Gauge/Cosmology duality from AdS/CFT

Robi Peschanski ^a
(IPhT, Saclay)
Cracow School, 50th anniversary, Zakopane, 2010

- Gauge/Gravity Duality: the other facet
 Little Bang/Big Bang Relation?
- The AdS/CFT Correspondence

Brief reminder

- The Two-Brane Geometry

 Brane-world Cosmology/Moving Isotropic Plasma
- Gauge/Cosmology Duality and Dark Energy
 Conformal Anomaly/Cosmic Acceleration
- Conclusion and Intriguing Aspects

Bulk viscosity/e-foldings

awith Philippe Brax, IPhT

From the Little Bang to the Big Bang?

Viscosity on the light of duality

Consider a graviton that falls on this stack of N D3-branes Will be absorbed by the D3 branes.

The process of absorption can be looked at from two different perspectives:

Absorption by D3 branes (\sim viscosity) = absorption by black hole

Viscosity and BH/Plasma Duality: Policastro, Son, Starinets; Perfect fluid and Expanding BH/Cooling Plasma: "Janik, R."P.

Many Developments: ...

AdS/CFT Correspondence

J.Maldacena (1998)

GAUGE

Gravity Source

Macroscopic

$$(g_S N)^{-1} > 0$$

 $AdS_5 \times S_5$ Superstring

Weak Gravity

Strong Gravity

N-Branes

Duality

Microscopic

SU(N) Gauge Theory on the N-Branes

Strong Coupling

Weak Coupling

Why $\mathsf{AdS}_5 \otimes S_5$

• D_3 -brane Solution of Super Gravity:

$$ds^{2} = f^{-1/2}(-dt^{2} + \sum_{1}^{3} dx_{n}^{2}) + f^{1/2}(dr^{2} + r^{2}d\Omega_{5})$$

"On-Branes × Out-Branes"

$$f = 1 + \frac{R^4}{r^4}$$
; $R^4 = 4\pi g_{YM}^2 \alpha'^2 N$

"Maldacena limit": Strong coupling

$$\frac{\alpha'(\to 0)}{r(\to 0)} \to z$$
, $R \ fixed \Rightarrow g_{YM}^2 N \to \infty$

$$ds^{2} = \frac{1}{z^{2}}(-dt^{2} + \sum_{1-3} dx_{n}^{2} + dz^{2}) + R^{2}d\Omega_{5}$$

Background Structure: $AdS_5 \times S_5$

The Gauge-Gravity Correspondence

Open ⇔ Closed String duality

 $Closed\ String\ \Leftrightarrow\ 1-loop\ Open\ String$

 $Gravity \Leftrightarrow Gauge$

D-Brane "Universe" \Rightarrow Open String Ending

 $Small/Large\ Distance \Rightarrow Gauge/Gravity\ Correspondence$

The Brane-to-Brane Geometry

$$z=1 \Rightarrow Cosmological\ Brane$$
 $z=0 \Rightarrow Holographic\ Brane\ (AdS\ Boundary)$
 $0 < z < 1 \Rightarrow Bulk\ AdS_5\ Gravity$
 $z > 1 \Rightarrow z \rightarrow 1/z\ AdS_5\ metric$
 $Brane \leftrightarrows Brane \Rightarrow Gauge/Cosmology\ Duality$

Holography at work

Brane → Bulk: Holographic Renormalization

K.Skenderis (2002)

Bulk metric

$$ds^2 = \frac{g_{\mu\nu}(z) dx^{\mu}dx^{\nu} + dz^2}{z^2}$$

(in Fefferman-Graham Coordinates)

• $5d \Rightarrow 4d$ metric:

$$g_{\mu\nu}(z) = g_{\mu\nu}^{(0)}(\neq \eta_{\mu\nu}) + z^2 g_{\mu\nu}^{(2)}(\neq 0) + z^4 g_{\mu\nu}^{(4)}(\neq \langle T_{\mu\nu} \rangle) + \mathbf{z}^6 \dots +$$

 $+z^6 \dots +:$ from Einstein Eqs.

Energy-Momentum Tensor:

$$\langle T_{\mu\nu}\rangle = \frac{2l^3}{\kappa_5^2} \left\{ g_{\mu\nu}^{(4)} - \frac{1}{8} g_{\mu\nu}^{(0)} \left[(\text{Tr}(g^{(2)}))^2 - (\text{Tr}g^{(2)})^2 \right] - \frac{1}{2} g_{\mu\rho}^{(2)} g^{(0)\rho\sigma} g_{\sigma\nu}^{(2)} + \frac{1}{4} (\text{Tr}g^{(2)}) g_{\mu\nu}^{(2)} \right\} \right\}$$

Note: Curved 4d metric, non Minkowskian (\rightarrow FRW)

The Cosmology Brane

Brane-World Cosmology

Binetruy, Deffayet, Ellwanger, Langlois (2000)

$$\langle T \rangle_B = diag(-\rho_B, \rho_B, \rho_B, \rho_B, \rho_B) \Rightarrow \langle T \rangle_b = diag(-\rho_b, p_b, p_b, p_b)$$

