) \end{array}$ 

simultaneous B<sup>+</sup> & B<sup>0</sup> fit Gaussian bkgd + S-wave BW signal BR(B<sup>+</sup>  $\rightarrow$  YK<sup>+</sup>, Y $\rightarrow$  J/ $\psi \omega$ )=(4.9<sup>+1.0</sup><sub>-0.9</sub> $\pm$ 0.5)×10<sup>-5</sup> BR(B<sup>+</sup> $\rightarrow$  YK<sup>0</sup>, Y $\rightarrow$  J/ $\psi \omega$ )=(1.3<sup>+1.3</sup><sub>-1.1</sub> $\pm$ 0.2)×10<sup>-5</sup>

whereas  $R_{non res} = 0.97^{+0.23+0.03}_{-0.22-0.02}$ 

 $\begin{array}{ccc} M \ ({\rm MeV}) & \mbox{$\Gamma$} \ ({\rm MeV}) \\ \hline Belle \ (253 \ fb^{-1}) & \mbox{$3943 \pm 11 \pm 13$} & \mbox{$87 \pm 22 \pm 26$} \\ BaBar \ (348 \ fb^{-1}) & \mbox{$3914.6^{+3.8}_{-3.4} \pm 2.0$} & \mbox{$34^{+12}_{-8} \pm 5$} \\ \end{array}$ 

## Y(3940) confirmed by BaBar !



arXiv:1005.5190  $(426 \text{ fb}^{-1})$ 

simultaneous  $B^+ \& B^0$  fit Gaussian bkgd + S-wave BW signal BR(B<sup>+</sup> $\rightarrow$ YK<sup>+</sup>, Y $\rightarrow$ J/ $\psi \omega$ )=(3.0<sup>+0.7+0.5</sup><sub>-0.6</sub>)×10<sup>-5</sup>  $BR(B^+ \rightarrow YK^0, Y \rightarrow J/\psi \omega) = (2.1 \pm 0.9 \pm 0.3) \times 10^{-5}$ 

 $R_{V} = BR_{R^{0}} / BR_{R^{+}} = 0.7^{+0.4}_{-0.3} \pm 0.1$ (consistent with isospin expectation)

whereas  $R_{non res} = 0.7 \pm 0.1 \pm 0.1$ 

M (MeV) $\Gamma$  (MeV)  $87\pm22\pm26$  $3943 \pm 11 \pm 13$  $3914.6_{-3.4}^{+3.8}\pm2.0$   $34_{-8}^{+12}\pm5$ BaBar (426 fb<sup>-1</sup>) 3919.1 $^{+3.8}_{-3.4} \pm 2.0$  $31^{+10}_{-8}\pm 5$ 

Belle has  $3 \times$  more statistics, improved efficiency: will update soon !

 $\gamma \gamma \rightarrow Z(3930) \rightarrow D\overline{D}$ 





 $M = (3929 \pm 5 \pm 2) \text{ MeV/c}^{2}$  $\Gamma = (29 \pm 10 \pm 2) \text{ MeV}$ 

production angle distribution matches well the  $\sin^4 \theta^*$  behaviour expected for a J=2 meson

# $\gamma \gamma \rightarrow Z(3930) \rightarrow D\overline{D}$



J=2, mass, width and  $\gamma \gamma$  production rate match well to expectations for the 2<sup>3</sup> P<sub>2</sub> ( $X_{c2}$ ')

PRL96, 082003 (2006) (395 fb<sup>-1</sup>)



## **Double charmonium production**



## **Double charmonium production**



Search for  $X(3940) \rightarrow D\overline{D}$ ,  $D^*\overline{D}$ ,  $J/\psi \omega \dots$ 



PRL98, 082001 (2007)  $(357 \text{ fb}^{-1})$ 

in addition to fully rec.  $J/\psi$  , one  $D~(or~\omega)$  is reconstructed

seen in  $D^*\overline{D}$  decay

**not seen to decay to D\overline{D}** [decay preferred for 0<sup>++</sup>, forbidden for 0<sup>-+</sup>]  $\Rightarrow$  unfilled 0<sup>-+</sup> with closest expected mass: 3<sup>1</sup> S<sub>0</sub> ( $\eta_c(3S)$ )) ... but potential model predicts: M = 4043 MeV (or higher)

**not seen to decay to**  $J/\psi \omega$ 

Confirmed later with larger sample  $(693 \text{ fb}^{-1})$  [PRL100, 202001 (2008)]:

$$\mathbf{M} = (\mathbf{3942}_{-6}^{+7} \pm \mathbf{6}) \ \mathbf{MeV/c^2}$$
$$\Gamma = (\mathbf{37}_{-15}^{+26} \pm \mathbf{8}) \ \mathbf{MeV}$$



