Status of SuperKEKB and Belle II

~900m AMSL

-

SuperKEKB 50 ab⁻¹

KEKB

RELLE

Beautiful physics needs beautiful enviroments esorts 80 km

Pacific ocean 50km

chtseein

Tsukuba is nice place to study charm and beauty

Spa (Onsen) 120 km

100

Outline

- Why SuperKEKB / Belle II
- Belle and KEKB legacy
- SuperKEKB upgrade
- Belle II detector
- Background expectations
- Distributed computing for Belle II (Grids, Clouds)
- Belle II Collaboration
- Conclusions

Why we need SuperKEKB & Belle II

- •Flavour physics is experimentaly driven field: e.g. the SM : only organisational principles and consistency relations
- Most of the KEKB/Belle CPV measurements (~1ab⁻¹) are statistically limited → improve them for further scrutiny of theory predictions
 e.g. some of the measurements suggest 'tensions' w.r.t the SM values (too low stat. significance to claim discovery)
- •Clean, low multiplicity experiment, with complete final state reconstruction, many direct measurements with no ref. to $MC \rightarrow good$ chance to see the 'unexpected'

Belle Legacy

 $\bar{\rho}+i\bar{\eta}=-(V_{ud}V_{ub}^*)/(V_{cd}V_{cb}^*)$

• Confirmed the SM Kobayashi-Maskawa mechanism of CP violation

Examples of measurements to look for NP

Examples of measurements to look for NP

Flavour Physics in the LHC Era

SuperKEKB measurements are complementary to direct searches for NP at the LHC

RVV2 FBMSSM AC AKM δLL LHT RS $D^0 = \overline{D}^0$ *** * * * × *** ? *** *** * * * ** *** EK Suo *** *** *** *** * * *** Soks *** ** *** *** ? * * $A_{\rm CP} \left(B \to X_s \gamma \right)$ *** ? * * *** * * *** *** ? $A_{7.8}(B \rightarrow K^* \mu^+ \mu^-)$ * * * ** $A_9(B ightarrow K^* \mu^+ \mu^-)$ * * * * * * ? $B \rightarrow K^{(*)} \nu \overline{\nu}$ * * * * * * * *** *** *** *** $B_s \rightarrow \mu^+ \mu^-$ *** * * $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ * * * * * *** *** $K_L \rightarrow \pi^0 \nu \bar{\nu}$ * * * * *** × *** *** *** *** *** *** *** *** $\mu \rightarrow e\gamma$ *** *** * *** *** *** *** $\tau \rightarrow \mu \gamma$ *** *** *** *** *** $\mu + N \rightarrow e + N$ *** *** *** *** *** d_n ** *** *** * d_e *** *** ** * *** * *** $(g-2)_{\mu}$ ** *** * 7 *** *** ***

'DNA test' of NP

Altmannshofer, Buras, Gori, Paradis and Straub Nucl.Phys.B830, 17-94, 2010

KEKB Legacy

KEKB performance

- •World record luminosity: 2.1 x 10^{34} cm⁻²s⁻¹ , twice the design value
- 1 ab⁻¹ of integrated luminosity
- Still 'kicking' till end o June 2010

Henryk Palka

SuperKEKB goal: x40 luminosity increase

Henryk Palka

SuperKEKB: nano-beams collision scheme

SuperKEKB upgrade

S-KEKB Luminosity Projection

Belle II Detector

Designed for improved performance and to cope with higher event rates and backgrounds

KLM: RPC & Scint+SiPM CsI(TI) & CsI ECL: Belle II PID: TOP & AF-RICH Barrel PIC Endcap larger drift chamber CDC: SVD: 2 DEPFET pixels layers + 4 DSSD layers new DAQ: dead time free readout, high speed BELLE

PXD based on DEPFET Sensor

Henryk Palka

PXD Layout, Control & DAQ

Henryk Palka

PXD Mechanics, Outer Layer

(construction: K. Ackermann, MPI)

Henryk Palka

50 Cracow School of Theoretical Physics, Zakopane, 12.06.2010

18

Belle II SVD

- •4 layers R=4-12cm (lever arm, K^o eff.)
- •Slanted Fwd (cluster size, less m.scatt. material)
- ·DSSD
- •Readout chips (APV25) thinned to 100µm, bonded on detectors (small capacitance \rightarrow good S/N)
- Rerouting with flex capton fan-out, wraped to opposite side

"Origami" design (HEPHY Vienna)

Henryk Palka

rphi APVs (p-side)

