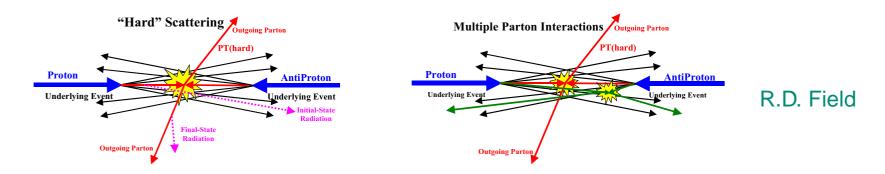
Limiting soft particle production and QCD

Wolfgang Ochs Max-Planck-Institut für Physik Munich, Germany

50 Cracow School of Theoretical Physics June 9-19, 2010 Zakopane, Poland


Multi-hadron production at high energies

- a) initiated by hard sub-processes (pQCD, EW,...) at short distances emerging quarks and gluons (partons) initiate parton cascade (perturbative QCD)
- b) formation of mesons $(q\bar{q})$ and baryons (qqq) at large distances (non-perturbative mechanism)
 - e^+e^- annihilation: $e^+e^- \to q\bar{q}$;

development of q and \bar{q} quark gluon cascade transition of partons to hadrons: hadronic jets

• pp collisions: $p \to q(qq), \to q, g, (qq), \dots$

hard subprocesses: $qq \rightarrow qq$, $gg \rightarrow q\bar{q}$, ... formation of sidewise jets from scattered q,g spectator jets from beam remnants;

multiple interactions at TeV energies soft particles form "underlying event"

untriggered events: "minimum bias events" small angle parton parton scattering

• AA collisions: $A \rightarrow$ nucleons, nucleons $\rightarrow q, g$ hard parton parton interactions as in pp collisions in addition:

- parton rescattering in nuclei
- multiple interactions:
 large number of nucleons participating in the interaction
- collective phenomena, flow effects, plasma formation

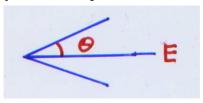
Limiting soft particle emission

inclusive production of particles in the limit $p\to 0;\;(p_T\to 0)$ $I_0\equiv E\frac{dN}{d^3p}|_{p\to 0}$

because of Born term dominance: universal features in the soft limit for all processes:

- 1. inclusive spectra become energy independent (near $y \sim 0$)
- 2. relative normalisation of spectra in different processes given by relevant colour factors

This holds for QCD partons, we assume the same is true for hadrons


qualitative picture:

- coherent emission of soft gluons from parton cascade
- gluons of large wavelength do not resolve any detailed intrinsic jet structure
- they "see" only the colour charge of primary partons i.e. they are represented by the Born term for the minimal partonic process

 e^+e^- annihilation

Quark and gluon jets in e^+e^- annihilations

parton jet with energy E: particles inside opening angle Θ

$$Q = E\Theta$$
 virtuality (max. p_T in jet)

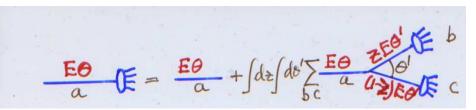
global observables

mean multiplicity:
$$\bar{n}=\sum_n nP_n, \quad \bar{n}=\frac{\partial Z(Q,u)}{\partial u}|_{u=1}$$
 factorial moments: $f_q=\sum_n n(n-1)...(n-q+1)P_n, \quad f_q=\frac{\partial^n Z(Q,u)}{\partial u}|_{u=1}$

multiplicity generating function

$$Z(Q, u) = \sum_{n=1}^{\infty} P_n(Q) u^n$$

inclusive distributions:


 $D(x) \equiv \frac{dn}{dx}$ (No of particles in interval (x, x + dx)) generating functional and probing function u(k):

$$Z(\{u\}) = \sum \int d^3k_1 \dots d^3k_n P_n(k_1 \dots k_n) u(k_1) \dots u(k_n)$$

inclusive distribution: $D^{(1)}(k_1) = \frac{\delta Z(\{u\})}{\delta(u(k_1))}|_{u=1}$

inclusive correlations:
$$D^{(n)}(k_1 \dots k_n) = \frac{\delta^n Z(\{u\})}{\delta(u(k_1)\dots\delta(u(ki_n))}|_{u=1}$$

Analytical perturbative QCD predictions

integral evolution equation for generating function in scale $E\Theta$

Bassetto et al., '83

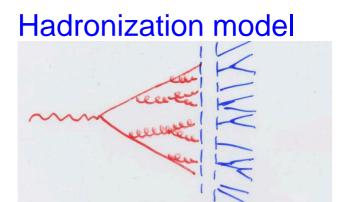
Dokshitzer et al.,'84

differential evolution equation in QCD: splitting of partons $a \rightarrow b, c$

$$\frac{d}{dY} Z_a(Y,u) = \sum_{b,c} \int_{z_c}^{1-z_c} dz \frac{\alpha_s(\tilde{k_T})}{2\pi} P_{bc}(z) \times \\ \{Z_b(Y+\ln z,u) Z_c(Y+\ln(1-z),u) - Z_a(Y,u)\}$$