 $\begin{array}{c} \text{PRL104, 092001 (2010)} \\ (694 \ \text{fb}^{-1}) \end{array}$ 



 $\Sigma = 7.1\sigma$ sharp peak near threshold and not much else... 20  $M = (3915 \pm 3 \pm 2) MeV/c^2$ 15  $\Gamma = (17 \pm 10 \pm 3) \text{ MeV}$ Events/10 MeV 5 0  $\Gamma_{\gamma\gamma}(\mathbf{Y}) \times \mathbf{BR}(\mathbf{Y} \to \mathbf{J}/\psi \,\omega)$  $= (61 \pm 17 \pm 8) \text{ eV for } J^{P} = 0^{+}$ 5  $= (18 \pm 5 \pm 2) \text{ eV for } J^{P} = 2^{+}$ 3.9 3.85 3.95 4.15 4.2 4.25 4.3 4.05 4.1 W (GeV)

mass  $\sim 2\,\sigma$  away from Z(3930): two distinct peaks not different decay channels of same state

### **<u>4 states around 3940 MeV: different states ?</u>**

|                                                                                                               | Name               | Process                                                                                       | $M \ (\text{MeV/c}^2)$                                                                     | $\Gamma$ (MeV)                                                           |
|---------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| $\begin{array}{c} \text{Belle} \ (253 \ \text{fb}^{-1}) \\ \text{BaBar} \ (426 \ \text{fb}^{-1}) \end{array}$ | Y(3940) Y(3940)    | $\begin{array}{c} B \rightarrow J/\psi \ \omega \\ B \rightarrow J/\psi \ \omega \end{array}$ | $\begin{array}{c} 3943 {\pm} 11 {\pm} 13 \\ 3919.1 {}^{+3.8}_{-3.4} {\pm} 2.0 \end{array}$ | $ \begin{array}{r} 87 \pm 22 \pm 26 \\ 31^{+10}_{-8} \pm 5 \end{array} $ |
| $Belle (694 \ fb^{-1})$                                                                                       | X(3915)            | $2\gamma \rightarrow J/\psi \omega$                                                           | $3915 \pm 3 \pm 2.0$                                                                       | $17 \pm 10 \pm 5$                                                        |
| $Belle (694 \ fb^{-1})$                                                                                       | X(3940)            | $e^+ e^- \rightarrow J/\psi DD^*$                                                             | $3942_{-6}^{+7}\pm\!6$                                                                     | $37^{+26}_{-15}\pm 8$                                                    |
| Belle (395 $fb^{-1}$ )<br>BaBar (384 $fb^{-1}$ )                                                              | Z(3930)<br>Z(3930) | $2 \gamma \rightarrow D \overline{D} \\ 2 \gamma \rightarrow D \overline{D}$                  | $3929 \pm 5 \pm 2$<br>$3926.7 \pm 2.7 \pm 1.1$                                             | $29\pm10\pm2$<br>$21\pm7\pm4$                                            |

Q1:Y(3940)=X(3915)? same process, no disagreement mass/width in any case, difficulty with charmonium assignment

**Q2: Y(3940) = X(3940) ?** Y(3940) not found in  $D^{*0}\overline{D}^{0} K$ 

 $X(3940) \rightarrow J/\psi \omega$  not found in 2 × charmonium prod

⇒ at least 3 states

 $\frac{BR(Y(3940) \rightarrow \omega J/\psi)}{BR(Y(3940) \rightarrow D^{*0}\overline{D}^{0})} > 0.71 @90 \% C.L.$ 

 $\frac{BR(X(3940) \rightarrow \omega J/\psi)}{BR(X(3940) \rightarrow D^{*0}\overline{D}^{0})} < 0.58 @90 \% C.L.$ 

# **The** $Y(J^{PC} = 1^{--})$ **family**

# **Y**(4260): discovery in $e^+e^- \rightarrow \gamma_{ISR}\pi^+\pi^- J/\psi$

when running at  $\Upsilon(4S): e^+e^- \rightarrow \gamma_{ISR}X$ ,  $E_{\gamma_{ISR}}=4 \sim 5 \text{ GeV}$ 

 $e^+\,e^-$  annihilation occurs in the energy region populated by charmonium states (comparable sensitivity to energy scan (Cleo-c , BES))