Belle II SVD Origami module prototypes

Henryk Palka

50 Cracow School of Theoretical Physics, Zakopane, 12.06.2010

20

Material budget of Si-Tracking System

Belle II Drift Chamber

PID: Time-of-Propagation Counter & Aerogel Focusing Rich

Henryk Palka

50 Cracow School of Theoretical Physics, Zakopane, 12.06.2010

24

Backgrounds: S-KEKB nano-beams scheme

- New scheme, no measurements, predictions are uncertain
- Expectation: independent Q magnets shall reduce background drastically compared to the shared Q

Scale factors wrt Belle, based on *I*, *Lumi, lifetime:*

Q works also as bending magnet for the outgoing beam

Background component	Scale factor wrt Belle		
SR from upstream	v.small (prelim.:50 beams, non- gaussian tails to be studied)		
SR from final Q (backscatter)	2/1600		
Beam gas	2-3		
Touschek	20-30	Scaled with	
Radiative Bhabha (charged)	40/1600	Dean in ennie	
Radiative Bhabha (neutral)	40-50		

Background S-KEKB nano-beams (educated guess)

Scaled according to the composition obtained a few years ago.

(Well) below x20.

Background composition will be updated.

→ For a conservative estimate we keep assuming 20 times Belle background level

Henryk Palka

Computing resources

Table 14.9: Expected a	mount	of stor	age and	CPU p	ower for	DST p	roduction.											
Fiscal year	2014	2015	2016	2017	2018	2019	2020		160									
(Apr.1-Mar.31)									100									
Raw data											withou	ıt						
size per year [PB]	6.6	13.1	52.4	72.0	85.1	85.1	72.0		140 -		Moore	'e law						
Total size [PB]	6.6	19.7	72.0	144.1	229.2	314.3	386.4					5 10 11						
mDST								_	120			ictor						
(per one version)								7\$	120 -		40%					_		
size per year [PB]	0.3	0.6	2.3	3.2	3.8	3.8	3.2				reduct	tion per						
Total size [PB]	0.3	0.9	3.2	6.4	10.2	14.0	17.2	0S1	100 -		year	-			_		-	
DST								ŭ										
(per one version)								ສ					_					
size per year [PB]	0.1	0.3	1.1	1.4	1.7	1.7	1.4	ot	80 -						_		-	
Total size [PB]	0.1	0.4	1.4	2.9	4.6	6.3	7.7	f										
CPU [kHepSPEC]	15.2	30.4	121.6	167.3	197.7	197.7	167.3	0	60 -						_		_	
								ate										
								Ĕ										
Table 14.10: Expected	amoun	t of sto	rage and	I CPU 1	power fo	r MC p	roduction	sti	40 -								-	
Fiscal year	2014	2015	2016	2017	2018	2019	2020	ш										
(Apr.1-Mar.31)									20 -						_		_	
MC data																		
size per year [PB]	0.9	1.8	7.0	9.6	11.4	11.4	9.6											
Total size [PB]	0.9	2.6	9.6	19.2	30.6	41.9	51.5		0 -		4.4	0045		0040	~	0.4.7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10
CPU [kHepSPEC]	30.0	60.1	240.2	330.3	390.4	390.4	330.3			20	14	2015		2016	20	717	20	18
							<u> </u>						Fisca	al Year				

Henryk Palka

Virtualisation basics

Old idea: IBM VM/370 in 80's

Virtual Machine Monitor

Belle II Distributed Computing

Belle II Collaboration

- > June 2004: Letter of Intent
- > March 2008: First proto collaboration meeting
- > December 2008: Belle II founded

~300 members 47 institutes from 13 countries

Henryk Palka

Belle II Worldwide

You are welcome to join!

Henryk Palka

50 Cracow School of Theoretical Physics, Zakopane, 12.06.2010

32

Conclusions: The status of the project

- The project obtained preliminary approval by Japanese government in January 2010. Final (funding) decision expected soon
- Technical Design Report: has been completed (~480 pages), reviewed 2 weeks ago by external int. Comm., will be published in July
- Belle finishes data taking at end of June, thus permitting the KEKB upgrade work
- We are well on track to resume data taking in 2014 and looking forward to friendly competition with SuperB and LHCb

Technical Design Report

Version: 1.1 May 7, 2010

Int. Rev. Comm.: Marcel Demarteau, Andrey Golutvin, Yuval Grossman, Yoshitaka Kuno, PereMato, Tatsuya Nakada, Niko Neufeld, Tomasz Skwarnicki, Mike Sullivan, and William Trischuk