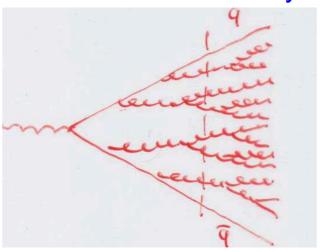
$$Z(0,u) = u \quad \text{initial condition: one parton at threshold}$$

- evolution variable $Y = \ln \frac{E\Theta}{Q_0}$
- non perturbative cut-off $k_T \geq Q_0$
- running coupling $\alpha_s(\tilde{k_T})$, $\tilde{k}_T = \min(z, 1-z) E\Theta$, 1-loop
- ullet angular ordering: in decays 1 o 23, 2 o 45 keep $\Theta_{45} < \Theta_{23}$


high energy approximations

- Double logarithmic approximation (DLA): $P_{gg}(z) \sim \frac{1}{z}$ for gluon emission
- Modified leading logarithmic approximation (MLLA): include next to leading (single log) terms

full solution


- numerical solution of evolution eqn.
 (Complete up to MLLA)
- Monte Carlo generation of parton cascade ARIADNE-D, fitted parameters Λ , Q_0

Hadronization: parton hadron duality

parameter Λ $Q_0 \sim 1-2 \ {\rm GeV}$ hadrons, resonances

Parton Hadron Duality

parameter Λ ,

 $k_T \geq Q_0 > \Lambda$ (few 100 MeV) hadrons \sim partons

Duality: QCD cascade evolves towards lower scale results directly compared to hadron final state

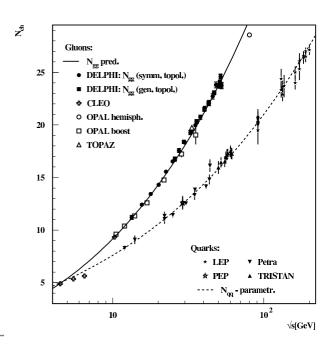
Motivation and early history

- "Preconfinement" perturbative preparation of colour singlet $q\bar{q}$ systems \rightarrow hadron clusters with mass near cut-off $Q_0 \gtrsim 1$ GeV Amati, Veneziano (1979)
- "Local Parton Hadron Duality (LPHD)" Simple ansatz for hadronization inclusive spectra $D(\xi)|_{\mbox{hadron}} = K \times D(\xi)|_{\mbox{parton}}$ for $\xi = \ln(1/x)$ at cut-off scale $Q_0 \sim \Lambda$ Azimov, Dokshitzer, Khoze, Troyan (1985)

Analytical and numerical results for many jet observables particles and subjets of variable resolution

generally a successful approach

Example: Particle Multiplicities in quark and gluon jets

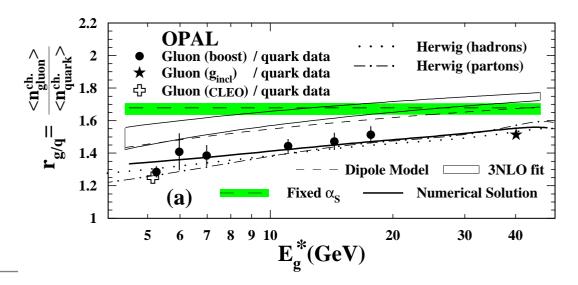

Leading order (DLA)

$$\bar{N} \sim \exp(c\sqrt{Y}), \quad Y = \ln \frac{E_{jet}\Theta}{\Lambda}$$

Next to leading order (MLLA)

$$\bar{N} \sim \exp(c1/\sqrt{\alpha_s(Y)} + c2\ln\alpha_s(Y) + \ldots)$$

$$c_1 = \frac{\sqrt{96\pi}}{b}, \qquad c_2 = \frac{1}{4} + \frac{10N_f}{27b} \qquad b = \frac{11}{3}N_C - \frac{2}{3}N_f$$


DELPHI collaboration (2005): quark and gluon jets

Furmanski, Petronzio, Pokorski '79; Ermolaev, Fadin '81; Mueller '81; Dokshitzer, Fadin, Khoze; Bassetto, Marchesini, Ciafaloni '82