 $\label{eq:centered} \begin{array}{l} ... excess \ of \ 125 \pm 23 \ events \\ centered \sim 4.26 \ GeV/c^2 \\ signifying \ the \ presence \ of \ \underline{one \ or \ more} \\ previously \ unobserved \ J^{PC} = 1^{--} \ states.. \end{array}$ 

$$\begin{split} M &= (4259 \pm 8^{+2}_{-6}) \; MeV/c^2 \\ \Gamma &= (88 \pm 23^{+6}_{-4}) \; MeV \end{split}$$

 $\Gamma_{e^+e^-} \times BR(Y(4260) \rightarrow \pi^+\pi^- J/\psi) = (5.5 \pm 1.0^{+0.8}_{-0.7})eV/c^2$ 

**Y**(**4260**): discovery in  $e^+e^- \rightarrow \gamma_{ISR}\pi^+\pi^- J/\psi$ 

(also confirmed by Cleo)

2 BW with interference two solutions: different peak cross-sections

PRL99, 182004 (2007)  $(548 \text{ fb}^{-1})$ 80 Entries/20 MeV/c<sup>2</sup> 0 09 09 Solution I ----- Solution II 5.5  $M(\pi^+\pi^-J/\psi)$  (GeV/c<sup>2</sup>)

| Parameters                              | Solution I                | Solution II                 |
|-----------------------------------------|---------------------------|-----------------------------|
| M(R1)                                   | 4008 ±                    | $=40^{+114}_{-28}$          |
| $\Gamma_{\rm tot}(R1)$                  | $226~\pm$                 | $44 \pm 87$                 |
| $\mathcal{B} \cdot \Gamma_{e^+e^-}(R1)$ | $5.0\pm1.4^{+6.1}_{-0.9}$ | $12.4\pm2.4^{+14.8}_{-1.1}$ |
| M(R2)                                   | 4247 =                    | $\pm 12^{+17}_{-32}$        |
| $\Gamma_{\rm tot}(R2)$                  | $108 \ \pm$               | $19 \pm 10$                 |
| $\mathcal{B} \cdot \Gamma_{e^+e^-}(R2)$ | $6.0\pm1.2^{+4.7}_{-0.5}$ | $20.6\pm2.3^{+9.1}_{-1.7}$  |
| $\phi$                                  | $12\pm29^{+7}_{-98}$      | $-111\pm7^{+28}_{-31}$      |

# more Y discovered in $e^+e^- \rightarrow \gamma_{ISR} \pi^+ \pi^- \psi(2S)$



 $\Rightarrow$  both structures differ from those in  $J/\psi \pi^+ \pi^-$ 

Events / 50MeV/c<sup>2</sup>

Can Y(4008)?, Y(4260), Y(4360), Y(4660) be charmonium states?

## **Can these be charmonium states ?**

⇒ Only one unassigned 1<sup>--</sup> charmonium in this mass region no room for all 3 (4?) peaks  $\psi(4810): 4^{3}D_{1}$ 

 $M(MeV) = \frac{\psi(4810) : 4^{3}D_{1}}{\psi(4760) : 5^{3}S_{1}}$   $\frac{\psi(4760)}{\psi(4520) : 3^{3}D_{1}}$   $\frac{\psi(4415) : 4^{3}S_{1}}{\psi(4360)}$   $\frac{\psi(4360)}{\psi(4260)}$   $\frac{\psi(4160) : 2^{3}D_{1}}{\psi(4040) : 3^{3}S_{1}}$ 

#### $\Rightarrow$ most popular theoretical explanation: $c\overline{c}$ -gluon hybrids

 $\Rightarrow$  absence of any corresponding peaking features in the total cross-section for  $e^+e^-$  annihilation into hadrons at the same energy

| Y(4260) | Ratio                                                     | UL, 90% CL |
|---------|-----------------------------------------------------------|------------|
|         | $\mathcal{B}(D\bar{D})/\mathcal{B}(\pi^+\pi^-J/\psi)$     | < 1        |
|         | $\mathcal{B}(D^*\bar{D})/\mathcal{B}(\pi^+\pi^-J/\psi)$   | < 34       |
|         | $\mathcal{B}(D^*\bar{D}^*)/\mathcal{B}(\pi^+\pi^-J/\psi)$ | < 40       |

For the  $\psi(3770)$ : B(D $\overline{D}$ )/B( $\pi^{+}\pi^{-}J/\psi$ ) = 440 !