Henryk Palka

Backup

50 Cracow School of Theoretical Physics, Zakopane, 12.06.2010

34

Physics at Super B Factory

$\mathsf{B} \to \mathsf{K}_{\mathcal{V}\mathcal{V}}$

- Theoretically clean mode
- → SM: $B(B^+ \rightarrow K^+ \nu \nu) = (3.8 \pm 0.6) \times 10^{-6}$

Physics at Belle II

Observable	Belle 2006	SuperKl	EKB	†L]	HCb
	$(\sim 0.5 \text{ ab}^{-1})$	(5 ab^{-1})	(50 ab^{-1})	(2 fb^{-1})	$(10 \ {\rm fb}^{-1})$
Hadronic $b \to s$ transitions					
$\Delta {\cal S}_{\phi K^0}$	0.22	0.073	0.029		0.14
$\Delta {\cal S}_{\eta'K^0}$	0.11	0.038	0.020		
$\Delta \mathcal{S}_{K^0_S K^0_S K^0_S}$	0.33	0.105	0.037	-	-
$\Delta \mathcal{A}_{\pi^0 K^0_S}$	0.15	0.072	0.042	-	-
$\mathcal{A}_{\phi\phi K^+}$	0.17	0.05	0.014		
$\phi_1^{eff}(\phi K_S)$ Dalitz		3.3°	1.5°		
Radiative/electroweak $b \rightarrow s$ transitions					
$\mathcal{S}_{K^0_{arphi}\pi^0\gamma}$	0.32	0.10	0.03	-	-
$\mathcal{B}(\ddot{B} \to X_s \gamma)$	13%	7%	6%	-	-
$A_{CP}(B \to X_s \gamma)$	0.058	0.01	0.005	-	-
$C_9 \text{ from } \overline{A}_{\text{FB}}(B \to K^* \ell^+ \ell^-)$	-	11%	4%		
$C_{10} \text{ from } \overline{A}_{\text{FB}}(B \to K^* \ell^+ \ell^-)$	-	13%	4%		
C_7/C_9 from $\overline{A}_{\rm FB}(B \to K^* \ell^+ \ell^-)$	-		5%		7%
R_K		0.07	0.02		0.043
$\mathcal{B}(B^+ \to K^+ \nu \nu)$	$^{\dagger\dagger} < 3 \mathcal{B}_{ m SM}$		30%	-	-
$\mathcal{B}(B^0 \to K^{*0} \nu \bar{\nu})$	$^{\dagger\dagger} < 40 \ \mathcal{B}_{\mathrm{SM}}$		35%	-	-
Radiative/electroweak $b \rightarrow d$ transitions					
$\mathcal{S}_{ ho\gamma}$	-	0.3	0.15		
$\mathcal{B}(B \to X_d \gamma)$	-	$24\%~({\rm syst.})$		-	-

Henryk Palka 50 Cracow So

50 Cracow School of Theoretical Physics,

Zakopane, 12.06.2010

Observable	Belle 2006	Superk	KEKB	$^{\dagger}\mathrm{LHCb}$		
	$(\sim 0.5 \text{ ab}^{-1})$	(5 ab^{-1})	(50 ab^{-1})	(2 fb^{-1})	$(10 \ {\rm fb}^{-1})$	
Leptonic/semileptonic B decays						
$\mathcal{B}(B^+ \to \tau^+ \nu)$	3.5σ	10%	3%	-	-	
$\mathcal{B}(B^+ \to \mu^+ \nu)$	$^{\dagger\dagger} < 2.4 \mathcal{B}_{ m SM}$	4.3 ab^{-1} for	5σ discovery	-	-	
$\mathcal{B}(B^+ \to D \tau \nu)$	-	8%	3%	-	-	
$\mathcal{B}(B^0 \to D \tau \nu)$	-	30%	10%	-	-	
LFV in τ decays (U.L. at 90% C.L.)						
$\mathcal{B}(\tau \to \mu \gamma) \ [10^{-9}]$	45	10	5	-	-	
$\mathcal{B}(\tau \to \mu \eta) \ [10^{-9}]$	65	5	2	-	-	
$\mathcal{B}(\tau \to \mu \mu \mu) \ [10^{-9}]$	21	3	1	-	-	
Unitarity triangle parameters						
$\sin 2\phi_1$	0.026	0.016	0.012	${\sim}0.02$	${\sim}0.01$	
$\phi_2 \ (\pi\pi)$	11°	10°	3°	-	-	
$\phi_2 \ (ho \pi)$	$68^{\rm c} < \phi_2 < 95^{\rm o}$	3°	1.5°	10°	4.5°	
$\phi_2 \ (ho ho)$	$62^{\circ} < \phi_2 < 107^{\circ}$	3°	1.5°	-	-	
$\phi_2 \pmod{\phi_2}$		2°	$\lesssim 1^{\circ}$	10°	4.5°	
$\phi_3 (D^{(*)}K^{(*)})$ (Dalitz mod. ind.)	20°	7°	2°	8°		
$\phi_3 (DK^{(*)}) (ADS+GLW)$	-	16°	5°	$5\text{-}15^{\circ}$		
$\phi_3 \ (D^{(*)}\pi)$	-	18°	6°			
$\phi_3 \pmod{\phi_3}$		6°	1.5°	4.2°	2.4°	
$ V_{ub} $ (inclusive)	6%	5%	3%	-	-	
$ V_{ub} $ (exclusive)	15%	$12\%~(\mathrm{LQCD})$	5% (LQCD)	-	-	
$^{\dagger\dagger\dagger}\bar{ ho}$	20.0%		3.4%			
$^{\dagger\dagger\dagger}\bar{\eta}$	15.7%		1.7%			

