Addressing giant QCD K-factors at hadron colliders

Sebastian Sapeta

LPTHE, UPMC, CNRS, Paris

in collaboration with Gavin Salam and Mathieu Rubin¹

50th Cracow School of Theoretical Physics, Zakopane, June 9-19, 2010

¹M.Rubin, G.P.Salam and SS, arXiv:1006.2144 [hep-ph]

4 **A** N A **B** N A **B** N

The problem of giant K factors

 \blacktriangleright Z+j at the LHC

$$H_{T,jets} = \sum_{all jets} p_{t,j}$$

∃ → < ∃ →</p>

LO:

The problem of giant K factors

Z+j at the LHC

$$H_{T,jets} = \sum_{all jets} p_{t,j}$$

► The large K factor for the Z+jet comes from the new "dijet type" topologies that appear at NLO z 2 | q | q

< Ξ > < Ξ >

- The large K factor for the Z+jet comes from the new "dijet type" topologies that appear at NLO

 z
 q

 g
 g

 g
 g

 g
 g

 g
 g

 g
 g

 g
 g

 g
 g

 g
 g
- ► The above diagrams can be viewed as LO for Z+2jets. This raises doubts about the accuracy of the p_{t,j1} and H_T spectra for Z+jet at NLO!

A B F A B F

- The large K factor for the Z+jet comes from the new "dijet type" topologies that appear at NLO

 z
 q

 g
 g

 g
 g

 g
 g

 g
 g

 g
 g

 g
 g

 g
 g

 g
 g
- ► The above diagrams can be viewed as LO for Z+2jets. This raises doubts about the accuracy of the p_{t,j1} and H_T spectra for Z+jet at NLO!

We notice that					
Z+j at NNLO	=	Z+j at NNLO Born	+	Z+j at NNLO 1-loop	+ Z+j at NNLO 2-loop
					1
		Z+2j at NLO		?	

→ ∃ > < ∃ >

- The large K factor for the Z+jet comes from the new "dijet type" topologies that appear at NLO

 z
 q

 g
 g

 g
 g

 g
 g

 g
 g

 g
 g

 g
 g

 g
 g

 g
 g
- ► The above diagrams can be viewed as LO for Z+2jets. This raises doubts about the accuracy of the p_{t,j1} and H_T spectra for Z+jet at NLO!

We notice that					
Z+j at NNLO	=	Z+j at NNLO Born	+	Z+j at NNLO 1-loop	+ Z+j at NNLO 2-loop ↑
		Z+2j at NLO		?	

Hence, we do not have the 2-loop part

- but it will have the topology of Z+j at LO so it will not contribute much to the cross sections with giant K-factor
- we need it, however, to cancel the infrared and collinear divergences of the real part

How to cancel the infrared and collinear singularities without having the 2-loop contributions?

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

э

How to cancel the infrared and collinear singularities without having the 2-loop contributions?

use unitarity to simulate the divergent part of 2-loop diagrams

・ロト ・ 四ト ・ ヨト ・ ヨト

How to cancel the infrared and collinear singularities without having the 2-loop contributions?

use unitarity to simulate the divergent part of 2-loop diagrams

How to cancel the infrared and collinear singularities without having the 2-loop contributions?

use unitarity to simulate the divergent part of 2-loop diagrams

notation: n
NLO – approx. NNLO with exact 1-loop and simulated 2-loop

How to cancel the infrared and collinear singularities without having the 2-loop contributions?

use unitarity to simulate the divergent part of 2-loop diagrams

- notation: n
 NLO approx. NNLO with exact 1-loop and simulated 2-loop
- this will still not be equivalent to the full NNLO result but it should give very good approximation for the processes with large K factors

$$\sigma_{\bar{n}}_{\text{NLO}} = \sigma_{\text{NNLO}} \left(1 + \mathcal{O} \left(\frac{\alpha_s^2}{K_{\text{NNLO}}} \right) \right) \,, \quad K_{\text{NNLO}} \gtrsim K_{\text{NLO}} \gg 1$$

イロト イポト イヨト イヨト

Input event

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

2

• clustering $ij \rightarrow k$ is reinterpreted as the splitting $k \rightarrow ij$