## **Can these be charmonium hybrids ?**

• The lightest hybrid is expected by LQCD around 4.2 GeV

- $\,\circ\,$  relevant open-charm threshold for these hybrids are  $M_{D^{**}}\!+\!M_{D}$
- $\Rightarrow$  search for exclusive  $e^+e^- \rightarrow D\overline{D}\pi$ ,  $D^*\overline{D}\pi$  via ISR

#### $\mathbf{D}\overline{\mathbf{D}}\pi$

see strong signal  $\psi(4415) \rightarrow D\overline{D}_2^*(2460)$  but no  $Y(4260) \rightarrow D_0(2400)\overline{D}$ 



## **The charged Z states**



After K<sup>\*</sup> veto,  $M(\pi^+\psi')$ ...

PRL 100, 142001 (2007)

30

20

10

0



 $BR(\overline{B}^{0} \to K^{-}Z^{+}(4430)) \times BR(Z^{+}(4430) \to \pi^{+}\psi') = (4.1 \pm 1.0 \pm 1.4) \times 10^{-5}$ 

# **Compare data subsamples**

#### Significant signals @ $\sim$ 4433 MeV in all subsets

| Subset                                                         | Signal events               | Mass              | Width                            | signif.    | constr. yield                 |
|----------------------------------------------------------------|-----------------------------|-------------------|----------------------------------|------------|-------------------------------|
|                                                                |                             | (GeV)             | (GeV)                            | $(\sigma)$ | $(\Gamma = 0.045 \text{GeV})$ |
| $\psi' \to \pi^+ \pi^- J/\psi_{(*)}$                           | $50.2 \pm 14.9$             | $4.435\pm0.004$   | $0.026\substack{+0.013\\-0.008}$ | 4.5        | $64.1 \pm 14.6$               |
| $\psi' \to \ell^+ \ell^- \tag{(*)}$                            | $93.4\pm29.4$               | $4.435\pm0.010$   | $0.094^{+0.042}_{-0.030}$        | 4.7        | $58.6 \pm 13.4$               |
| $J/\psi(\psi') \rightarrow e^+ e^-$                            | $46.4 \pm 16.0$             | $4.430\pm0.009$   | $0.056\substack{+0.028\\-0.020}$ | 3.5        | $41.2\pm11.6$                 |
| $J/\psi(\psi') \to \mu^+ \mu^-$                                | $73.4\pm22.6$               | $4.434 \pm 0.004$ | $0.038\substack{+0.023\\-0.013}$ | 5.2        | $80.3 \pm 16.2$               |
| $\pi^-\psi'$                                                   | $109.8\pm35.8$              | $4.437 \pm 0.008$ | $0.081 \pm 0.030$                | 5.0        | $73.3 \pm 15.5$               |
| $\pi^+\psi'$                                                   | $41.4\pm13.7$               | $4.430\pm0.004$   | $0.025 \pm 0.012$                | 4.0        | $53.7 \pm 13.5$               |
| $\begin{bmatrix} K^{\pm}\pi^{\mp}\psi' \\ (***) \end{bmatrix}$ | $105.7\pm26.3$              | $4.434\pm0.005$   | $0.048\substack{+0.019\\-0.014}$ | 6.0        | $102.4 \pm 18.1$              |
| $K_S \pi^{\mp} \psi'$                                          | $19.1\pm8.0$                | $4.430\pm0.009$   | 0.048-fixed                      | 2.0        | $18.5\pm8.1$                  |
| vary $K^*$ veto <sup>***</sup> )                               | $\overline{207.9 \pm 49.4}$ | $4.437 \pm 0.005$ | $0.063\substack{+0.024\\-0.017}$ | 7.1        | $169.8 \pm 25.6$              |

(\*) MC-determined acceptance ratio of  $\pi^+\pi^- J/\psi/l^+l^-$  is 1.23 (\*\*) expected  $e^+e^-/\mu^+\mu^-$  acceptance ratio of 0.61 (\*\*\*)  $K_S/K^+$  acceptance ratio is 0.19 (\*\*\*\*)  $|M(K\pi)-m_{K^*(890)}| \ge 0.05 \text{ GeV}$ 

#### **BaBar's search for Z(4430)**

performed detailed analysis of the  $K\pi^-$  system, corrected for efficiency, included S, P and D waves



⇒ no conclusive evidence for the  $Z^+(4430)$ BR $(\overline{B}^0 \rightarrow K^- Z^+) \times BR(Z^+ \rightarrow \pi^+ \psi') < 3.1 \times 10^{-5}$  @ 95% C.L.