(tuning Λ with Israel Conditions)

Induced Friedmann equation

$$H^2 l^2 = -1 + \frac{\rho_b^2}{\rho_\Lambda^2} + \frac{\mathcal{C}}{a_0^4}$$

The Gauge Brane

• Isotropically Expanding Plasma in AdS/CFT

Kajantie, Tahkokallio (2007)

$$ds_5^2 = \frac{l^2}{z^2} \left[dz^2 - \frac{dt_K^2}{l^2} \frac{h^2 r^2}{b(t_K, z)} \left(1 + A_2 z^2 + A_4 z^4 \right)^2 + \frac{dx^2}{l^2} b(t_K, z) \right]$$

 $b(t_K, z), A_2, A_4$, functions of r, h, and t_K derivatives

Gauge/Gravity duality

$$\frac{l^3}{\kappa_5^2} = \frac{N_c^2}{4\pi^2}$$

Brane-to-Brane Duality

Isotropically Expanding Plasma in AdS/CFT

Brax, R.P. (2010), to appear

$$ds_5^2 = \frac{l^2}{z^2} \left[dz^2 - \frac{dt_B^2}{l^2} \left(\frac{H^2 l^2 / 2 + \dot{H} l^2}{2} - z^2 \right)^2 + \frac{dx^2}{l^2} a_0^2(t_B) \left(\frac{H^2 l^2}{4} - z^2 \right)^2 \right]$$

Brane-to-Brane Space-Time Relations

$$r(t_K) = \frac{H^2 l^2}{4} \ a_0(t_B) \qquad \frac{1}{h} \frac{dr}{dt_K} = \frac{da_0}{dt_B}$$

Gauge/Cosmology Duality

• $\mathcal{N}=4$ SYM Energy-Momentum Tensor

$$T_b^{\mu\nu} = (\epsilon_b + p_b)u^{\mu}u^{\nu} - p_b\eta^{\mu\nu}$$

Duality Relations

$$\frac{r^2}{a_0^2} = \frac{1}{4} \left\{ \frac{\rho^2}{\rho_{\Lambda}^2} + \frac{\mathcal{C}}{a_0^4} \right\} : \quad \rho_b \equiv \rho_{\Lambda} + \rho$$

$$\rho_K = \frac{3N_c^2}{8\pi^2} \frac{a_0^4}{r^4} \left(\frac{\mathcal{C}}{a_0^4} + \frac{H^4 l^4}{4} \right) : \text{ Energy density}$$

$$\rho_K - 3p_K = \frac{\ddot{a}_0}{a_0} \; \frac{3N_c^2}{8\pi^2} \; \left(\frac{a_0}{r}\right)^3 \; \epsilon_K \frac{da_0}{dr} : \quad \text{Trace Anomaly}$$

Covariant Acceleration/Anomaly Relation

$$\sqrt{-g_B} dt_B H^2 \frac{\ddot{a}_0}{a_0} = \sqrt{-g_K} dt_K \frac{8\pi^2}{3N_c^2} (\rho_K - 3p_K)$$

Plasma/Cosmology Duality

Equations of State: Holographic brane

$$w_{eff} \equiv \frac{p_H}{\rho_H} = -\frac{w}{2+3w}$$

Duality Relations

$$Matter\ Cosmology\ \omega = 0 \ \Leftrightarrow \ \omega_{eff} = 0$$

$$Dark\ energy\ \omega = -1 \ \Leftrightarrow \ \omega_{eff} = -1$$
 $No\ acceleration\ \omega = -1/3 \ \Leftrightarrow \ \omega_{eff} = 1/3 = Perfect\ Fluid$

Holographic expansion/contraction

$$a_0 \sim t_B^{\frac{2}{3(1+w)}} \quad \Leftrightarrow \quad a_H(t) \sim t_K^{\frac{2}{3(1+w_{eff})}} = t_K^{-\frac{2(2+3w)}{3(1+w)}}$$

Matter Cosmology $\omega > -2/3 \Leftrightarrow Plasma\ Contraction$ Dark energy $\omega < -2/3 \Leftrightarrow Plasma\ Expansion$

Conclusions

- Brane-to-Brane Duality
 Through a Bulk 5d metric
- Conformal Anomaly \Leftrightarrow Cosmic acc- (vs. de-) celeration Conformal Anomaly \sim Bulk Viscosity
- Gauge/Cosmology Duality
 Plasma expansion (vs. contraction) \Leftrightarrow Cosmological
 Cst. (vs. Matter/Radiation) eras

An intriguing Relation:

$$\mathcal{A} \equiv \lim_{N_c \to \infty} \frac{8\pi^2}{3} \frac{\rho_H - 3p_H}{N_c^2} = \mathcal{E}^4$$
 Anomaly by d.o.f.

$$dN_B = H \ dt_B = d \log a_0$$
 Number of e-foldings

$$\Delta \tau \Delta \mathcal{E} \sim \Delta N_B = O(1)$$

Quantum/Classical Identity