Sebastian Sapeta (LPTHE, Paris)

Addressing giant QCD K-factors at hadron colliders

▲□ ▶ ▲ □ ▶ ▲ □ ▶

• clustering $ij \rightarrow k$ is reinterpreted as the splitting $k \rightarrow ij$

Sebastian Sapeta (LPTHE, Paris)

Addressing giant QCD K-factors at hadron colliders

→ ∃ > < ∃ >

- The second sec

- ▶ clustering $ij \rightarrow k$ is reinterpreted as the splitting $k \rightarrow ij$
- weight of an event $\sim (-1)^{\text{number of loops}}$

・ロト ・聞ト ・ヨト ・ヨト

- clustering $ij \rightarrow k$ is reinterpreted as the splitting $k \rightarrow ij$
- weight of an event $\sim (-1)^{\text{number of loops}}$
- beware: the loops above are just a shortcut notation!

<ロ> (日) (日) (日) (日) (日)

The LoopSim method: some more details

For a given input E_n event with *n* final state particles the weights of all diagrams generated by LoopSim sum up to zero

$$\sum_{\text{all diagrams}} w_n = \sum_{\ell=0}^{\upsilon} (-1)^{\ell} \binom{\upsilon}{\ell} = 0 \,,$$

 $\ell-\mathsf{number}$ of loops, $\upsilon-\mathsf{maximal}\ \ell$

(4回) (4回) (4回)

The LoopSim method: some more details

For a given input E_n event with *n* final state particles the weights of all diagrams generated by LoopSim sum up to zero

$$\sum_{\text{all diagrams}} w_n = \sum_{\ell=0}^{\upsilon} (-1)^{\ell} {\upsilon \choose \ell} = 0, \qquad \ell - \text{number of loops, } \upsilon - \text{maximal } \ell$$

The principle of the method looks rather simple. However, there is a number of issues that need to be addressed to fully specify the procedure and make it usable:

・ 同 ト ・ ヨ ト ・ ヨ ト

The LoopSim method: some more details

For a given input E_n event with *n* final state particles the weights of all diagrams generated by LoopSim sum up to zero

$$\sum_{\text{all diagrams}} w_n = \sum_{\ell=0}^{\upsilon} (-1)^{\ell} {\upsilon \choose \ell} = 0, \qquad \ell - \text{number of loops, } \upsilon - \text{maximal } \ell$$

The principle of the method looks rather simple. However, there is a number of issues that need to be addressed to fully specify the procedure and make it usable:

- infrared and collinear safety
- conservation of four-momentum
- choice of jet definition (algorithm, value of R)
- treatment of flavour (e.g. for processes with vector bosons)
 - Z boson can be emitted only from quarks and never emits itself
- extension to input events with exact loops; for example:

$$Z + j@\bar{n}NLO = Z + j@NLO + LoopSim \circ (Z + 2j@NLO_{only})$$

Validation

Sebastian Sapeta (LPTHE, Paris)

Addressing giant QCD K-factors at hadron colliders

イロン イヨン イヨン イヨン

process fills the bill: giant K factor due to a boost caused by initial state rad.

3 x 4 3 x

process fills the bill: giant K factor due to a boost caused by initial state rad.

 $\blacktriangleright Z@\bar{n}NLO = Z@NLO + LoopSim \circ (Z + j@NLO_{only})$

B > 4 B >

- process fills the bill: giant K factor due to a boost caused by initial state rad.
- ► $Z@\bar{n}NLO = Z@NLO + LoopSim \circ (Z + j@NLO_{only})$
- ▶ the agreement between NLO and nLO may serve as a indication whether the method works for a given observable, Z@nLO = Z@LO+LoopSim ∘ (Z+j@LO)

4 15 16 16 16 16

- process fills the bill: giant K factor due to a boost caused by initial state rad.
- ► $Z@\overline{n}NLO = Z@NLO + LoopSim \circ (Z + j@NLO_{only})$
- ► the agreement between NLO and nLO may serve as a indication whether the method works for a given observable, Z@nLO = Z@LO+LoopSim ∘ (Z+j@LO)
- three regions of $p_{t,\max}$: $\lesssim \frac{1}{2}M_Z$ $[\frac{1}{2}M_Z, 58 \,\mathrm{GeV}] > 58 \,\mathrm{GeV}$