#### **Belle's analysis using Dalitz fit**

Fit  $B^0 \rightarrow \psi(2S)\pi^+K^-$  amplitude by coherent sum of RBW contributions

- all known K $\pi$  resonances
- all known  $K\pi$  resonances + Z

 $\mathbf{M} = (\mathbf{4443}_{-12}^{+15} {}^{+17}_{-13}) \mathbf{MeV}$ 

 $\Gamma = (109^{+86+57}_{-43-52}) \text{ MeV}$ 

$$BR(\overline{B}^{0} \to K^{-}Z^{+}) \times BR(Z^{+} \to \pi^{+}\psi') = (3.2^{+1.8+5.3}_{-0.9-1.6}) \times 10^{-5}$$



# $\overline{\mathbf{B}^{0}} \rightarrow \mathbf{K}^{-} \pi^{+} \chi_{c1}$

- $\circ \ 605\,fb^{-1}:657{\times}10^6\;B\overline{B}$
- recon  $\overline{B}^0 \to K^- \pi^+ \chi_{c1}^- + c.c.$   $\chi_{c1} \to \gamma J/\psi$   $J/\psi \to l^+ l^- = e^+ e^-, \ \mu^+ \mu^$ mass-constrained fit to both
- selection:

 $M_{bc} \in [5275, 5287] \text{ MeV}, |\Delta E| < 12 \text{ MeV}$  $\Delta E$  sidebands for bkgd estimation constrained fit to  $m_B$  $\epsilon = (20.0 \pm 1.4)\%$  $2125 \pm 56 \pm 42$  candidates

- $\circ \ \ Dalitz \ (M^2(K^-\pi^+), \ M^2(\chi_{c1}\pi^+)) \\ \ \ vertical \ band \ for \ K^*(892)^+\chi_{c1} \\ \ \ horizontal \ band \ M^2(\chi_{c1}\pi^+) \simeq 17 \ GeV$
- isobar model:  $\pi^+ \chi_{c1}$  exotic resonance + known  $K^- \pi^+$ ( $\kappa, K^*(892), K^*(1410), K^*_0(1430), K^*_2(1430), K^*(1680), K^*_3(1780)$ )





# $\underline{\overline{B}^{0} \rightarrow K^{-} \pi^{+} \chi_{c1}} \text{ summary of Dalitz analysis}_{PRD80, 031104 (2009)}$



 $Z_1^+$ ,  $Z_2^+$  join  $Z(4430)^+$  as candidate hidden-charm exotics

# Many new $c\bar{c}$ -like states decaying to $c\bar{c}X$ rather than to open charm were unexpectedly found

#### From some there is no place in $c \overline{c}$ spectrum

Table I Summary of the Charmonium-like XYZ states.