Difference between quark and gluon jets

mean multiplicity in quark jets N_q and gluon jets N_q

$$\begin{split} r(Y) &= \frac{N_g}{N_q} = \frac{C_A}{C_F} (1 - r_1 \gamma_0(Y) - r_2 \gamma_0^2(Y)) + O(\gamma_0^3), \quad Y = \ln Q/Q_0 \\ \gamma_0 &= \left(\frac{2C_A \alpha_S}{\pi}\right)^{1/2}, \quad \text{Colour factors: } C_A = 3, \ C_F = 4/3 \\ r_1 &= 2 \left[h_1 + \frac{n_f}{12N_c} \left(1 - \frac{2C_F}{N_c}\right)\right] - \frac{3}{4} \\ r_2 &= \frac{r_1}{6} \left(\frac{25}{8} - \frac{3}{4} \cdot \frac{n_f}{N_c} - \frac{C_F}{N_c} \cdot \frac{n_f}{N_c}\right) + \frac{7}{8} - h_2 - \frac{C_F}{N_c} \cdot h_3 + \frac{n_f}{12N_c} \cdot \frac{C_F}{N_c} h_4, \\ h_1 &= \frac{11}{24}, \ h_2 = \frac{67 - 6\pi^2}{36}, \ h_3 = \frac{4\pi^2 - 15}{24}, \ h_4 = \frac{13}{3}. \end{split}$$

MLLA: $r_{g/q}=\frac{C_A}{C_F}=\frac{9}{4}=2.25$ OPAL coll. '04

Gaffney, Mueller '85; Dremin et al. '00 Lupia, Ochs '98 (Num. Sol.)

Inclusive energy spectrum and soft limit

variables $\xi = \ln(1/x) = \ln(E_{jet}/E)$, particle energy E fixed jet energy E_{jet} and jet opening Θ , $Y = \ln(\frac{E_{jet}\Theta}{Q_0})$, k_T cut-off Q_0 DLA evolution equation for energy spectrum of parton p:

$$D_p^g(\xi,Y) = \delta_p^g \delta(\xi) + \int_0^\xi d\xi' \int_0^{Y-\xi} dy \frac{C_p}{N_C} \gamma_0^2(y) D_g^g(\xi',y); \quad \gamma_0^2 = \frac{2N_C \alpha_s}{\pi}$$
 only most singular terms kept in $g \to gg, \ q \to qg$
For large particle energies $x = E/E_{jet}$ like DGLAP eqn. fixed α_s : solve by iteration:

$$D_{p}^{g}(\xi, Y) = \delta_{p}^{g} \delta(\xi) + \frac{C_{p}}{N_{C}} \gamma_{0}^{2} (Y - \xi) + \frac{1}{2} \frac{C_{p}}{N_{C}} \gamma_{0}^{4} \xi (Y - \xi)^{2} + \dots$$

$$= \delta_{p}^{g} \delta(\xi) + \frac{C_{p}}{N_{C}} \gamma_{0} \sqrt{\frac{Y - \xi}{\xi}} I_{1} (2\gamma_{0} \sqrt{\xi (Y - \xi)})$$

coherent emission of soft gluons lead to depletion at small x:

"hump-backed platau"

double differential:
$$\frac{dN_p}{d\xi dY} = \frac{C_p}{N_C} \gamma_0^2 + \dots, \quad \frac{dN_p}{dE d\Theta} = \frac{2C_p}{\pi} \frac{\alpha_s}{E\Theta} + \dots$$

Born term for soft gluon bremsstrahlung:

independent of jet energy, proportional to colour factors p = F, A

DLA with running coupling:

first iterations
$$\gamma_0^2 = \frac{\beta^2}{\ln(k_T/\Lambda)}$$
, $\beta^2 = \frac{12N_C}{11N_C - 2n_f}$
$$D_p^g(\xi, Y) = \delta_p^g \delta(\xi) + \frac{C_p}{N_C} \beta^2 \log\left(1 + \frac{Y - \xi}{\lambda}\right) \left[1 + \frac{\beta^2 \int_0^{Y - \xi} d\tau \log(1 + \frac{\tau}{\lambda}) \log(1 + \frac{\xi}{\tau + \lambda})}{\log(1 + \frac{Y - \xi}{\lambda})}\right] + \dots$$

MLLA:

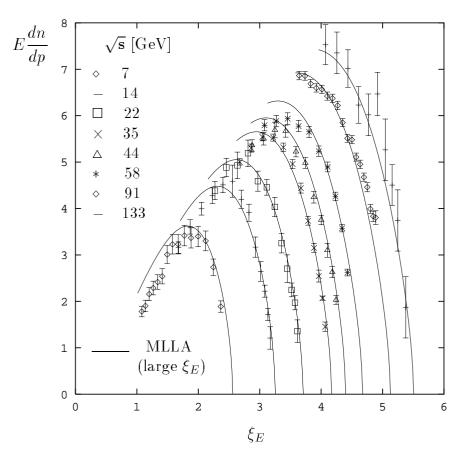
$$D(\xi, Y) = D(\xi, Y)|_{DLA} \exp\left[-a \int_{\xi}^{Y} \gamma_0^2(y)/(4N_C)dy\right]$$