- process fills the bill: giant K factor due to a boost caused by initial state rad.
- ► $Z@\bar{n}NLO = Z@NLO + LoopSim \circ (Z + j@NLO_{only})$
- ▶ the agreement between NLO and nLO may serve as a indication whether the method works for a given observable, Z@nLO = Z@LO+LoopSim ∘ (Z+j@LO)

Þ	three regions of $p_{t,\max}$:	$\lesssim rac{1}{2}M_Z$	$[\frac{1}{2}M_Z, 58{ m GeV}]$	$> 58{ m GeV}$
	agreement at NLO	very good	excellent	perfect
		(not guaranteed)	(expected)	(expected)

▶ process fills the bill: giant K factor due to a boost caused by initial state rad.

- ► $Z@\overline{n}NLO = Z@NLO + LoopSim \circ (Z + j@NLO_{only})$
- ► the agreement between NLO and nLO may serve as a indication whether the method works for a given observable, Z@nLO = Z@LO+LoopSim ∘ (Z+j@LO)

three regions of $p_{t,\max}$:	$\lesssim rac{1}{2}M_Z$	$[\frac{1}{2}M_Z, 58{ m GeV}]$	$> 58{ m GeV}$
agreement at NLO	very good	excellent	perfect
and at NNLO	(not guaranteed)	(expected)	(expected)

4 3 5 4 3 5 6

▶ process fills the bill: giant K factor due to a boost caused by initial state rad.

- ► $Z@\bar{n}NLO = Z@NLO + LoopSim \circ (Z + j@NLO_{only})$
- ► the agreement between NLO and nLO may serve as a indication whether the method works for a given observable, Z@nLO = Z@LO+LoopSim ∘ (Z+j@LO)

three regions of $p_{t,\max}$:	$\lesssim rac{1}{2}M_Z$	$[\frac{1}{2}M_Z, 58{ m GeV}]$	$> 58{ m GeV}$
agreement at NLO	very good	excellent	perfect
and at NNLO	(not guaranteed)	(expected)	(expected)

negligible dependence on R_{LS}

►
$$Z + j@\bar{n}LO = Z + j@LO + LoopSim \circ (Z + 2j@LO)$$

Sebastian Sapeta (LPTHE, Paris)

Addressing giant QCD K-factors at hadron colliders

ヘロト ヘロト ヘヨト ヘヨト

2

► $Z + j@\bar{n}LO = Z + j@LO + LoopSim \circ (Z + 2j@LO)$

- *p*_{t,Z} (lack of large K-factor):
 - finite loop contributions matter
 - correctly reproduced dip towards $p_t = 200 \text{ GeV}$

B > 4 B >

► $Z + j@\bar{n}LO = Z + j@LO + LoopSim \circ (Z + 2j@LO)$

- *p*_{t,Z} (lack of large K-factor):
 - finite loop contributions matter
 - correctly reproduced dip towards p_t = 200 GeV
- ▶ p_{t,j}, H_{T,jets} (giant K-factor):
 - very good agreement between nLO and NLO

E 5 4 E 5

► $Z + j@\bar{n}LO = Z + j@LO + LoopSim \circ (Z + 2j@LO)$

- *p*_{t,Z} (lack of large K-factor):
 - finite loop contributions matter
 - correctly reproduced dip towards $p_t = 200 \text{ GeV}$
- ▶ p_{t,j}, H_{T,jets} (giant K-factor):
 - very good agreement between nLO and NLO
- small R uncertainties driven only by subleading diagrams

*n***NLO** at LHC

Sebastian Sapeta (LPTHE, Paris)

Addressing giant QCD K-factors at hadron colliders

イロト イヨト イヨト イヨト

э

Z+jet at $\bar{n}NLO = Z+j@NLO + LoopSimo(Z+2j@NLO_{only})$

*p*_{t,Z}: no correction; topology (A) dominant at high *p*_{t,Z} (extra loops w.r.t. NLO do not change much)