#### **From S.Godfrey** (arXiv:0910.3409)

| state         | $M ({\rm MeV})$       | $\Gamma$ (MeV)           | $J^{PC}$ | Seen In                                                                                        | Observed by:          | Comments                |
|---------------|-----------------------|--------------------------|----------|------------------------------------------------------------------------------------------------|-----------------------|-------------------------|
| $Y_{s}(2175)$ | $2175\pm8$            | $58\pm26$                | $1^{}$   | $(e^+e^-)_{ISR}, J/\psi \to Y_s(2175) \to \phi f_0(980)$                                       | BaBar, BESII, Belle   |                         |
| X(3872)       | $3871.4\pm0.6$        | < 2.3                    | $1^{++}$ | $B \to KX(3872) \to \pi^+\pi^- J/\psi, \gamma J/\psi, D\bar{D^*}$                              | Belle, CDF, D0, BaBar | Molecule?               |
| X(3915)       | $3914\pm4$            | $28^{+12}_{-14}$         | ?++      | $\gamma\gamma  ightarrow \omega J/\psi$                                                        | Belle                 |                         |
| Z(3930)       | $3929\pm5$            | $29\pm10$                | $2^{++}$ | $\gamma\gamma \to Z(3940) \to D\bar{D}$                                                        | Belle                 | $2^3P_2(car c)$         |
| X(3940)       | $3942\pm9$            | $37\pm17$                | $0^{?+}$ | $e^+e^- \to J/\psi X(3940) \to D\bar{D^*} \ ({\rm not} \ D\bar{D} \ {\rm or} \ \omega J/\psi)$ | Belle                 | $3^{1}S_{0}(c\bar{c})?$ |
| Y(3940)       | $3943 \pm 17$         | $87\pm34$                | $?^{?+}$ | $B \to KY(3940) \to \omega J/\psi \text{ (not } D\bar{D^*})$                                   | Belle, BaBar          | $2^{3}P_{1}(c\bar{c})?$ |
| Y(4008)       | $4008^{+82}_{-49}$    | $226\substack{+97\\-80}$ | $1^{}$   | $(e^+e^-)_{ISR} \to Y(4008) \to \pi^+\pi^- J/\psi$                                             | Belle                 |                         |
| Y(4140)       | $4143\pm3.1$          | $11.7^{+9.1}_{-6.2}$     | $?^{?}$  | $B \to KY(4140) \to J/\psi\phi$                                                                | CDF                   |                         |
| X(4160)       | $4156\pm29$           | $139^{+113}_{-65}$       | $0^{?+}$ | $e^+e^- \to J/\psi X(4160) \to D^*\bar{D^*} \pmod{D\bar{D}}$                                   | Belle                 |                         |
| Y(4260)       | $4264 \pm 12$         | $83\pm22$                | $1^{}$   | $(e^+e^-)_{ISR} \rightarrow Y(4260) \rightarrow \pi^+\pi^- J/\psi$                             | BaBar, CLEO, Belle    | Hybrid?                 |
| Y(4350)       | $4324\pm24$           | $172\pm33$               | $1^{}$   | $(e^+e^-)_{ISR} \to Y(4350) \to \pi^+\pi^-\psi'$                                               | BaBar                 |                         |
| Y(4350)       | $4361 \pm 13$         | $74\pm18$                | $1^{}$   | $(e^+e^-)_{ISR} \to Y(4350) \to \pi^+\pi^-\psi'$                                               | Belle                 |                         |
| Y(4630)       | $4634_{-10.6}^{+9.4}$ | $92^{+41}_{-32}$         | $1^{}$   | $(e^+e^-)_{ISR} \to Y(4630) \to \Lambda_c^+\Lambda_c^-$                                        | Belle                 |                         |
| Y(4660)       | $4664 \pm 12$         | $48\pm15$                | $1^{}$   | $(e^+e^-)_{ISR} \to Y(4660) \to \pi^+\pi^-\psi'$                                               | Belle                 |                         |
| $Z_1(4050)$   | $4051^{+24}_{-23}$    | $82^{+51}_{-29}$         | ?        | $B \to KZ_1^{\pm}(4050) \to \pi^{\pm}\chi_{c1}$                                                | Belle                 |                         |
| $Z_2(4250)$   | $4248_{-45}^{+185}$   | $177^{+320}_{-72}$       | ?        | $B \to KZ_2^{\pm}(4250) \to \pi^{\pm}\chi_{c1}$                                                | Belle                 |                         |
| Z(4430)       | $4433\pm5$            | $45^{+35}_{-18}$         | ?        | $B \to KZ^{\pm}(4430) \to \pi^{\pm}\psi'$                                                      | Belle                 |                         |
| $Y_b(10890)$  | $10,890\pm3$          | $55\pm9$                 | $1^{}$   | $e^+e^- \to Y_b \to \pi^+\pi^-\Upsilon(1,2,3S)$                                                | Belle                 |                         |

#### **X(3872)**

- $\circ~$  narrow and right at  $m_{D^0}^{}\!+\,m_{D^{*0}}^{}$
- seen in  $D^0 \overline{D}^0 \pi^0$ ,  $J/\psi \pi^+ \pi^-$ ,  $J/\psi \omega$ ,  $J/\psi \gamma$ , not seen in  $\psi(2S)\gamma$
- $\circ~C=+1$  well established,  $J^{\text{PC}}=1^{\scriptscriptstyle ++}$  seems likely
- $\Rightarrow$  no charmonium candidate, so what is it ? tetraquark, molecule,...?

#### **Y(3940)**

• seen in  $J/\psi \omega \Rightarrow$  no obvious charmonium assignment,  $c\bar{c}$ -gluon hybrid ?

#### $\underline{\mathbf{Y}}(\underline{\mathbf{J}}^{\mathbf{PC}}=\underline{\mathbf{1}}^{\cdot\cdot})$

∘ seen in  $J/\psi \pi^+ \pi^-$ ,  $\psi(2S)\pi^+ \pi^- \Rightarrow$  no obvious assignment

#### $\underline{\textbf{Z(4430)},\textbf{Z}_{1},\textbf{Z}_{2}}$

• significant  $\pi^+ \psi'(\chi_{c1})$  invariant mass peak (in  $B \rightarrow K \pi^+ \psi'(\chi_{c1})$  decays) • not produced by interference effects in  $K\pi$  system

 $\Rightarrow$  non-zero charge: not  $c\overline{c}$  or hybrid

#### → need more experimental inputs (updates, precise measurements ( $J^{PC}$ for Z), new decays...)

→ ...and suggestions from theorists !