Hadronization:

kinematics at soft limit:

partons: $k_T \geq Q_0$, hadrons: $k_T \geq 0$

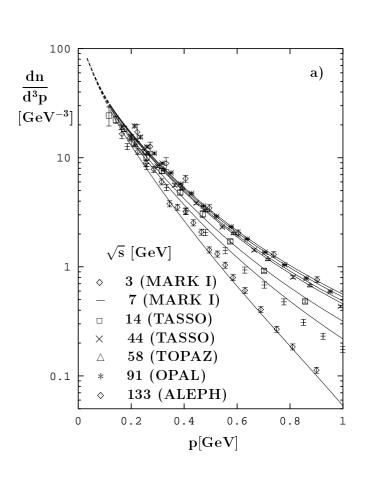
compare both at the same energy

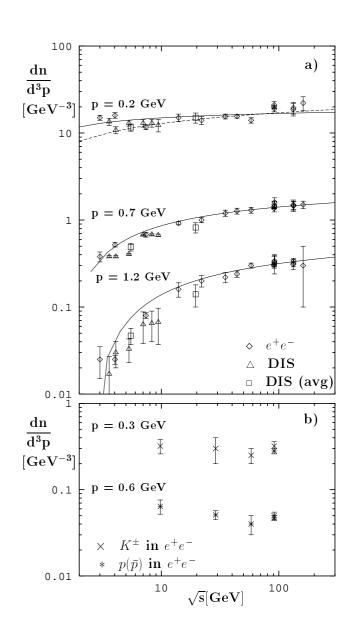

$$E_{hadron} = \sqrt{p_h^2 + Q_0^2} = E_{parton} \equiv E$$

and

$$E_{hadron} \frac{dn(\xi_E)}{dp_{hadron}} = K_h E_{parton} \frac{dn(\xi_E)}{dp_{parton}}$$

then $E\frac{dn}{d^3p} \to const$ for $p_{hadron} \to 0$.




$$\xi_E = \ln(E_{jet}/E)$$

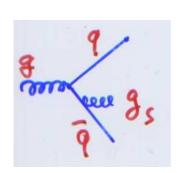
"hump backed plateau"

Inclusive spectra $\frac{dn}{d^3p}$ vs cms energy \sqrt{s}

charged particles

kaons protons

W. Ochs, Limiting soft particle production and QCD – p.18

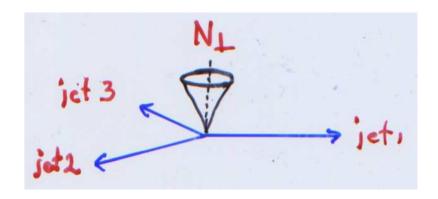

Colour factors in quark and gluon jets

soft gluon bremsstrahlung from "colour dipole antenna" ($q\bar{q}$ or gg) Born term (massless quarks)

$$\frac{dN_{A,F}}{d\Omega dE} = \frac{\alpha_s}{(2\pi)^2} \frac{1}{E} W_{A,F}(\vec{n}_g), \quad W_{A,F}(\vec{n}_g) = 2C_{A,F}(\widehat{i,j})$$

$$(\widehat{i,j}) = \frac{1 - \cos\Theta_{ij}}{(1 - \cos\Theta_{is})(1 - \cos\Theta_{js})} \text{ antenna function}$$
 aligned $q\bar{q}$ antenna: $W_F = 4C_F/\sin^2\Theta_{qs}$

soft gluons from $e^+e^- \rightarrow q\bar{q}g$

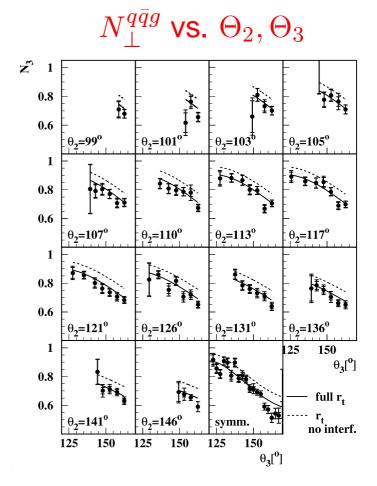

$$W_{q\bar{q}g}(\vec{n}_g) = C_A [(\widehat{q,g}) + (\widehat{\bar{q},g}) - \frac{1}{N_C^2}(\widehat{q,\bar{q}})]$$

 $W_{q\bar{q}g}(\vec{n}_g) = C_A \ [(\widehat{q,g}) + (\widehat{\bar{q},g}) - \frac{1}{N_C^2}(\widehat{q,\bar{q}})]$ limits: $q \| g \text{ like } q\bar{q} \text{ dipole } W = 4C_F/\sin^2\Theta_{qs}$ $q \| \bar{q} \text{ like } g\bar{g} \text{ dipole } W = 4C_A/\sin^2\Theta_{gs}$