Observable	Belle	Belle Belle/SuperKEKB		\mathbf{L}	HCb^{\dagger}
				(2 fb^{-1})	(10 fb^{-1})
B_s physics	(25 fb^{-1})	(5 ab^{-1})		
$\mathcal{B}(B_s o \gamma \gamma)$	$< 8.7 imes 10^{-6}$	0.25 imes	10^{-6}	-	-
$-\Delta\Gamma_s^{CP}/\Gamma_s \ (Br(B_s \to D_s^{(*)}D_s^{(*)}))$	3%	1% (model d	ependency)	-	-
$\Delta \Gamma_s / \Gamma_s \ (B_s \to f_{CP} \text{ t-dependent})$	-	1.2	%	-	-
$\phi_s \text{ (with } B_s \to J/\psi \phi \text{ etc.)}$	-	-	-	0.02	0.01
$\mathcal{B}(B_s \to \mu^+ \mu^-)$	-			$6 \text{ fb}^{-1} \text{ for}$	5σ discovery
$\phi_3 \ (B_s \to KK)$	-			$7-10^{\circ}$	
$\phi_3 \ (B_s \to D_s K)$	-			13°	
Υ decays	(3 fb^{-1})	(500 fb^{-1})			
$\mathcal{B}(\Upsilon(1S) ightarrow \mathrm{invisible})$	$< 2.5 imes 10^{-3}$	$< 2 imes 10^{-4}$			
	$(\sim 0.5 \text{ ab}^{-1})^{\ddagger}$	(5 ab^{-1})	(50 ab^{-1})		
Charm physics					
D mixing parameters					
x	0.25%	0.12%	0.09%		$0.25\%^{\dagger\dagger}$
y	0.16%	0.10%	0.05%		$0.05\%^{\dagger\dagger}$
$\delta_{K\pi}$	10°	6°	4°		
q/p	0.16	0.1	0.05		
ϕ	$0.13 \mathrm{rad}$	0.08 rad	0.05 rad		
A_D	2.4%	1%	0.3%		
New particles ^{\aleph}					
$\gamma\gamma \to Z(3930) \to D\bar{D}^*$		$> 3\sigma$			
$B \to KX(3872)(\to D^0\bar{D}^{*0})$		400 events			
$B \to KX(3872)(\to J/\psi\pi^+\pi^-)$		1250 events			
$B \to KZ^+(4430) (\to \psi'\pi^+)$		1000 events			
$e^+e^- \to \gamma_{\rm ISR} Y(4260) (\to J/\psi \pi^+\pi^-)$		3000 events			
Electroweak parameters		$(\sim 10 \mathrm{~ab^{-1}})$			
$\sin^2 \Theta_W$	-	$3 imes 10^{-4}$			

Henryk Palka

Comparison Belle II / LHCb

<i>e</i> ⁺ <i>e</i> ⁻ has advantages in…	LHCb has advantages in…
CPV in $B \rightarrow \phi K_S$, $\eta' K_S$,	CPV in $B \rightarrow J/\psi K_S$
CPV in $B \rightarrow K_S \pi^0 \gamma$	Most of <i>B</i> decays not
$B \rightarrow K \nu \nu$, $\tau \nu$, $D^{(*)} \tau \nu$	including ν or γ
Inclusive $b \rightarrow s \mu \mu$, see	Time dependent
$\tau \rightarrow \mu \gamma$ and other LFV	measurements of B_S
$D^0 \overline{D^0}$ mixing	$B_{(s,d)} \rightarrow \mu\mu$