# $$\begin{split} & \mathsf{BR}(J/\psi\,\mathsf{K}^0) \sim \mathsf{BR}(J/\psi\,\mathsf{K}^+) \sim \mathsf{BR}(J/\psi\,\mathsf{K}^{*0}) \sim \mathsf{BR}(J/\psi\,\mathsf{K}^{*+}) \\ & \mathsf{BR}(\psi(2\mathsf{S})\mathsf{K}^0) \sim \mathsf{BR}(\psi(2\mathsf{S})\mathsf{K}^+) \sim \mathsf{BR}(\psi(2\mathsf{S})\mathsf{K}^{*0}) \sim \mathsf{BR}(\psi(2\mathsf{S})\mathsf{K}^{*+}) \\ & \mathsf{BR}(x_{c1}\mathsf{K}^0) \sim \mathsf{BR}(x_{c1}\mathsf{K}^+) \sim \mathsf{BR}(x_{c1}\mathsf{K}^{*0}) \sim \mathsf{BR}(x_{c1}\mathsf{K}^{*+}) \end{split}$$

| Г <sub>143</sub> | $\eta_c K^0$                | ( 9.9 $\pm$ 1.9 ) $	imes$ 10 $^{-4}$  |
|------------------|-----------------------------|---------------------------------------|
| $\Gamma_{144}$   | $\eta_c K^*(892)^0$         | ( 1.6 $\pm$ 0.7 ) $	imes$ 10 $^{-3}$  |
| $\Gamma_{145}$   | $J/\psi(1S)K^0$             | ( 8.72 $\pm$ 0.33) $	imes$ 10 $^{-4}$ |
| Г <sub>146</sub> | $J/\psi(1S)K^+\pi^-$        | ( 1.2 $\pm$ 0.6 ) $	imes$ 10 $^{-3}$  |
| Γ <sub>147</sub> | $J/\psi(1S)K^{*}(892)^{0}$  | ( 1.33 $\pm$ 0.06) $	imes$ 10 $^{-3}$ |
| Γ <sub>169</sub> | $\psi(2S)K^0$               | ( 6.2 $\pm$ 0.6 ) $	imes$ 10 $^{-4}$  |
| $\Gamma_{170}$   | $\psi(2S)K^+\pi^-$          | $<$ 1 $\times 10^{-3}$ CL=90%         |
| $\Gamma_{171}$   | $\psi(2S) K^* (892)^0$      | ( 7.2 $\pm$ 0.8 ) $	imes$ 10 $^{-4}$  |
| Γ <sub>176</sub> | $\chi_{c1}(1P)K^{0}$        | ( 3.9 $\pm$ 0.4 ) $	imes$ 10 $^{-4}$  |
| Γ <sub>177</sub> | $\chi_{c1}(1P) K^*(892)^0$  | $(3.2 \pm 0.6) 	imes 10^{-4}$         |
| Г <sub>149</sub> | $J/\psi(1S)K^+$             | $(1.007 \pm 0.035) \times 10^{-3}$    |
| Γ <sub>163</sub> | $J/\psi(1S) K^{*}(892)^{+}$ | ( 1.41 $\pm 0.08$ ) $	imes 10^{-3}$   |
| $\Gamma_{175}$   | $\psi(2S)K^+$               | $(6.48 \pm 0.35) \times 10^{-4}$      |
| Γ <sub>176</sub> | $\psi(2S)K^*(892)^+$        | $(6.7 \pm 1.4) \times 10^{-4}$ S=1.3  |
| Γ <sub>187</sub> | $\chi_{c1}(1P)K^+$          | $(4.9 \pm 0.5) \times 10^{-4}$ S=1.5  |
| Γ <sub>188</sub> | $\chi_{c1}(1P)K^*(892)^+$   | $(3.6 \pm 0.9) \times 10^{-4}$        |

# $\mathbf{B}^{0} \rightarrow \mathbf{X}(\mathbf{3872})\mathbf{K}^{+}\boldsymbol{\pi}^{-}$

Charmonium modes

#### Motivation:



 $BR(B^{0} \rightarrow X(3872)K^{*0}) \times BR(X \rightarrow J/\psi \pi^{+}\pi^{-}) < 3.4 \times 10^{-6} (90\% \text{ C.L.})$ 