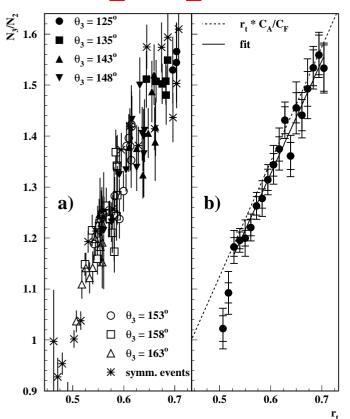
these extreme limits are not accessible experimentally, but

Color factors from 3 jet events

study soft radiation perpendicular to event plane ($\cos \Theta_{is} = 0$) measure multiplicity of particles N_{\perp} in sidewise cone (p_T distribution independent of angles Θ_{ij} for $p_T < 1$ GeV



$$\frac{N_{\perp}^{qqg}}{N_{\perp}^{q\bar{q}}} = \frac{W_{\perp}^{qqg}}{W_{\perp}^{q\bar{q}}} \equiv \frac{C_A}{C_F} r
r(\Theta_{ij}) = \frac{1}{4} [(1 - \cos\Theta_{qg}) + (1 - \cos\Theta_{\bar{q}g}) - \frac{1}{N_C^2} (1 - \cos\Theta_{q\bar{q}})]$$


(normalised by 2 jet rate $W_{\perp}^{q \bar{q}} = 4 C_F$) only 2 angles are independent

Khoze, Lupia, W.O. '97

perpendicular radiation in $q\bar{q}g$ events

 $N_{\perp}^{qar{q}g}/N_{\perp}^{qar{q}}$ vs. $r(\Theta_{ij})$

DELPHI 2005

dashed line: no $1/N^2$ term

full line: QCD

dashed: QCD prediction

full: slope = $C_A/C_F = 2.211 \pm 0.053$

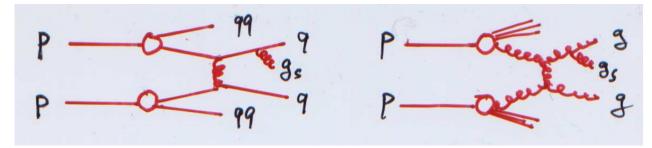
W. Ochs, Limiting soft particle production and QCD – p.21

Summary on soft particles in e^+e^- annihilation

soft particle density follows the soft gluon QCD Born terms

- $E\frac{dn}{d^3p}$ becomes energy independent for $p\to 0$
- soft particle density varies with orientation of colour antenn as predicted density in quark and gluon jets proportional to colour factors C_F, C_A
- this limiting behaviour is in contrast to the behaviour of global observables

 $pp/par{p}$ scattering


W.O., V.A. Khoze, M.G. Ryskin, EPJC 2010

pp "minimum bias" events

minimal partonic process $2 \rightarrow 2 + g_s$ at small angles (semi-hard process): soft bremsstrahlung from gluon exchange processes

(asymptotically non-vanishing cross sections

Low, Nussinov '75)

soft bremsstrahlung in $qq o qqg_s, \quad qg o qgg_s, \dots$

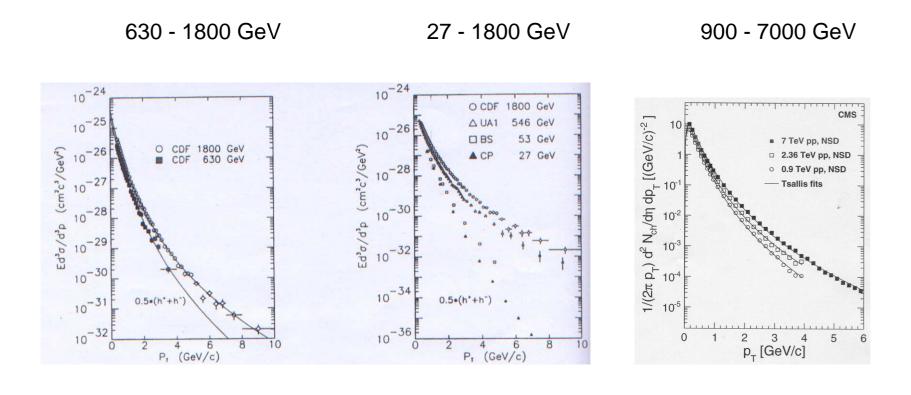
qq o qq: gluon exchange leads to radiating colour octet dipole, corresponding to initial and final bremsstrahlung from 2 qq triplet dipoles

more complex processes with the same radiation pattern: multiple gluon exchanges in qq, ladder diagrams, diquarks in $pp \rightarrow 8 + 8$