 B_c and bottomed baryons

50 Cracow School of Theoretical Physics, Zakopane, 12.06.2010

I

Expected performance

Component	Type	Configuration	Readout	Performance
Beam pipe	Beryllium	Cylindrical, inner radius 10 mm,		
	double-wall	10 μ m Au, 0.6 mm Be,		
		1 mm coolant (paraffin), 0.4 mm Be		
PXD	Silicon pixel	Sensor size: 15×100 (120) mm ²	10 M	impact parameter resolution
	(DEPFET)	pixel size: 50×50 (75) μm^2		$\sigma_{zo} \sim 20 \ \mu m$
		2 layers: 8 (12) sensors		(PXD and SVD)
SVD	Double sided	Sensors: rectangular and trapezoidal	245 k	
	Silicon strip	Strip pitch: 50(p)/160(n) - 75(p)/240(n) µm		
		4 layers: 16/30/56/85 sensors		
CDC	Small cell	56 layers, 32 axial, 24 stereo	14 k	$\sigma_{r\phi} = 100 \ \mu m, \sigma_x = 2 \ mm$
	drift chamber	r = 16 - 112 cm		$\sigma_{p_t}/p_t = \sqrt{(0.2\% p_t)^2 + (0.3\% / \beta)^2}$
		$-83 \le z \le 159 \text{ cm}$		$\sigma_{p_t}/p_t = \sqrt{(0.1\% p_t)^2 + (0.3\%/\beta)^2}$ (with SVD)
				$\sigma_{dE/dx} = 5\%$
TOP	RICH with	16 segments in ϕ at $r \sim 120$ cm	8 k	$N_{p.e.} \sim 20, \sigma_t = 40 \text{ ps}$
	quartz radiator	275 cm long, 2 cm thick quartz bars		K/π separation :
		with 4x4 channel MCP PMTs		efficiency > 99% at $< 0.5\%$ pion
				fake prob. for $B \rightarrow \rho \gamma$ decays
ARICH	RICH with	4 cm thick focusing radiator	78 k	$N_{p.e.} \sim 13$
	aerogel radiator	and HAPD photodetectors		K/π separation at 4 GeV/c:
		for the forward end-cap		efficiency 96% at 1% pion fake prob.
ECL	CsI(Tl)	Barrel: $r = 125 - 162$ cm	6624	$\frac{\sigma E}{E} = \frac{0.2\%}{E} \oplus \frac{1.6\%}{5E} \oplus 1.2\%$
	(Towered structure)	End-cap: $z =$	1152 (F)	$\sigma_{\rm pos} = 0.5 \ {\rm cm}/\sqrt{E}$
	· · · ·	-102 cm and +196 cm	960 (B)	(E in GeV)
KLM	barrel: RPCs	14 layers (5 cm Fe $+$ 4 cm gap)	θ: 16 k, φ: 16 k	$\Delta \phi = \Delta \theta = 20 \text{ mradian for } K_L$
		2 RPCs in each gap		~ 1 % hadron fake for muons
	end-caps:	14 layers of $(7 - 10) \times 40 \text{ mm}^2 \text{ strips}$	17 k	$\Delta \phi = \Delta \theta = 10$ mradian for K_L
	scintillator strips	read out with WLS and G-APDs		$\sigma_p/p = 18\%$ for 1 GeV/c K_L

Table 1.3: Expected performance of components of the Belle II spectrometer.

Belle II Detector

Designed for improved performance and to cope with higher event rates and backgrounds

SVD: 2 DEPFET pixels layers

+ 4 DSSD layers

CDC: small cell, long lever arm, wave-form sampl.

TOP + Aerogel Focusing RICH

ECL: waveform sampling, pure CsI for end-caps KLM: Scintillator +SiPM (end-caps) new dead time free readout and high speed DAQ systems

QED background simulation

Such spectra have never been measured yet: \rightarrow recently background study runs taken at different conditions in Belle

Henryk Palka

Benefits of virtualisation

- Site perspective
 - Resource flexibility
 (e.g. wrt Linux distributions)
 - Easy resources management
- User perspective
 - Isolation from environment: multisystem applications identical environment on multiple sites identical environment on local machine

Drawbacks:

 performance penalty (depends on virt. method) number crunching: negligible, I/O varies....