Z+jet at $\bar{n}NLO = Z+j@NLO + LoopSimo(Z+2j@NLO_{only})$

Z+jet at $\bar{n}NLO = Z+j@NLO + LoopSimo(Z+2j@NLO_{only})$

*p*_{t,Z}: no correction; topology (A) dominant at high *p*_{t,Z} (extra loops w.r.t. NLO do not change much)

- *p*_{t,j}: small correction; *n*NLO is like NLO for the dominant
 (B) and (C) configurations and it behaves like healthy NLO
- ► H_{T,jets}: significant correction; K factor ~ 2; given that its more like going from LO to NLO this may happen sometimes, especially for nontrivial observables like H_T; can be checked explicitly with jets

(A)

(B)

(C)

ηz

z ?

 $\gamma\gamma\gamma\gamma$

 Z+jet at NNLO like dijets at NLO (same topology, Z only provides the enhancement O(α_s ln² p_{t,j1}/m_Z))

▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ .

Z+jet at NNLO like dijets at NLO

(same topology, Z only provides the enhancement $\mathcal{O}(\alpha_s \ln^2 p_{t,j1}/m_Z))$

4 E 5

Z+jet at NNLO like dijets at NLO

(same topology, Z only provides the enhancement $\mathcal{O}(\alpha_s \ln^2 p_{t,j1}/m_Z))$

- H_T for dijets receives large contributions at NLO!
 - caused by appearance of the third jet from initial state radiation

b) a) The b

Z+jet at NNLO like dijets at NLO

(same topology, Z only provides the enhancement $\mathcal{O}(\alpha_s \ln^2 p_{t,j1}/m_Z))$

- ► *H*_T for dijets receives large contributions at NLO!
 - caused by appearance of the third jet from initial state radiation
- ▶ if the same is valid for Z + j we should see only small correction for H_{T,j2} = ∑²_{i=1} p_{t,ji}

A B F A B F

Z+jet at NNLO like dijets at NLO

(same topology, Z only provides the enhancement $\mathcal{O}(lpha_s \ln^2 p_{t,j1}/m_{
m Z}))$

A B > A B >

dijets

LO p_{1/2} & H_T/2

H_T for dijets receives large contributions at NLO!

10

- caused by appearance of the third jet from initial state radiation
- ▶ if the same is valid for Z + j we should see only small correction for H_{T,j2} = ∑²_{i=1} p_{t,ji}
 - and indeed it is small!

▶ $\mathbf{p}_{\mathbf{j},\mathbf{1}}$: good convergence at high $\mathbf{p}_{\mathbf{t}}$, worse at lower $\mathbf{p}_{\mathbf{t}}$ where the subprocesses involving gluons dominate which deteriorates the convergence of the perturbative series: $(C_A \frac{\alpha_s}{\pi})^n$ rather than $(C_F \frac{\alpha_s}{\pi})^n$

A B F A B F

- ▶ $\mathbf{p}_{j,1}$: good convergence at high \mathbf{p}_t , worse at lower \mathbf{p}_t where the subprocesses involving gluons dominate which deteriorates the convergence of the perturbative series: $(C_A \frac{\alpha_s}{\pi})^n$ rather than $(C_F \frac{\alpha_s}{\pi})^n$
- $H_{T,3}$ converges, H_T does not: again caused by the initial state radiation, this time a second emission which shifts the distribution of H_T to higher values and causes no effect for the $H_{T,3}$ distribution

A D b 4 A b

A B A A B A

Summary

- several cases of observables with giant NLO K factor exist
- those large corrections arise due to the appearance of new topologies at NLO
- we developed a method, called LoopSim, which allows one to obtain approximate NNLO corrections for such processes
- the method is based on unitarity and makes use of combining NLO results for different multiplicities
- we gave arguments why the method should produce meaningful results and we validated it against NNLO Drell-Yan and also NLO Z+j and NLO dijets
- we computed approximated NNLO corrections to Z+j and dijets at the LHC finding, depending on observable, either indication of convergence of the perturbative series or further corrections
- ▶ the latter has been understood and attributed to the initial state radiation

Outlook

▶ processes with *W*, multibosons, heavy quarks, ...

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・