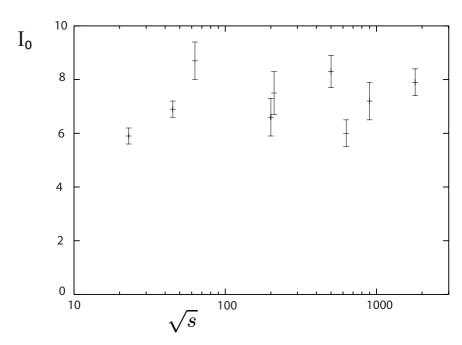
$$I_0^{pp}/I_0^{e^+e^-} \sim \frac{dN^{qq\to qq}}{dEd\eta}/\frac{dN^{e^+e^-\to \bar{q}q}}{dEd\eta} \to \frac{C_A}{C_F} \quad \text{for } p\to 0$$

see also Brodsky, Gunion '76

```
multiple interactions: 4 \to 4 + g_s, \ldots in present calculations added incoherently. leads to rising cross sections and rising soft densities: example Pythia: I_0^{pp} \text{ rises by factor 2 or more for } \sqrt{s} = 23 \text{ to } 14000 \text{ GeV } (p_T < 0.5 \text{ GeV}) physics in e^+e^- and pp very different otherwise (for example: leading protons in pp collisions)
```


Energy dependence of the limiting soft spectrum

pp data: Extrapolation to $p_T=0$: $E \frac{d\sigma}{d^3p} = A \exp(Bp_T + Cp_T^2 + Dy^2) \text{ or } E \frac{d\sigma}{d^3p} = A(1+p_T/p_0)^{-n}$


Exp	\sqrt{s}	$p_{T,min}$	Α	σ_{tot}	σ_{el}	σ_{in}	$I_0 = A/\sigma_{in}$
	[GeV]	[GeV]	$[mb/GeV^2]$	[mb]	[mb]	[mb]	$[GeV^{-2)}]$
BS	23	0.1	191 ± 7	39.4	6.8	32.6 ± 0.5	5.9 ± 0.3
BS	45	0.3	238 ± 7	41.9	7.5	34.4 ± 0.7	6.9 ± 0.3
BS	63	0.1	307 ± 20	43.0	7.8	35.2 ± 0.6	8.7 ± 0.7
STAR	200	0.2					7.5 ± 0.8
UA1	200	0.25	286 ± 17	52	9.2	43 ± 4	6.6 ± 0.7
UA1	500	0.25	408 ± 24	62	13	49 ± 2	8.3 ± 0.6
CDF	630	0.4	300 ± 20	63	13	50 ± 2	6.0 ± 0.5
UA1	900	0.25	382 ± 20	68	15	53 ± 4	7.2 ± 0.7
CDF	1800	0.4	450 ± 10	74	17	57 ± 3	7.9 ± 0.5

$$AA \ {\rm data:} \ E\frac{d\sigma}{d^3p} = \frac{A}{(\exp(m_T/T)-1)}; \quad m_T = \sqrt{m^2 + p_T^2} \ ({\rm fits \ for} \ p_T \gtrsim 30 \ {\rm MeV \ PHOBOS})$$

spectra of $E\frac{dN}{d^3p}$ in pp collisions

Soft limit of $E\frac{dN}{d^3p}$ from exponential extrapolation

inelastic $pp/p\bar{p}$ collisions (exp. fit): $I_0 \approx (7\pm 1)~{\rm GeV}^{-2}$ to compare with e^+e^- annihilation: non-diffractive $pp/p\bar{p}$ collisions (exp. fit): $I_0 \approx (8\pm 1)~{\rm GeV}^{-2}$ non-diffractive $pp/p\bar{p}$ collisions (therm. fit): $I_0 \approx (6\pm 1)~{\rm GeV}^{-2}$ (-25%)

Data suggest rather flat energy dependence ($\frac{dN}{dy}$ would rise by factor 2) \Rightarrow consistent with expectations from soft gluon bremsstrahlung

Comparison of pp with e^+e^- collisions

1. spectrum $E\frac{dN}{d^3p}$ vs p_T using sphericity-jet axis in e^+e^- annihilations: one experiment: TPC at SLAC, Aihara et al., 1987

in comparison with British-Scandinavian Coll. at ISR, 1975

spectra are falling more steeply in pp collisions; also different shapes

for pions: $r \approx I_0^{pp}/I_0^{e^+e^-} \approx 2.7$ for exp. extrapol.

 $r \approx 2.0$ for thermal fit.

for kaons: $r \approx I_0^{pp}/I_0^{e^+e^-} \approx 2.0$ for exp. extrap.

