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The problem of giant K factors

◮ Z+j at the LHC HT ,jets =
∑

all jets pt,j
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What do we have and what is missing?

◮ The large K factor for the Z+jet comes from the new “dijet type” topologies
that appear at NLO Z
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◮ The above diagrams can be viewed as LO for Z+2jets. This raises doubts
about the accuracy of the pt,j1 and HT spectra for Z+jet at NLO!
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about the accuracy of the pt,j1 and HT spectra for Z+jet at NLO!
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We notice that

Z+j at NNLO = Z+j at NNLO + Z+j at NNLO + Z+j at NNLO
Born 1-loop 2-loop

︸ ︷︷ ︸
↑

Z+2j at NLO ?

Hence, we do not have the 2-loop part

◮ but it will have the topology of Z+j at LO so it will not contribute much to the

cross sections with giant K-factor

◮ we need it, however, to cancel the infrared and collinear divergences of the real part
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The basic idea

How to cancel the infrared and collinear singularities without having the 2-loop
contributions?
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The basic idea

How to cancel the infrared and collinear singularities without having the 2-loop
contributions?

◮ use unitarity to simulate the divergent part of 2-loop diagrams

LoopSim procedure

input:
event with n final

state particles

output:
all n − k final state

particle events
(equivalently all k loop events)

LoopSim
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◮ use unitarity to simulate the divergent part of 2-loop diagrams

LoopSim procedure

input:
event with n final

state particles

output:
all n − k final state

particle events
(equivalently all k loop events)

LoopSim

◮ notation: n̄NLO – approx. NNLO with exact 1-loop and simulated 2-loop

◮ this will still not be equivalent to the full NNLO result but it should give
very good approximation for the processes with large K factors

σn̄NLO = σNNLO

(
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, KNNLO & KNLO ≫ 1
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The LoopSim method
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The LoopSim method

◮ clustering ij → k is reinterpreted as the splitting k → ij
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The LoopSim method

◮ clustering ij → k is reinterpreted as the splitting k → ij

◮ weight of an event ∼ (−1)number of loops
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Output 1−loop event 2nd output 1−loop event
(loop over beam)

Output 2−loop event
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The LoopSim method

◮ clustering ij → k is reinterpreted as the splitting k → ij

◮ weight of an event ∼ (−1)number of loops

◮ beware: the loops above are just a shortcut notation!

4
2

1

3

beam

Input event

jet clustering

3

4
2

1

Attributed emission seq.

3

4

2

1

Born particle id.

Output 1−loop event 2nd output 1−loop event
(loop over beam)

Output 2−loop event

Sebastian Sapeta (LPTHE, Paris) Addressing giant QCD K-factors at hadron colliders 5 / 14



The LoopSim method: some more details

For a given input En event with n final state particles the weights of all diagrams
generated by LoopSim sum up to zero

∑

all diagrams

wn =

υ∑

ℓ=0

(−1)ℓ

(
υ

ℓ

)

= 0 , ℓ − number of loops, υ − maximal ℓ
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The principle of the method looks rather simple. However, there is a number of
issues that need to be addressed to fully specify the procedure and make it usable:
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∑

all diagrams

wn =

υ∑

ℓ=0

(−1)ℓ

(
υ

ℓ

)

= 0 , ℓ − number of loops, υ − maximal ℓ

The principle of the method looks rather simple. However, there is a number of
issues that need to be addressed to fully specify the procedure and make it usable:

◮ infrared and collinear safety

◮ conservation of four-momentum

◮ choice of jet definition (algorithm, value of R)

◮ treatment of flavour (e.g. for processes with vector bosons)
◮ Z boson can be emitted only from quarks and never emits itself

◮ extension to input events with exact loops; for example:

Z + j@n̄NLO = Z + j@NLO + LoopSim ◦ (Z + 2j@NLOonly)
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Validation
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Drell-Yan at NNLO: spectrum of harder lepton
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◮ process fills the bill: giant K factor due to a boost caused by initial state rad.
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◮ Z@n̄NLO = Z@NLO + LoopSim ◦ (Z + j@NLOonly)

◮ the agreement between NLO and n̄LO may serve as a indication whether
the method works for a given observable, Z@n̄LO = Z@LO+LoopSim ◦ (Z+j@LO)
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◮ the agreement between NLO and n̄LO may serve as a indication whether
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◮ Z@n̄NLO = Z@NLO + LoopSim ◦ (Z + j@NLOonly)

◮ the agreement between NLO and n̄LO may serve as a indication whether
the method works for a given observable, Z@n̄LO = Z@LO+LoopSim ◦ (Z+j@LO)

◮ three regions of pt,max : . 1
2MZ [ 1

2MZ , 58 GeV] > 58 GeV

agreement at NLO very good excellent perfect
(not guaranteed) (expected) (expected)
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◮ process fills the bill: giant K factor due to a boost caused by initial state rad.