 $M(K\pi)$  for events within  $\pm 0.03$  GeV of the 4.43 GeV peak



 $\rightarrow$  no dramatic features are evident (aside K<sup>\*</sup>(890) evts vetoed)

# $\overline{\mathbf{B}^{0}} \rightarrow \mathbf{K}^{-} \pi^{+} \chi_{c1}$

#### arXiv:0806.4098 [hep-ex] submitted to PRD

• integration over angular quantities  $\cos \theta_{\chi_{c1}}, \phi_{\chi_{c1}}, \cos \theta_{J/\psi}, \phi_{J/\psi}$ :

efficiency almost uniform... distributions studied as cross-check after the fit

 binned likelihood fit (small bins: fully-contained subset of 400×400)

• 
$$F(s_x, s_y) = S(s_x, s_y) \times \epsilon(s_x, s_y) + B(s_x, s_y)$$

bkgd  $B(s_x,\,s_y)$  from  $\varDelta E$  sidebands efficiency  $\varepsilon(s_x,\,s_y)$  from MC ; both smoothed

• isobar model:  $\pi^+ \chi_{c1}$  exotic resonance + known  $K^- \pi^+ (\kappa, K^*(892), K^*(1410), K^*_0(1430), K^*_2(1430), K^*(1680), K^*_3(1780))$ Blatt-Weisskopf form factors energy-dependent widths angular terms from helicity formalism  $(m_i, \Gamma_i)$  fixed to PDG averages



# $\overline{B}^0 \rightarrow K^- \pi^+ \chi_{c1}$ fit with known K<sup>\*</sup> states

arXiv:0806.4098 [hep-ex]



only 1 of 4 slices plausible

## $\overline{\mathbf{B}^{0} \rightarrow \mathbf{K}^{-} \pi^{+} \chi_{c1}} \operatorname{known} \mathbf{K}^{*} + \mathbf{K}_{2}^{*}, \chi_{c1} \mathbf{K} \mathbf{NR}$ arXiv:0806.4098 [hep-ex]



• peak still poorly matched

# $\overline{\mathbf{B}^{0} \rightarrow \mathbf{K}^{-} \pi^{+} \chi_{c1}} \quad \text{with two } \mathbf{Z}^{+} \rightarrow \pi^{+} \chi_{c1} \text{ terms} \\ \text{arXiv:0806.4098 [hep-ex]}$



> 5σ improvement
o good total fit quality : 40% C.L.

# $\overline{\mathbf{B}}^{0} \rightarrow \mathbf{K}^{-} \pi^{+} \chi_{c1}$ fit contributions

arXiv:0806.4098 [hep-ex]

|                   | One                      | One $Z^+$     |                          | +            |
|-------------------|--------------------------|---------------|--------------------------|--------------|
| Contribution      | Fit fraction             | Signif.       | Fit fraction             | Signif.      |
| $Z^{+}_{(1)}$     | $(33.1^{+8.7}_{-5.8})\%$ | 10.7 $\sigma$ | $(8.0^{+3.8}_{-2.2})\%$  | 5.7 $\sigma$ |
| $Z_2^+$           | -                        | -             | $(10.4^{+6.1}_{-2.3})\%$ | 5.7 $\sigma$ |
| $\kappa$          | $(1.9\pm1.8)\%$          | $2.1\sigma$   | $(3.6\pm2.6)\%$          | $3.5\sigma$  |
| K*(892)           | $(28.5\pm2.1)\%$         | 10.6 $\sigma$ | $(30.1\pm2.3)\%$         | 9.8 $\sigma$ |
| $K^{*}(1410)$     | $(3.6\pm4.4)\%$          | $1.3\sigma$   | $(4.4\pm4.3)\%$          | $2.0\sigma$  |
| $K_0^*(1430)$     | $(22.4\pm5.8)\%$         | 3.4 $\sigma$  | $(18.6\pm5.0)\%$         | 4.5 $\sigma$ |
| $K_{2}^{*}(1430)$ | $(8.4\pm2.7)\%$          | $5.2\sigma$   | $(6.1\pm2.9)\%$          | 5.4 $\sigma$ |
| $K^{*}(1680)$     | $(5.2\pm3.7)\%$          | $2.2\sigma$   | $(4.4\pm3.1)\%$          | 2.4 $\sigma$ |
| $K_{3}^{*}(1780)$ | $(7.4\pm3.0)\%$          | 3.6 $\sigma$  | $(7.2\pm2.9)\%$          | $3.8\sigma$  |
|                   | 110.5%                   |               | 92.8%                    |              |