2. fits to the energy spectra in e^+e^- annihilations

$$\frac{E}{4\pi p^2} \frac{d\sigma}{dp} = \sum_m A_m \exp(-B_m E)$$

Ехр	\sqrt{s}	p_{min}	A_1	B_1	σ_{tot}	I_0
	[GeV]	[GeV]	$[nb/GeV^2]$	$[GeV^{-1}]$	[nb]	$[GeV^{-2)}]$
ARGUS	10	p > 0.05				3.0 ± 0.5
TASSO	14	p > 0.3	23.9 ± 3.9	5.25 ± 0.43	1.77	3.5 ± 0.6
TASSO	22	p > 0.3	8.0 ± 1.2	4.70 ± 0.32	0.72	3.4 ± 0.5
TASSO	34	p > 0.3	3.7 ± 0.6	4.97 ± 0.45	0.30	3.4 ± 0.5
TPC/2 γ	29	$p_T \sim 0.05$				3.0 ± 0.3

$$e^+e^-$$
 annihilations: $I_0^{e^+e^-} \approx (3.3 \pm 0.5) \text{ GeV}^{-2}$ $\Rightarrow I_0^{pp}/I_0^{e^+e^-} \approx (1.8 \pm 0.4) \div (2.4 \pm 0.5)$

thermal exponential extrapolation of pp data.

expect
$$I_0^{pp}/I_0^{e^+e^-} = C_A/C_F = 2.25$$

AA scattering

Spectra at low p_T in AA collisions

expect for the particle production in nuclear AB collision naively:

pointlike interactions, like high p_T production

$$\frac{dN_{AB}}{dp_T} = N_{coll} \frac{dN_{pp}}{dp_T} \quad \text{define} \quad R_{AB}^{N_{coll}} = \frac{1}{N_{coll}} \frac{dN_{AB}/dp_T}{dN_{pp}/dp_T} \quad \text{nuclear modification factor}$$

 N_{coll} is the number of nucleon nucleon collisions (can be calculated in the nuclear theory by Glauber).

but: energy loss in medium

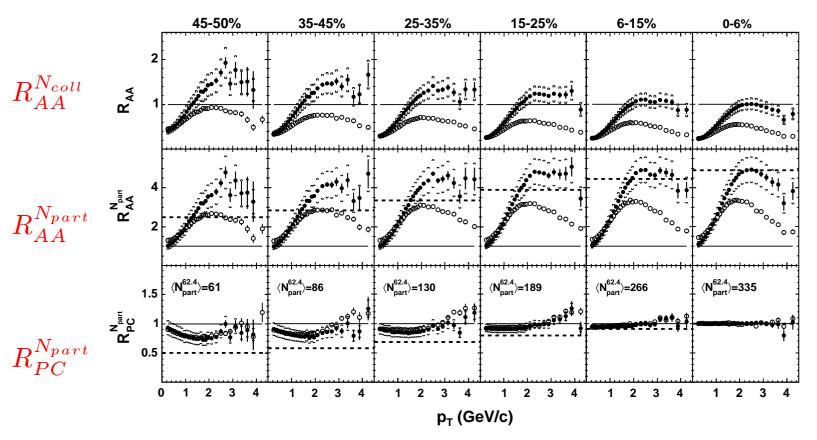
Soft particle production:

particles with large wavelength $1/p_T \gtrsim r$ are coherently emitted

from range r: nucleon $R_N \sim 1/m_\pi$ or nucleus $R_A \sim 1/30 \; \text{MeV}$

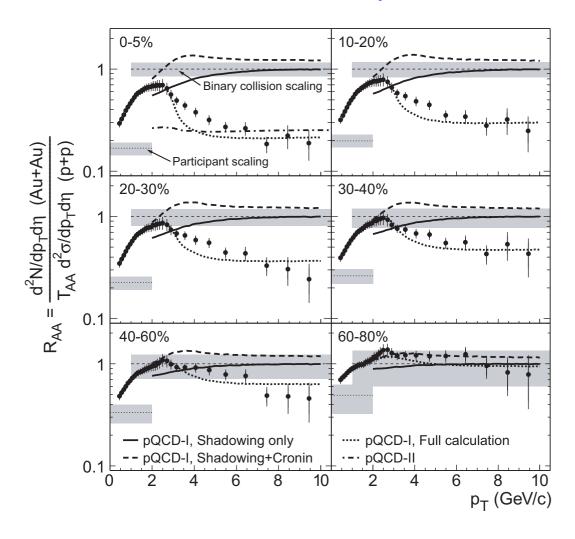
⇒ expect reduced rate

bulk particle production depends on No of participating nucleons N_{part} or "wounded nucleons" Bialas, Bleszynski and Czyz '76


$$\frac{dN_{AB}}{dp_T} = \frac{N_{part}}{2} \frac{dN_{pp}}{dp_T} \quad \text{define} \quad R_{AB}^{N_{part}} = \frac{2}{N_{part}} \frac{dN_{AB}/dp_T}{dN_{pp}dp_T} \quad \text{don't count rescatterings}$$