◮ Z@n̄NLO = Z@NLO + LoopSim ◦ (Z + j@NLOonly)

◮ the agreement between NLO and n̄LO may serve as a indication whether
the method works for a given observable, Z@n̄LO = Z@LO+LoopSim ◦ (Z+j@LO)

◮ three regions of pt,max : . 1
2MZ [ 1

2MZ , 58 GeV] > 58 GeV

agreement at NLO very good excellent perfect
and at NNLO (not guaranteed) (expected) (expected)
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Drell-Yan at NNLO: spectrum of harder lepton
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◮ process fills the bill: giant K factor due to a boost caused by initial state rad.

◮ Z@n̄NLO = Z@NLO + LoopSim ◦ (Z + j@NLOonly)

◮ the agreement between NLO and n̄LO may serve as a indication whether
the method works for a given observable, Z@n̄LO = Z@LO+LoopSim ◦ (Z+j@LO)

◮ three regions of pt,max : . 1
2MZ [ 1

2MZ , 58 GeV] > 58 GeV

agreement at NLO very good excellent perfect
and at NNLO (not guaranteed) (expected) (expected)

◮ negligible dependence on RLS
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Z+jet at NLO

◮ Z + j@n̄LO = Z + j@LO + LoopSim ◦ (Z + 2j@LO)

Sebastian Sapeta (LPTHE, Paris) Addressing giant QCD K-factors at hadron colliders 9 / 14



Z+jet at NLO

◮ Z + j@n̄LO = Z + j@LO + LoopSim ◦ (Z + 2j@LO)
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◮ pt,Z (lack of large K-factor):
◮ finite loop contributions matter
◮ correctly reproduced dip towards pt = 200 GeV
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Z+jet at NLO

◮ Z + j@n̄LO = Z + j@LO + LoopSim ◦ (Z + 2j@LO)
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◮ small R uncertainties – driven only by subleading diagrams
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n̄NLO at LHC
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Z+jet at n̄NLO = Z+j@NLO + LoopSim◦(Z+2j@NLOonly)
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Z+jet at n̄NLO = Z+j@NLO + LoopSim◦(Z+2j@NLOonly)
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Z+jet at n̄NLO = Z+j@NLO + LoopSim◦(Z+2j@NLOonly)
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◮ pt,Z : no correction; topology (A) dominant at high pt,Z

(extra loops w.r.t. NLO do not change much)

◮ pt,j : small correction; n̄NLO is like NLO for the dominant
(B) and (C) configurations and it behaves like healthy NLO

◮ HT ,jets: significant correction; K factor ∼ 2; given that its
more like going from LO to NLO this may happen
sometimes, especially for nontrivial observables like HT ;
can be checked explicitly with jets

(A)
g

Z

q

(B)

Z

g

g

q

(C)

Z

g

g

q

Sebastian Sapeta (LPTHE, Paris) Addressing giant QCD K-factors at hadron colliders 11 / 14



HT type observables at n̄NLO for Z+jet and for dijets

◮ Z+jet at NNLO like dijets at NLO
(same topology, Z only provides the enhancement O

(
αs ln2 pt,j1/mZ

)
)
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◮ HT for dijets receives large contributions at NLO!
◮ caused by appearance of the third jet from

initial state radiation
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◮ HT for dijets receives large contributions at NLO!
◮ caused by appearance of the third jet from

initial state radiation

◮ if the same is valid for Z + j we should see only

small correction for HT ,j2 =
∑2

i=1 pt,ji
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◮ and indeed it is small!
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Dijets at n̄NLO
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◮ pj,1: good convergence at high pt, worse at lower pt where the
subprocesses involving gluons dominate which deteriorates the convergence
of the perturbative series: (CA

αs

π
)n rather than (CF

αs

π
)n
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◮ pj,1: good convergence at high pt, worse at lower pt where the
subprocesses involving gluons dominate which deteriorates the convergence
of the perturbative series: (CA
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)n rather than (CF
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◮ HT,3 converges, HT does not: again caused by the initial state radiation,
this time a second emission which shifts the distribution of HT to higher
values and causes no effect for the HT ,3 distribution
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Summary

◮ several cases of observables with giant NLO K factor exist

◮ those large corrections arise due to the appearance of new topologies at NLO

◮ we developed a method, called LoopSim, which allows one to obtain
approximate NNLO corrections for such processes

◮ the method is based on unitarity and makes use of combining NLO results
for different multiplicities

◮ we gave arguments why the method should produce meaningful results and
we validated it against NNLO Drell-Yan and also NLO Z+j and NLO dijets

◮ we computed approximated NNLO corrections to Z+j and dijets at the LHC
finding, depending on observable, either indication of convergence of the
perturbative series or further corrections

◮ the latter has been understood and attributed to the initial state radiation

Outlook

◮ processes with W , multibosons, heavy quarks, . . .
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