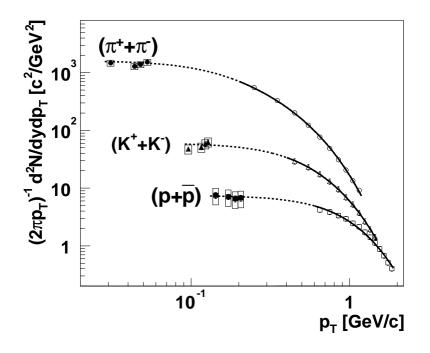
p_T distributions in AuAu collisions

upper data points: $\sqrt{s} = 62.4 \text{ GeV}$; lower data points: $\sqrt{s} = 200 \text{ GeV}$


centralities: peripheral ←⇒ central

Phobos collaboration '05

- \Rightarrow 1. R has weak energy dependence for $p_T \rightarrow 0$ (R behaves like pp)
- \Rightarrow 2. Normalization for $p_T \to 0$: $R_{AA}^{N_{part}} \to 1$


Normalisation as measured by STAR '2003

W. Ochs, Limiting soft particle production and QCD – p.34

Extrapolated I_0 in AA collisions

 π spectra at very low $p_T\gtrsim 30$ MeV measured by PHOBOS '04 common fit with data from PHENIX '04 at $p_T\gtrsim 300$ MeV

"thermal fit" to spectrum in central AuAu collisions

$$E\frac{dN}{d^3p} = \frac{A}{(\exp(m_T/T) - 1)}; \quad m_T = \sqrt{m^2 + p_T^2}$$

with T=0.229 GeV

Thermal extrapolation of spectra to $p_T = 0$:

$$pp$$
 collisions $I_0 \simeq 5.9~{
m GeV}^{-2}$ T=0.182 GeV STAR

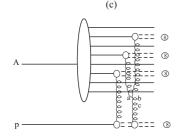
$$AuAu$$
 central $I_0 \simeq (950 \pm 100)~{
m GeV}^{-2}$ T=0.229 GeV PHOBOS, STAR

therefore
$$I_0^{AA}/I_0^{pp} \approx 160 \pm 17$$

compare with

$$N_{coll}=1040$$
 and $N_{part}/2=172~(\pm 15\%)$ (Glauber model calculation)

conclude:

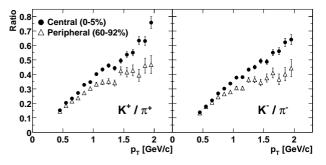

$$p_T o 0: \qquad R_{AA}^{N_{part}} o 1 \quad ext{and} \quad I_0^{AuAu} pprox rac{N_{part}}{2} \; I_0^{pp}$$

Antenna pattern in nuclear collisions

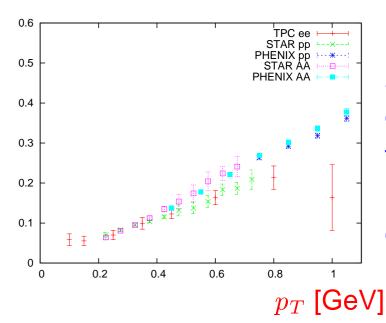
coherent particle production over nucleon size r_p (not nuclear size r_A , no structure at $p_T \sim 1/r_A \sim 30$ MeV)

Minimal model for soft particles in nuclear collisions: exchanged gluons couple to quarks/ diquarks, each nucleon after repeated rescatterings produces colour octet state. soft gluons coherently produced from external colour charges,

$$N_{coll}=1$$
 (a) $N_{part}/2=1$ (b) $N_{part}/2=1$



$$N_{coll} = 3$$
$$N_{part}/2 = 2$$


This mechanism results in "participant scaling"

Universal composition of soft particles?

for soft qq scattering particle ratios reflect quark fragmentation:

 K^-/π^- ratios central > peripheral Phenix

 K^-/π^- ratios converge for $p_T \to 0$ in e^+e^- , pp and AA collisions

very soft particles stay behind expanding plasma, ⇒ decouple from thermalisation

Summary

- Universal features of particle production for $p \to 0$ based on QCD gluon bremsstrahlung
 - a) energy independence
 - b) intensity I_0 determined by color factors (no universal thermalisation)
 - e^+e^- annihilation: I_0 (gluon jet)/ I_0 (quark jet) = C_A/C_F
 - pp scattering: $I_0(pp)/I_0(e^+e^-) = C_A/C_F$
 - AA scattering: $I_0(AA)/I_0(pp) = (N_{part}/2) C_A$
- particle ratios tend to converge to those from $q\bar{q}$ dipoles Soft hadrons in central region produced first, they do not participate in equilibration
- LHC: New incoherent sources: $I_0(pp)$ rising with energy?